HACD1 , a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth

The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fib...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular cell biology Vol. 7; no. 5; pp. 429 - 440
Main Authors: Blondelle, Jordan, Ohno, Yusuke, Gache, Vincent, Guyot, Stéphane, Storck, Sébastien, Blanchard-Gutton, Nicolas, Barthélémy, Inès, Walmsley, Gemma, Rahier, Anaëlle, Gadin, Stéphanie, Maurer, Marie, Guillaud, Laurent, Prola, Alexandre, Ferry, Arnaud, Aubin-Houzelstein, Geneviève, Demarquoy, Jean, Relaix, Frédéric, Piercy, Richard J., Blot, Stéphane, Kihara, Akio, Tiret, Laurent, Pilot-Storck, Fanny
Format: Journal Article
Language:English
Published: United States Oxford UP 01.10.2015
Oxford University Press
Subjects:
ISSN:1674-2788, 1759-4685, 1759-4685
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of ≥ C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism.
AbstractList The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of greater than or equal to C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism.
The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of ≥C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism.
The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of ≥ C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism.
The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of ≥ C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism.The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of ≥ C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism.
Author Blondelle, Jordan
Guillaud, Laurent
Walmsley, Gemma
Relaix, Frédéric
Blot, Stéphane
Barthélémy, Inès
Storck, Sébastien
Gache, Vincent
Pilot-Storck, Fanny
Ferry, Arnaud
Ohno, Yusuke
Rahier, Anaëlle
Gadin, Stéphanie
Tiret, Laurent
Blanchard-Gutton, Nicolas
Maurer, Marie
Piercy, Richard J.
Prola, Alexandre
Demarquoy, Jean
Kihara, Akio
Aubin-Houzelstein, Geneviève
Guyot, Stéphane
Author_xml – sequence: 1
  givenname: Jordan
  surname: Blondelle
  fullname: Blondelle, Jordan
– sequence: 2
  givenname: Yusuke
  surname: Ohno
  fullname: Ohno, Yusuke
– sequence: 3
  givenname: Vincent
  surname: Gache
  fullname: Gache, Vincent
– sequence: 4
  givenname: Stéphane
  surname: Guyot
  fullname: Guyot, Stéphane
– sequence: 5
  givenname: Sébastien
  surname: Storck
  fullname: Storck, Sébastien
– sequence: 6
  givenname: Nicolas
  surname: Blanchard-Gutton
  fullname: Blanchard-Gutton, Nicolas
– sequence: 7
  givenname: Inès
  surname: Barthélémy
  fullname: Barthélémy, Inès
– sequence: 8
  givenname: Gemma
  surname: Walmsley
  fullname: Walmsley, Gemma
– sequence: 9
  givenname: Anaëlle
  surname: Rahier
  fullname: Rahier, Anaëlle
– sequence: 10
  givenname: Stéphanie
  surname: Gadin
  fullname: Gadin, Stéphanie
– sequence: 11
  givenname: Marie
  surname: Maurer
  fullname: Maurer, Marie
– sequence: 12
  givenname: Laurent
  surname: Guillaud
  fullname: Guillaud, Laurent
– sequence: 13
  givenname: Alexandre
  surname: Prola
  fullname: Prola, Alexandre
– sequence: 14
  givenname: Arnaud
  surname: Ferry
  fullname: Ferry, Arnaud
– sequence: 15
  givenname: Geneviève
  surname: Aubin-Houzelstein
  fullname: Aubin-Houzelstein, Geneviève
– sequence: 16
  givenname: Jean
  surname: Demarquoy
  fullname: Demarquoy, Jean
– sequence: 17
  givenname: Frédéric
  surname: Relaix
  fullname: Relaix, Frédéric
– sequence: 18
  givenname: Richard J.
  surname: Piercy
  fullname: Piercy, Richard J.
