HACD1 , a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth
The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fib...
Saved in:
| Published in: | Journal of molecular cell biology Vol. 7; no. 5; pp. 429 - 440 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Oxford UP
01.10.2015
Oxford University Press |
| Subjects: | |
| ISSN: | 1674-2788, 1759-4685, 1759-4685 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of ≥ C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism. |
|---|---|
| AbstractList | The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of greater than or equal to C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism. The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of ≥C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism. The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of ≥ C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism. The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of ≥ C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism.The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of ≥ C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism. |
| Author | Blondelle, Jordan Guillaud, Laurent Walmsley, Gemma Relaix, Frédéric Blot, Stéphane Barthélémy, Inès Storck, Sébastien Gache, Vincent Pilot-Storck, Fanny Ferry, Arnaud Ohno, Yusuke Rahier, Anaëlle Gadin, Stéphanie Tiret, Laurent Blanchard-Gutton, Nicolas Maurer, Marie Piercy, Richard J. Prola, Alexandre Demarquoy, Jean Kihara, Akio Aubin-Houzelstein, Geneviève Guyot, Stéphane |
| Author_xml | – sequence: 1 givenname: Jordan surname: Blondelle fullname: Blondelle, Jordan – sequence: 2 givenname: Yusuke surname: Ohno fullname: Ohno, Yusuke – sequence: 3 givenname: Vincent surname: Gache fullname: Gache, Vincent – sequence: 4 givenname: Stéphane surname: Guyot fullname: Guyot, Stéphane – sequence: 5 givenname: Sébastien surname: Storck fullname: Storck, Sébastien – sequence: 6 givenname: Nicolas surname: Blanchard-Gutton fullname: Blanchard-Gutton, Nicolas – sequence: 7 givenname: Inès surname: Barthélémy fullname: Barthélémy, Inès – sequence: 8 givenname: Gemma surname: Walmsley fullname: Walmsley, Gemma – sequence: 9 givenname: Anaëlle surname: Rahier fullname: Rahier, Anaëlle – sequence: 10 givenname: Stéphanie surname: Gadin fullname: Gadin, Stéphanie – sequence: 11 givenname: Marie surname: Maurer fullname: Maurer, Marie – sequence: 12 givenname: Laurent surname: Guillaud fullname: Guillaud, Laurent – sequence: 13 givenname: Alexandre surname: Prola fullname: Prola, Alexandre – sequence: 14 givenname: Arnaud surname: Ferry fullname: Ferry, Arnaud – sequence: 15 givenname: Geneviève surname: Aubin-Houzelstein fullname: Aubin-Houzelstein, Geneviève – sequence: 16 givenname: Jean surname: Demarquoy fullname: Demarquoy, Jean – sequence: 17 givenname: Frédéric surname: Relaix fullname: Relaix, Frédéric – sequence: 18 givenname: Richard J. surname: Piercy fullname: Piercy, Richard J. – sequence: 19 givenname: Stéphane surname: Blot fullname: Blot, Stéphane – sequence: 20 givenname: Akio surname: Kihara fullname: Kihara, Akio – sequence: 21 givenname: Laurent surname: Tiret fullname: Tiret, Laurent – sequence: 22 givenname: Fanny surname: Pilot-Storck fullname: Pilot-Storck, Fanny |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26160855$$D View this record in MEDLINE/PubMed https://institut-agro-dijon.hal.science/hal-02290631$$DView record in HAL |