– sequence: 19
  givenname: Stéphane
  surname: Blot
  fullname: Blot, Stéphane
– sequence: 20
  givenname: Akio
  surname: Kihara
  fullname: Kihara, Akio
– sequence: 21
  givenname: Laurent
  surname: Tiret
  fullname: Tiret, Laurent
– sequence: 22
  givenname: Fanny
  surname: Pilot-Storck
  fullname: Pilot-Storck, Fanny
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26160855$$D View this record in MEDLINE/PubMed
https://institut-agro-dijon.hal.science/hal-02290631$$DView record in HAL
BookMark eNqFks2PEyEYxolZ467rnrwbjhq3Lu_MMAOXTZr6UZMmXvRMGAZaKgwVmJr-99J0a3RjIhcI_J4HXt7nOboYw6gRegnkHRBe32296u_8dk8a_gRdQUf5rGkZvSjrtmtmVcfYJbpJaUvKqFldM_IMXVYttIRReoX8cr54D_gWSxz1enIyh4iDwV77PspRYxX8LiSbbRixHAds3GQHmw-3eBeDD1kn7A-hdzJlbKZ0xtJ37XSWDvspKafxOoafefMCPTXSJX3zMF-jbx8_fF0sZ6svnz4v5quZotDkmek70NBQkFJVqu8YZZL1lFRcq6FuG8lMyxvT89qArFvJoOs50MZQrtRAVX2N7k--u6n3elB6zFE6sYvWy3gQQVrx98loN2Id9qKhjHNKisGbk8HmkWw5X4njHqkqTtoa9lDY1w-XxfBj0ikLb5PSzpXvC1MSwAhrgbGW_B_tgPHSV6AFffVnCb8fcW5dAeAEqBhSitoIZbM89qlUZJ0AIo4JEceEiFNCiubtI83Z9l_0L5i7v2A
CitedBy_id crossref_primary_10_1016_j_ygeno_2025_111073
crossref_primary_10_1038_s41419_019_1763_2
crossref_primary_10_1017_S000711451600324X
crossref_primary_10_1212_NXG_0000000000000423
crossref_primary_10_3390_biomedicines13071568
crossref_primary_10_1002_advs_202405157
crossref_primary_10_1134_S106235902461053X
crossref_primary_10_3390_biom8040158
crossref_primary_10_1016_j_yexcr_2021_112906
crossref_primary_10_1242_dmm_044354
crossref_primary_10_1016_j_livsci_2021_104781
crossref_primary_10_1074_jbc_M117_803171
crossref_primary_10_3233_JND_190394
crossref_primary_10_17650_2222_8721_2021_11_3_51_63
crossref_primary_10_1080_10495398_2023_2286609
crossref_primary_10_1016_j_bbrc_2022_03_057
crossref_primary_10_1016_j_ajpath_2016_10_002
crossref_primary_10_1016_j_semcdb_2016_08_002
crossref_primary_10_1093_hmg_ddw033
crossref_primary_10_1165_rcmb_2016_0355TR
crossref_primary_10_1038_s41467_020_19501_6
crossref_primary_10_1242_jcs_213124
crossref_primary_10_1007_s12041_022_01417_3
crossref_primary_10_1186_s13075_018_1579_y
crossref_primary_10_3390_ijms21103694
crossref_primary_10_3390_genes15020196
crossref_primary_10_1016_j_plipres_2016_04_001
crossref_primary_10_3390_nu14245321
crossref_primary_10_3390_ijms22158176
crossref_primary_10_1016_j_diff_2016_05_003
crossref_primary_10_1186_s12917_024_04309_z
crossref_primary_10_1186_s12967_023_04161_z
crossref_primary_10_1016_j_jbc_2024_105656
Cites_doi 10.1073/pnas.0505482102
10.1242/dev.02155
10.1016/j.ydbio.2014.06.025
10.1186/1750-1172-3-26
10.1093/jb/mvs105
10.1016/j.bbalip.2014.06.014
10.1038/nature04399
10.1016/j.nmd.2008.04.002
10.1038/268761a0
10.1042/BST20110608
10.1016/j.plipres.2009.12.002
10.1371/journal.pone.0046408
10.1016/j.cell.2005.10.015
10.1016/j.atherosclerosis.2009.05.029
10.1016/j.bbamem.2012.10.006
10.1016/0014-5793(93)81330-3
10.1083/jcb.201207012
10.1016/j.lfs.2009.01.004
10.1021/bi00173a027
10.1101/gad.247205.114
10.1016/j.tig.2013.01.011
10.1083/jcb.153.2.329
10.1091/mbc.E14-03-0802
10.1128/JVI.00314-14
10.1007/s11910-012-0255-x
10.1242/dev.068353
10.1093/hmg/ddt380
10.1073/pnas.1005572107
10.1093/hmg/ddi151
10.1002/dvdy.21123
10.1126/science.181.4102.863
10.1073/pnas.0805546105
10.1101/cshperspect.a008342
10.1016/S0959-437X(00)00215-X
10.1016/j.nmd.2010.01.014
10.1038/nature12135
10.1007/s00439-003-0984-7
10.1038/nature12343
10.1016/j.nmd.2007.03.010
10.1128/MCB.05484-11
10.1093/brain/awu368
10.1016/j.febslet.2008.06.007
10.1074/jbc.M708993200
10.1042/BJ20040320
10.1006/cbir.2001.0750
ContentType Journal Article
Copyright The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.