| BookMark | eNqFks2PEyEYxolZ467rnrwbjhq3Lu_MMAOXTZr6UZMmXvRMGAZaKgwVmJr-99J0a3RjIhcI_J4HXt7nOboYw6gRegnkHRBe32296u_8dk8a_gRdQUf5rGkZvSjrtmtmVcfYJbpJaUvKqFldM_IMXVYttIRReoX8cr54D_gWSxz1enIyh4iDwV77PspRYxX8LiSbbRixHAds3GQHmw-3eBeDD1kn7A-hdzJlbKZ0xtJ37XSWDvspKafxOoafefMCPTXSJX3zMF-jbx8_fF0sZ6svnz4v5quZotDkmek70NBQkFJVqu8YZZL1lFRcq6FuG8lMyxvT89qArFvJoOs50MZQrtRAVX2N7k--u6n3elB6zFE6sYvWy3gQQVrx98loN2Id9qKhjHNKisGbk8HmkWw5X4njHqkqTtoa9lDY1w-XxfBj0ikLb5PSzpXvC1MSwAhrgbGW_B_tgPHSV6AFffVnCb8fcW5dAeAEqBhSitoIZbM89qlUZJ0AIo4JEceEiFNCiubtI83Z9l_0L5i7v2A |
| CitedBy_id | crossref_primary_10_1016_j_ygeno_2025_111073 crossref_primary_10_1038_s41419_019_1763_2 crossref_primary_10_1017_S000711451600324X crossref_primary_10_1212_NXG_0000000000000423 crossref_primary_10_3390_biomedicines13071568 crossref_primary_10_1002_advs_202405157 crossref_primary_10_1134_S106235902461053X crossref_primary_10_3390_biom8040158 crossref_primary_10_1016_j_yexcr_2021_112906 crossref_primary_10_1242_dmm_044354 crossref_primary_10_1016_j_livsci_2021_104781 crossref_primary_10_1074_jbc_M117_803171 crossref_primary_10_3233_JND_190394 crossref_primary_10_17650_2222_8721_2021_11_3_51_63 crossref_primary_10_1080_10495398_2023_2286609 crossref_primary_10_1016_j_bbrc_2022_03_057 crossref_primary_10_1016_j_ajpath_2016_10_002 crossref_primary_10_1016_j_semcdb_2016_08_002 crossref_primary_10_1093_hmg_ddw033 crossref_primary_10_1165_rcmb_2016_0355TR crossref_primary_10_1038_s41467_020_19501_6 crossref_primary_10_1242_jcs_213124 crossref_primary_10_1007_s12041_022_01417_3 crossref_primary_10_1186_s13075_018_1579_y crossref_primary_10_3390_ijms21103694 crossref_primary_10_3390_genes15020196 crossref_primary_10_1016_j_plipres_2016_04_001 crossref_primary_10_3390_nu14245321 crossref_primary_10_3390_ijms22158176 crossref_primary_10_1016_j_diff_2016_05_003 crossref_primary_10_1186_s12917_024_04309_z crossref_primary_10_1186_s12967_023_04161_z crossref_primary_10_1016_j_jbc_2024_105656 |
| Cites_doi | 10.1073/pnas.0505482102 10.1242/dev.02155 10.1016/j.ydbio.2014.06.025 10.1186/1750-1172-3-26 10.1093/jb/mvs105 10.1016/j.bbalip.2014.06.014 10.1038/nature04399 10.1016/j.nmd.2008.04.002 10.1038/268761a0 10.1042/BST20110608 10.1016/j.plipres.2009.12.002 10.1371/journal.pone.0046408 10.1016/j.cell.2005.10.015 10.1016/j.atherosclerosis.2009.05.029 10.1016/j.bbamem.2012.10.006 10.1016/0014-5793(93)81330-3 10.1083/jcb.201207012 10.1016/j.lfs.2009.01.004 10.1021/bi00173a027 10.1101/gad.247205.114 10.1016/j.tig.2013.01.011 10.1083/jcb.153.2.329 10.1091/mbc.E14-03-0802 10.1128/JVI.00314-14 10.1007/s11910-012-0255-x 10.1242/dev.068353 10.1093/hmg/ddt380 10.1073/pnas.1005572107 10.1093/hmg/ddi151 10.1002/dvdy.21123 10.1126/science.181.4102.863 10.1073/pnas.0805546105 10.1101/cshperspect.a008342 10.1016/S0959-437X(00)00215-X 10.1016/j.nmd.2010.01.014 10.1038/nature12135 10.1007/s00439-003-0984-7 10.1038/nature12343 10.1016/j.nmd.2007.03.010 10.1128/MCB.05484-11 10.1093/brain/awu368 10.1016/j.febslet.2008.06.007 10.1074/jbc.M708993200 10.1042/BJ20040320 10.1006/cbir.2001.0750 |