Distributed under a Creative Commons Attribution 4.0 International License
The Author (2015). Published by Oxford University Press on behalf of , IBCB, SIBS, CAS. 2015
Copyright_xml – notice: The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: The Author (2015). Published by Oxford University Press on behalf of , IBCB, SIBS, CAS. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
1XC
VOOES
5PM
DOI 10.1093/jmcb/mjv049
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1759-4685
EndPage 440
ExternalDocumentID PMC4589950
oai:HAL:hal-02290631v1
26160855
10_1093_jmcb_mjv049
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
GroupedDBID ---
.2P
.I3
.ZR
0R~
4.4
53G
5VS
70E
AAFWJ
AAJKP
AAKDD
AAMDB
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABKDP
ABNKS
ABPTD
ABQLI
ABXVV
ABZBJ
ACGFS
ACUTO
ADBBV
ADEYI
ADFTL
ADHKW
ADHZD
ADOCK
ADPDF
ADZTZ
ADZXQ
AEGPL
AEJOX
AEMDU
AENEX
AENZO
AEPUE
AEWNT
AFIYH
AFOFC
AFPKN
AGINJ
AGSYK
AHXPO
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
APIBT
ARIXL
AXUDD
AYOIW
BAWUL
BAYMD
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
CDBKE
CITATION
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HW0
HYE
HZ~
J21
KOP
KSI
NGC
NU-
O0~
O9-
OAWHX
OJQWA
OK1
OVD
OVEED
O~Y
PAFKI
PEELM
Q1.
Q5Y
RD5
RPM
RW1
RXO
SV3
TCJ
TEORI
TGP
TJX
TLC
TOX
WFFXF
WG7
X7H
YAYTL
YKOAZ
~91
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
1XC
VOOES
5PM
ID FETCH-LOGICAL-c514t-fb71e1451aac2cb7858a8b5029ecd364a8f694fb93f1a36a817b9154f59ccd5c3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363201800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1674-2788
1759-4685
IngestDate Tue Sep 30 16:52:21 EDT 2025
Tue Oct 14 20:44:20 EDT 2025
Tue Oct 07 09:45:46 EDT 2025
Thu Oct 02 06:16:44 EDT 2025
Mon Jul 21 06:02:20 EDT 2025
Sat Nov 29 03:11:15 EST 2025
Tue Nov 18 22:45:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords centronuclear myopathy
LPC
MUFA
VLCFA
PTPLA
Centronuclear myopathy
Language English
License The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c514t-fb71e1451aac2cb7858a8b5029ecd364a8f694fb93f1a36a817b9154f59ccd5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-8601-8329
0000-0003-4719-3834
0000-0002-8982-0317
0000-0001-8573-8335
0000-0001-6667-7653
0000-0003-1270-1472
0000-0001-8139-9911
0000-0002-4747-5893
0000-0002-2316-234X
0000-0002-9255-4910
0000-0002-2928-791X
0009-0001-7620-8487
0000-0002-0787-219X
0000-0003-4755-728X
OpenAccessLink https://institut-agro-dijon.hal.science/hal-02290631
PMID 26160855
PQID 1718910915
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4589950
hal_primary_oai_HAL_hal_02290631v1
proquest_miscellaneous_1808618860
proquest_miscellaneous_1718910915
pubmed_primary_26160855
crossref_citationtrail_10_1093_jmcb_mjv049
crossref_primary_10_1093_jmcb_mjv049
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of molecular cell biology
PublicationTitleAlternate J Mol Cell Biol
PublicationYear 2015
Publisher Oxford UP
Oxford University Press
Publisher_xml – name: Oxford UP
– name: Oxford University Press
References 2015100104072170000_7.5.429.19
2015100104072170000_7.5.429.18
2015100104072170000_7.5.429.17
2015100104072170000_7.5.429.39
2015100104072170000_7.5.429.16
2015100104072170000_7.5.429.38
2015100104072170000_7.5.429.15
2015100104072170000_7.5.429.37
2015100104072170000_7.5.429.14
2015100104072170000_7.5.429.36
2015100104072170000_7.5.429.13
2015100104072170000_7.5.429.35
2015100104072170000_7.5.429.12
2015100104072170000_7.5.429.34
2015100104072170000_7.5.429.11
2015100104072170000_7.5.429.33
2015100104072170000_7.5.429.10
2015100104072170000_7.5.429.32
2015100104072170000_7.5.429.2
2015100104072170000_7.5.429.31
2015100104072170000_7.5.429.1
2015100104072170000_7.5.429.30
2015100104072170000_7.5.429.4
2015100104072170000_7.5.429.3
2015100104072170000_7.5.429.6
2015100104072170000_7.5.429.5
2015100104072170000_7.5.429.29
2015100104072170000_7.5.429.28
2015100104072170000_7.5.429.27
2015100104072170000_7.5.429.26
2015100104072170000_7.5.429.25
2015100104072170000_7.5.429.24
2015100104072170000_7.5.429.23
2015100104072170000_7.5.429.45
2015100104072170000_7.5.429.22
2015100104072170000_7.5.429.44
2015100104072170000_7.5.429.21
2015100104072170000_7.5.429.43
2015100104072170000_7.5.429.20
2015100104072170000_7.5.429.42
2015100104072170000_7.5.429.41
2015100104072170000_7.5.429.40
2015100104072170000_7.5.429.8
2015100104072170000_7.5.429.7
2015100104072170000_7.5.429.9
18482838 - Neuromuscul Disord. 2008 Jun;18(6):433-42
23079583 - Biochim Biophys Acta. 2013 Feb;1828(2):602-13
18272525 - J Biol Chem. 2008 Apr 25;283(17):11199-209
23453622 - Trends Genet. 2013 Jul;29(7):427-37
23071563 - PLoS One. 2012;7(10):e46408
11448631 - Curr Opin Genet Dev. 2001 Aug;11(4):440-8
22984005 - J Biochem. 2012 Nov;152(5):387-95
18820033 - Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15446-51
16269330 - Cell. 2005 Nov 4;123(3):375-82
15829503 - Hum Mol Genet. 2005 Jun 1;14(11):1417-27
16280346 - Development. 2005 Dec;132(24):5565-75
16319881 - Nature. 2005 Dec 1;438(7068):612-21
22300977 - Cold Spring Harb Perspect Biol. 2012 Feb;4(2). pii: a008342. doi: 10.1101/cshperspect.a008342
8436229 - FEBS Lett. 1993 Feb 22;318(1):71-6
19302823 - Life Sci. 2009 Mar 27;84(13-14):415-20
20181480 - Neuromuscul Disord. 2010 Apr;20(4):223-8
23615608 - Nature. 2013 May 9;497(7448):263-7
25428992 - Mol Biol Cell. 2015 Feb 1;26(3):506-17
11589611 - Cell Biol Int. 2001;25(10):971-9
15270698 - Biochem J. 2004 Aug 1;381(Pt 3):941-9
561316 - Nature. 1977 Aug 25;268(5622):761-3
25552303 - Brain. 2015 Feb;138(Pt 2):246-68
18817572 - Orphanet J Rare Dis. 2008;3:26
16093310 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12123-8
19570538 - Atherosclerosis. 2010 Jan;208(1):10-8
25085416 - Genes Dev. 2014 Aug 1;28(15):1641-6
17537630 - Neuromuscul Disord. 2007 Jul;17(7):562-8