| ContentType | Journal Article |
| Copyright | The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. Distributed under a Creative Commons Attribution 4.0 International License The Author (2015). Published by Oxford University Press on behalf of , IBCB, SIBS, CAS. 2015 |
| Copyright_xml | – notice: The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: The Author (2015). Published by Oxford University Press on behalf of , IBCB, SIBS, CAS. 2015 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 1XC VOOES 5PM |
| DOI | 10.1093/jmcb/mjv049 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1759-4685 |
| EndPage | 440 |
| ExternalDocumentID | PMC4589950 oai:HAL:hal-02290631v1 26160855 10_1093_jmcb_mjv049 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council |
| GroupedDBID | --- .2P .I3 .ZR 0R~ 4.4 53G 5VS 70E AAFWJ AAJKP AAKDD AAMDB AAMVS AAOGV AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABKDP ABNKS ABPTD ABQLI ABXVV ABZBJ ACGFS ACUTO ADBBV ADEYI ADFTL ADHKW ADHZD ADOCK ADPDF ADZTZ ADZXQ AEGPL AEJOX AEMDU AENEX AENZO AEPUE AEWNT AFIYH AFOFC AFPKN AGINJ AGSYK AHXPO AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS APIBT ARIXL AXUDD AYOIW BAWUL BAYMD BHONS BQDIO BSWAC BTRTY BVRKM CDBKE CITATION DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B GJXCC GROUPED_DOAJ H13 H5~ HAR HW0 HYE HZ~ J21 KOP KSI NGC NU- O0~ O9- OAWHX OJQWA OK1 OVD OVEED O~Y PAFKI PEELM Q1. Q5Y RD5 RPM RW1 RXO SV3 TCJ TEORI TGP TJX TLC TOX WFFXF WG7 X7H YAYTL YKOAZ ~91 CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c514t-fb71e1451aac2cb7858a8b5029ecd364a8f694fb93f1a36a817b9154f59ccd5c3 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363201800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1674-2788 1759-4685 |
| IngestDate | Tue Sep 30 16:52:21 EDT 2025 Tue Oct 14 20:44:20 EDT 2025 Tue Oct 07 09:45:46 EDT 2025 Thu Oct 02 06:16:44 EDT 2025 Mon Jul 21 06:02:20 EDT 2025 Sat Nov 29 03:11:15 EST 2025 Tue Nov 18 22:45:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | centronuclear myopathy LPC MUFA VLCFA PTPLA Centronuclear myopathy |
| Language | English |
| License | The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c514t-fb71e1451aac2cb7858a8b5029ecd364a8f694fb93f1a36a817b9154f59ccd5c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0002-8601-8329 0000-0003-4719-3834 0000-0002-8982-0317 0000-0001-8573-8335 0000-0001-6667-7653 0000-0003-1270-1472 0000-0001-8139-9911 0000-0002-4747-5893 0000-0002-2316-234X 0000-0002-9255-4910 0000-0002-2928-791X 0009-0001-7620-8487 0000-0002-0787-219X 0000-0003-4755-728X |
| OpenAccessLink | https://institut-agro-dijon.hal.science/hal-02290631 |
| PMID | 26160855 |
| PQID | 1718910915 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4589950 hal_primary_oai_HAL_hal_02290631v1 proquest_miscellaneous_1808618860 proquest_miscellaneous_1718910915 pubmed_primary_26160855 crossref_citationtrail_10_1093_jmcb_mjv049 crossref_primary_10_1093_jmcb_mjv049 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-10-01 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of molecular cell biology |