18554506 - FEBS Lett. 2008 Jul 9;582(16):2435-40
20018209 - Prog Lipid Res. 2010 Apr;49(2):186-99
25019370 - Dev Biol. 2014 Sep 15;393(2):298-311
25004376 - Biochim Biophys Acta. 2014 Oct;1842(10):1422-30
22260662 - Biochem Soc Trans. 2012 Feb;40(1):31-6
24672027 - J Virol. 2014 Jun;88(11):6528-31
23868259 - Nature. 2013 Jul 18;499(7458):301-5
12884002 - Hum Genet. 2003 Sep;113(4):297-306
20937905 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18439-44
22106411 - Mol Cell Biol. 2012 Jan;32(2):297-308
22274696 - Development. 2012 Feb;139(4):641-56
11309414 - J Cell Biol. 2001 Apr 16;153(2):329-38
17366633 - Dev Dyn. 2007 Apr;236(4):1014-24
22392505 - Curr Neurol Neurosci Rep. 2012 Apr;12(2):165-74
23933735 - Hum Mol Genet. 2013 Dec 20;22(25):5229-36
4353302 - Science. 1973 Aug 31;181(4102):863-5
23277424 - J Cell Biol. 2013 Jan 7;200(1):109-23
8110784 - Biochemistry. 1994 Feb 22;33(7):1820-7
References_xml – ident: 2015100104072170000_7.5.429.28
  doi: 10.1073/pnas.0505482102
– ident: 2015100104072170000_7.5.429.9
  doi: 10.1242/dev.02155
– ident: 2015100104072170000_7.5.429.22
  doi: 10.1016/j.ydbio.2014.06.025
– ident: 2015100104072170000_7.5.429.16
  doi: 10.1186/1750-1172-3-26
– ident: 2015100104072170000_7.5.429.17
  doi: 10.1093/jb/mvs105
– ident: 2015100104072170000_7.5.429.29
  doi: 10.1016/j.bbalip.2014.06.014
– ident: 2015100104072170000_7.5.429.25
  doi: 10.1038/nature04399
– ident: 2015100104072170000_7.5.429.33
  doi: 10.1016/j.nmd.2008.04.002
– ident: 2015100104072170000_7.5.429.37
  doi: 10.1038/268761a0
– ident: 2015100104072170000_7.5.429.11
  doi: 10.1042/BST20110608
– ident: 2015100104072170000_7.5.429.12
  doi: 10.1016/j.plipres.2009.12.002
– ident: 2015100104072170000_7.5.429.24
  doi: 10.1371/journal.pone.0046408
– ident: 2015100104072170000_7.5.429.6
  doi: 10.1016/j.cell.2005.10.015
– ident: 2015100104072170000_7.5.429.41
  doi: 10.1016/j.atherosclerosis.2009.05.029
– ident: 2015100104072170000_7.5.429.4
  doi: 10.1016/j.bbamem.2012.10.006
– ident: 2015100104072170000_7.5.429.7
  doi: 10.1016/0014-5793(93)81330-3
– ident: 2015100104072170000_7.5.429.21
  doi: 10.1083/jcb.201207012
– ident: 2015100104072170000_7.5.429.20
  doi: 10.1016/j.lfs.2009.01.004
– ident: 2015100104072170000_7.5.429.45
  doi: 10.1021/bi00173a027
– ident: 2015100104072170000_7.5.429.27
  doi: 10.1101/gad.247205.114
– ident: 2015100104072170000_7.5.429.2
  doi: 10.1016/j.tig.2013.01.011
– ident: 2015100104072170000_7.5.429.14
  doi: 10.1083/jcb.153.2.329
– ident: 2015100104072170000_7.5.429.43
  doi: 10.1091/mbc.E14-03-0802
– ident: 2015100104072170000_7.5.429.8
  doi: 10.1128/JVI.00314-14
– ident: 2015100104072170000_7.5.429.32
  doi: 10.1007/s11910-012-0255-x
– ident: 2015100104072170000_7.5.429.1
  doi: 10.1242/dev.068353
– ident: 2015100104072170000_7.5.429.30
  doi: 10.1093/hmg/ddt380
– ident: 2015100104072170000_7.5.429.34
  doi: 10.1073/pnas.1005572107
– ident: 2015100104072170000_7.5.429.35
  doi: 10.1093/hmg/ddi151
– ident: 2015100104072170000_7.5.429.10
  doi: 10.1002/dvdy.21123
– ident: 2015100104072170000_7.5.429.39
  doi: 10.1126/science.181.4102.863
– ident: 2015100104072170000_7.5.429.19
  doi: 10.1073/pnas.0805546105
– ident: 2015100104072170000_7.5.429.3
  doi: 10.1101/cshperspect.a008342
– ident: 2015100104072170000_7.5.429.5
  doi: 10.1016/S0959-437X(00)00215-X
– ident: 2015100104072170000_7.5.429.40
  doi: 10.1016/j.nmd.2010.01.014
– ident: 2015100104072170000_7.5.429.13
  doi: 10.1038/nature12135
– ident: 2015100104072170000_7.5.429.44
  doi: 10.1007/s00439-003-0984-7
– ident: 2015100104072170000_7.5.429.26
  doi: 10.1038/nature12343
– ident: 2015100104072170000_7.5.429.36
  doi: 10.1016/j.nmd.2007.03.010
– ident: 2015100104072170000_7.5.429.23
  doi: 10.1128/MCB.05484-11
– ident: 2015100104072170000_7.5.429.38
  doi: 10.1093/brain/awu368
– ident: 2015100104072170000_7.5.429.15
  doi: 10.1016/j.febslet.2008.06.007
– ident: 2015100104072170000_7.5.429.18
  doi: 10.1074/jbc.M708993200
– ident: 2015100104072170000_7.5.429.42
  doi: 10.1042/BJ20040320
– ident: 2015100104072170000_7.5.429.31
  doi: 10.1006/cbir.2001.0750
– reference: 23071563 - PLoS One. 2012;7(10):e46408
– reference: 22392505 - Curr Neurol Neurosci Rep. 2012 Apr;12(2):165-74
– reference: 22260662 - Biochem Soc Trans. 2012 Feb;40(1):31-6
– reference: 20937905 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18439-44
– reference: 16269330 - Cell. 2005 Nov 4;123(3):375-82
– reference: 25019370 - Dev Biol. 2014 Sep 15;393(2):298-311
– reference: 16319881 - Nature. 2005 Dec 1;438(7068):612-21
– reference: 11448631 - Curr Opin Genet Dev. 2001 Aug;11(4):440-8
– reference: 17537630 - Neuromuscul Disord. 2007 Jul;17(7):562-8
– reference: 18817572 - Orphanet J Rare Dis. 2008;3:26
– reference: 15270698 - Biochem J. 2004 Aug 1;381(Pt 3):941-9
– reference: 11309414 - J Cell Biol. 2001 Apr 16;153(2):329-38
– reference: 11589611 - Cell Biol Int. 2001;25(10):971-9
– reference: 22274696 - Development. 2012 Feb;139(4):641-56
– reference: 22300977 - Cold Spring Harb Perspect Biol. 2012 Feb;4(2). pii: a008342. doi: 10.1101/cshperspect.a008342
– reference: 19302823 - Life Sci. 2009 Mar 27;84(13-14):415-20
– reference: 25552303 - Brain. 2015 Feb;138(Pt 2):246-68
– reference: 16093310 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12123-8
– reference: 23868259 - Nature. 2013 Jul 18;499(7458):301-5
– reference: 18820033 - Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15446-51
– reference: 561316 - Nature. 1977 Aug 25;268(5622):761-3
– reference: 16280346 - Development. 2005 Dec;132(24):5565-75
– reference: 20181480 - Neuromuscul Disord. 2010 Apr;20(4):223-8
– reference: 19570538 - Atherosclerosis. 2010 Jan;208(1):10-8
– reference: 25004376 - Biochim Biophys Acta. 2014 Oct;1842(10):1422-30