| PublicationTitleAlternate | J Mol Cell Biol |
| PublicationYear | 2015 |
| Publisher | Oxford UP Oxford University Press |
| Publisher_xml | – name: Oxford UP – name: Oxford University Press |
| References | 2015100104072170000_7.5.429.19 2015100104072170000_7.5.429.18 2015100104072170000_7.5.429.17 2015100104072170000_7.5.429.39 2015100104072170000_7.5.429.16 2015100104072170000_7.5.429.38 2015100104072170000_7.5.429.15 2015100104072170000_7.5.429.37 2015100104072170000_7.5.429.14 2015100104072170000_7.5.429.36 2015100104072170000_7.5.429.13 2015100104072170000_7.5.429.35 2015100104072170000_7.5.429.12 2015100104072170000_7.5.429.34 2015100104072170000_7.5.429.11 2015100104072170000_7.5.429.33 2015100104072170000_7.5.429.10 2015100104072170000_7.5.429.32 2015100104072170000_7.5.429.2 2015100104072170000_7.5.429.31 2015100104072170000_7.5.429.1 2015100104072170000_7.5.429.30 2015100104072170000_7.5.429.4 2015100104072170000_7.5.429.3 2015100104072170000_7.5.429.6 2015100104072170000_7.5.429.5 2015100104072170000_7.5.429.29 2015100104072170000_7.5.429.28 2015100104072170000_7.5.429.27 2015100104072170000_7.5.429.26 2015100104072170000_7.5.429.25 2015100104072170000_7.5.429.24 2015100104072170000_7.5.429.23 2015100104072170000_7.5.429.45 2015100104072170000_7.5.429.22 2015100104072170000_7.5.429.44 2015100104072170000_7.5.429.21 2015100104072170000_7.5.429.43 2015100104072170000_7.5.429.20 2015100104072170000_7.5.429.42 2015100104072170000_7.5.429.41 2015100104072170000_7.5.429.40 2015100104072170000_7.5.429.8 2015100104072170000_7.5.429.7 2015100104072170000_7.5.429.9 18482838 - Neuromuscul Disord. 2008 Jun;18(6):433-42 23079583 - Biochim Biophys Acta. 2013 Feb;1828(2):602-13 18272525 - J Biol Chem. 2008 Apr 25;283(17):11199-209 23453622 - Trends Genet. 2013 Jul;29(7):427-37 23071563 - PLoS One. 2012;7(10):e46408 11448631 - Curr Opin Genet Dev. 2001 Aug;11(4):440-8 22984005 - J Biochem. 2012 Nov;152(5):387-95 18820033 - Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15446-51 16269330 - Cell. 2005 Nov 4;123(3):375-82 15829503 - Hum Mol Genet. 2005 Jun 1;14(11):1417-27 16280346 - Development. 2005 Dec;132(24):5565-75 16319881 - Nature. 2005 Dec 1;438(7068):612-21 22300977 - Cold Spring Harb Perspect Biol. 2012 Feb;4(2). pii: a008342. doi: 10.1101/cshperspect.a008342 8436229 - FEBS Lett. 1993 Feb 22;318(1):71-6 19302823 - Life Sci. 2009 Mar 27;84(13-14):415-20 20181480 - Neuromuscul Disord. 2010 Apr;20(4):223-8 23615608 - Nature. 2013 May 9;497(7448):263-7 25428992 - Mol Biol Cell. 2015 Feb 1;26(3):506-17 11589611 - Cell Biol Int. 2001;25(10):971-9 15270698 - Biochem J. 2004 Aug 1;381(Pt 3):941-9 561316 - Nature. 1977 Aug 25;268(5622):761-3 25552303 - Brain. 2015 Feb;138(Pt 2):246-68 18817572 - Orphanet J Rare Dis. 2008;3:26 16093310 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12123-8 19570538 - Atherosclerosis. 2010 Jan;208(1):10-8 25085416 - Genes Dev. 2014 Aug 1;28(15):1641-6 17537630 - Neuromuscul Disord. 2007 Jul;17(7):562-8 18554506 - FEBS Lett. 2008 Jul 9;582(16):2435-40 20018209 - Prog Lipid Res. 2010 Apr;49(2):186-99 25019370 - Dev Biol. 2014 Sep 15;393(2):298-311 25004376 - Biochim Biophys Acta. 2014 Oct;1842(10):1422-30 22260662 - Biochem Soc Trans. 2012 Feb;40(1):31-6 24672027 - J Virol. 2014 Jun;88(11):6528-31 23868259 - Nature. 2013 Jul 18;499(7458):301-5 12884002 - Hum Genet. 2003 Sep;113(4):297-306 20937905 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18439-44 22106411 - Mol Cell Biol. 2012 Jan;32(2):297-308 22274696 - Development. 2012 Feb;139(4):641-56 11309414 - J Cell Biol. 2001 Apr 16;153(2):329-38 17366633 - Dev Dyn. 2007 Apr;236(4):1014-24 22392505 - Curr Neurol Neurosci Rep. 2012 Apr;12(2):165-74 23933735 - Hum Mol Genet. 2013 Dec 20;22(25):5229-36 4353302 - Science. 1973 Aug 31;181(4102):863-5 23277424 - J Cell Biol. 2013 Jan 7;200(1):109-23 8110784 - Biochemistry. 1994 Feb 22;33(7):1820-7 |
| References_xml | – ident: 2015100104072170000_7.5.429.28 doi: 10.1073/pnas.0505482102 – ident: 2015100104072170000_7.5.429.9 doi: 10.1242/dev.02155 – ident: 2015100104072170000_7.5.429.22 doi: 10.1016/j.ydbio.2014.06.025 – ident: 2015100104072170000_7.5.429.16 doi: 10.1186/1750-1172-3-26 – ident: 2015100104072170000_7.5.429.17 doi: 10.1093/jb/mvs105 – ident: 2015100104072170000_7.5.429.29 doi: 10.1016/j.bbalip.2014.06.014 – ident: 2015100104072170000_7.5.429.25 doi: 10.1038/nature04399 – ident: 2015100104072170000_7.5.429.33 doi: 10.1016/j.nmd.2008.04.002 – ident: 2015100104072170000_7.5.429.37 doi: 10.1038/268761a0 – ident: 2015100104072170000_7.5.429.11 doi: 10.1042/BST20110608 – ident: 2015100104072170000_7.5.429.12 doi: 10.1016/j.plipres.2009.12.002 – ident: 2015100104072170000_7.5.429.24 doi: 10.1371/journal.pone.0046408 – ident: 2015100104072170000_7.5.429.6 doi: 10.1016/j.cell.2005.10.015 – ident: 2015100104072170000_7.5.429.41 doi: 10.1016/j.atherosclerosis.2009.05.029 – ident: 2015100104072170000_7.5.429.4 doi: 10.1016/j.bbamem.2012.10.006 – ident: 2015100104072170000_7.5.429.7 doi: 10.1016/0014-5793(93)81330-3 – ident: 2015100104072170000_7.5.429.21 doi: 10.1083/jcb.201207012 – ident: 2015100104072170000_7.5.429.20 doi: 10.1016/j.lfs.2009.01.004 – ident: 2015100104072170000_7.5.429.45 doi: 10.1021/bi00173a027 – ident: 2015100104072170000_7.5.429.27 doi: 10.1101/gad.247205.114 – ident: 2015100104072170000_7.5.429.2 doi: 10.1016/j.tig.2013.01.011 – ident: 2015100104072170000_7.5.429.14 doi: 10.1083/jcb.153.2.329 – ident: 2015100104072170000_7.5.429.43 doi: 10.1091/mbc.E14-03-0802 – ident: 2015100104072170000_7.5.429.8 doi: 10.1128/JVI.00314-14 – ident: 2015100104072170000_7.5.429.32 doi: 10.1007/s11910-012-0255-x – ident: 2015100104072170000_7.5.429.1 doi: 10.1242/dev.068353 – ident: 2015100104072170000_7.5.429.30 doi: 10.1093/hmg/ddt380 – ident: 2015100104072170000_7.5.429.34 doi: 10.1073/pnas.1005572107 – ident: 2015100104072170000_7.5.429.35 doi: 10.1093/hmg/ddi151 – ident: 2015100104072170000_7.5.429.10 doi: 10.1002/dvdy.21123 – ident: 2015100104072170000_7.5.429.39 doi: 10.1126/science.181.4102.863 – ident: 2015100104072170000_7.5.429.19 doi: 10.1073/pnas.0805546105 – ident: 2015100104072170000_7.5.429.3 doi: 10.1101/cshperspect.a008342 – ident: 2015100104072170000_7.5.429.5 doi: 10.1016/S0959-437X(00)00215-X – ident: 2015100104072170000_7.5.429.40 doi: 10.1016/j.nmd.2010.01.014 – ident: 2015100104072170000_7.5.429.13 doi: 10.1038/nature12135 – ident: 2015100104072170000_7.5.429.44 doi: 10.1007/s00439-003-0984-7 – ident: 2015100104072170000_7.5.429.26 doi: 10.1038/nature12343 – ident: 2015100104072170000_7.5.429.36 doi: 10.1016/j.nmd.2007.03.010 – ident: 2015100104072170000_7.5.429.23 doi: 10.1128/MCB.05484-11 – ident: 2015100104072170000_7.5.429.38 doi: 10.1093/brain/awu368 – ident: 2015100104072170000_7.5.429.15 doi: 10.1016/j.febslet.2008.06.007 – ident: 2015100104072170000_7.5.429.18 doi: 10.1074/jbc.M708993200 – ident: 2015100104072170000_7.5.429.42 doi: 10.1042/BJ20040320 – ident: 2015100104072170000_7.5.429.31 doi: 10.1006/cbir.2001.0750 – reference: 23071563 - PLoS One. 2012;7(10):e46408 – reference: 22392505 - Curr Neurol Neurosci Rep. 2012 Apr;12(2):165-74 – reference: 22260662 - Biochem Soc Trans. 2012 Feb;40(1):31-6 – reference: 20937905 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18439-44 – reference: 16269330 - Cell. 2005 Nov 4;123(3):375-82 – reference: 25019370 - Dev Biol. 2014 Sep 15;393(2):298-311 – reference: 16319881 - Nature. 2005 Dec 1;438(7068):612-21 – reference: 11448631 - Curr Opin Genet Dev. 2001 Aug;11(4):440-8 – reference: 17537630 - Neuromuscul Disord. 2007 Jul;17(7):562-8 – reference: 18817572 - Orphanet J Rare Dis. 2008;3:26 – reference: 15270698 - Biochem J. 2004 Aug 1;381(Pt 3):941-9 – reference: 11309414 - J Cell Biol. 2001 Apr 16;153(2):329-38 – reference: 11589611 - Cell Biol Int. 2001;25(10):971-9 – reference: 22274696 - Development. 2012 Feb;139(4):641-56 – reference: 22300977 - Cold Spring Harb Perspect Biol. 2012 Feb;4(2). pii: a008342. doi: 10.1101/cshperspect.a008342 – reference: 19302823 - Life Sci. 2009 Mar 27;84(13-14):415-20 – reference: 25552303 - Brain. 2015 Feb;138(Pt 2):246-68 – reference: 16093310 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12123-8 – reference: 23868259 - Nature. 2013 Jul 18;499(7458):301-5 – reference: 18820033 - Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15446-51 – reference: 561316 - Nature. 1977 Aug 25;268(5622):761-3 – reference: 16280346 - Development. 2005 Dec;132(24):5565-75 – reference: 20181480 - Neuromuscul Disord. 2010 Apr;20(4):223-8 – reference: 19570538 - Atherosclerosis. 2010 Jan;208(1):10-8 – reference: 25004376 - Biochim Biophys Acta. 2014 Oct;1842(10):1422-30 – reference: 23079583 - Biochim Biophys Acta. 2013 Feb;1828(2):602-13 – reference: 20018209 - Prog Lipid Res. 2010 Apr;49(2):186-99 – reference: 23277424 - J Cell Biol. 2013 Jan 7;200(1):109-23 – reference: 24672027 - J Virol. 2014 Jun;88(11):6528-31 – reference: 23453622 - Trends Genet. 2013 Jul;29(7):427-37 – reference: 25085416 - Genes Dev. 2014 Aug 1;28(15):1641-6 – reference: 15829503 - Hum Mol Genet. 2005 Jun 1;14(11):1417-27 – reference: 25428992 - Mol Biol Cell. 2015 Feb 1;26(3):506-17 – reference: 22984005 - J Biochem. 2012 Nov;152(5):387-95 – reference: 18272525 - J Biol Chem. 2008 Apr 25;283(17):11199-209 – reference: 23615608 - Nature. 2013 May 9;497(7448):263-7 – reference: 17366633 - Dev Dyn. 2007 Apr;236(4):1014-24 – reference: 18482838 - Neuromuscul Disord. 2008 Jun;18(6):433-42 – reference: 18554506 - FEBS Lett. 2008 Jul 9;582(16):2435-40 – reference: 22106411 - Mol Cell Biol. 2012 Jan;32(2):297-308 – reference: 12884002 - Hum Genet. 2003 Sep;113(4):297-306 – reference: 23933735 - Hum Mol Genet. 2013 Dec 20;22(25):5229-36 – reference: 4353302 - Science. 1973 Aug 31;181(4102):863-5 – reference: 8110784 - Biochemistry. 1994 Feb 22;33(7):1820-7 – reference: 8436229 - FEBS Lett. 1993 Feb 22;318(1):71-6 |
| SSID | ssj0000383380 |
| Score | 2.2651975 |
| Snippet | The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive.... |
| SourceID | pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 429 |
| SubjectTerms | Animals Cell Differentiation - genetics Cell Differentiation - physiology Cell Line Cell Membrane - genetics Cell Membrane - metabolism Chemical and Process Engineering Dogs Engineering Sciences Female Food engineering Humans Life Sciences Male Mice Mice, Knockout Muscle Development - genetics Muscle Development - physiology Muscle, Skeletal - metabolism Myoblasts - cytology Myoblasts - metabolism Protein Tyrosine Phosphatases - genetics Protein Tyrosine Phosphatases - metabolism |
| Title | HACD1 , a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26160855 https://www.proquest.com/docview/1718910915 https://www.proquest.com/docview/1808618860 https://institut-agro-dijon.hal.science/hal-02290631 https://pubmed.ncbi.nlm.nih.gov/PMC4589950 |
| Volume | 7 |
| WOSCitedRecordID | wos000363201800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1759-4685 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000383380 issn: 1674-2788 databaseCode: TOX dateStart: 20091001 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbaARIviDvlMhnEE1lZLk5sP1YD1odp46Gg8hQlTkK7tUnVJNX65_htHNtx2m4DjQde0sq1m8v54nNsfz4fQu-F8FyWgAU4jbw-AZ_Xj4IUsBxnHqGxS5jSBvx-Qk9P2XjMv3Y6v8xemNWM5jm7vOSL_2pqKANjy62z_2Du9k-hAL6D0eEIZofjrQw_HBx9cizFyrSWWmm-WOpl9DkMjfNU0cgbrpZaO8hm9TRp1AEWip6XltZ8XcQQWVdWVpemYnkBTkrunpzXJZzV-glj-Gryh_h2boR3Lbk4YDXZntrh_6zIE7looKfwl8kGpWcTJQdu_ajL-qLF3bHMPK1YudNcbLF1jut1UWm-ml70X0yihirQTGY4fkuLM_1vQEnfpVrp72Oqy6jPAUVa2cd02nQLm_5WB0ya-RPty4lOBXXNTegUWudzEcPH_HxlE77xh4YDcMVNtuRFvWzvhbJ5qBt30R0XrlJSCkdn43aOz4bhv6fE-9r7araIQvtD2f5Qt98JiroTScm9Pt65StvdioNGD9GDxsB4oIH3CHXS_DG6pyVN10_QTMHvAEe4xR4uMmywh7ewhwFS2GDvABvkYYM8rJGnqhnkYY08rJH3FH378nl0NOw3ih59AYF51c9i6qRSGzqKhCtiynwWsdi3XZ6KxAtIxLKAkyzmXuZEXhAxh8YcgvzM50IkvvCeob28yNMXCKe-yxMieArxPgy6My4iKtP52cTJqB-RHvpgHmkomnT3UnVlFt5gvx50WqbyQmd5ubnaO7BNW0NmZh8OTkJZZivdBM9ZOT301pguhK5avmLweIu6DB2IA7lMxOv_pQ6zWeAwFtg99Fybuz2fGziBpJX2EN0Bws4F7f6STycqZTzxGee-_fJ29_kK3d-8nK_RXrWs0zforlhV03K5j7p0zPYV0n8DHHvlig |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HACD1+%2C+a+regulator+of+membrane+composition+and+fluidity%2C+promotes+myoblast+fusion+and+skeletal+muscle+growth&rft.jtitle=Journal+of+molecular+cell+biology&rft.au=Blondelle%2C+Jordan&rft.au=Ohno%2C+Yusuke&rft.au=Gache%2C+Vincent&rft.au=Guyot%2C+St%C3%A9phane&rft.date=2015-10-01&rft.issn=1674-2788&rft.eissn=1759-4685&rft.volume=7&rft.issue=5&rft.spage=429&rft.epage=440&rft_id=info:doi/10.1093%2Fjmcb%2Fmjv049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_jmcb_mjv049 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2788&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2788&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2788&client=summon |