– reference: 23079583 - Biochim Biophys Acta. 2013 Feb;1828(2):602-13
– reference: 20018209 - Prog Lipid Res. 2010 Apr;49(2):186-99
– reference: 23277424 - J Cell Biol. 2013 Jan 7;200(1):109-23
– reference: 24672027 - J Virol. 2014 Jun;88(11):6528-31
– reference: 23453622 - Trends Genet. 2013 Jul;29(7):427-37
– reference: 25085416 - Genes Dev. 2014 Aug 1;28(15):1641-6
– reference: 15829503 - Hum Mol Genet. 2005 Jun 1;14(11):1417-27
– reference: 25428992 - Mol Biol Cell. 2015 Feb 1;26(3):506-17
– reference: 22984005 - J Biochem. 2012 Nov;152(5):387-95
– reference: 18272525 - J Biol Chem. 2008 Apr 25;283(17):11199-209
– reference: 23615608 - Nature. 2013 May 9;497(7448):263-7
– reference: 17366633 - Dev Dyn. 2007 Apr;236(4):1014-24
– reference: 18482838 - Neuromuscul Disord. 2008 Jun;18(6):433-42
– reference: 18554506 - FEBS Lett. 2008 Jul 9;582(16):2435-40
– reference: 22106411 - Mol Cell Biol. 2012 Jan;32(2):297-308
– reference: 12884002 - Hum Genet. 2003 Sep;113(4):297-306
– reference: 23933735 - Hum Mol Genet. 2013 Dec 20;22(25):5229-36
– reference: 4353302 - Science. 1973 Aug 31;181(4102):863-5
– reference: 8110784 - Biochemistry. 1994 Feb 22;33(7):1820-7
– reference: 8436229 - FEBS Lett. 1993 Feb 22;318(1):71-6
SSID ssj0000383380
Score 2.2651975
Snippet The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive....
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 429
SubjectTerms Animals
Cell Differentiation - genetics
Cell Differentiation - physiology
Cell Line
Cell Membrane - genetics
Cell Membrane - metabolism
Chemical and Process Engineering
Dogs
Engineering Sciences
Female
Food engineering
Humans
Life Sciences
Male
Mice
Mice, Knockout
Muscle Development - genetics
Muscle Development - physiology
Muscle, Skeletal - metabolism
Myoblasts - cytology
Myoblasts - metabolism
Protein Tyrosine Phosphatases - genetics
Protein Tyrosine Phosphatases - metabolism
Title HACD1 , a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth
URI https://www.ncbi.nlm.nih.gov/pubmed/26160855
https://www.proquest.com/docview/1718910915
https://www.proquest.com/docview/1808618860
https://institut-agro-dijon.hal.science/hal-02290631
https://pubmed.ncbi.nlm.nih.gov/PMC4589950
Volume 7
WOSCitedRecordID wos000363201800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1759-4685
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000383380
  issn: 1674-2788
  databaseCode: TOX
  dateStart: 20091001
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbaARIviDvlMhnEE1lZLk5sP1YD1odp46Gg8hQlTkK7tUnVJNX65_htHNtx2m4DjQde0sq1m8v54nNsfz4fQu-F8FyWgAU4jbw-AZ_Xj4IUsBxnHqGxS5jSBvx-Qk9P2XjMv3Y6v8xemNWM5jm7vOSL_2pqKANjy62z_2Du9k-hAL6D0eEIZofjrQw_HBx9cizFyrSWWmm-WOpl9DkMjfNU0cgbrpZaO8hm9TRp1AEWip6XltZ8XcQQWVdWVpemYnkBTkrunpzXJZzV-glj-Gryh_h2boR3Lbk4YDXZntrh_6zIE7looKfwl8kGpWcTJQdu_ajL-qLF3bHMPK1YudNcbLF1jut1UWm-ml70X0yihirQTGY4fkuLM_1vQEnfpVrp72Oqy6jPAUVa2cd02nQLm_5WB0ya-RPty4lOBXXNTegUWudzEcPH_HxlE77xh4YDcMVNtuRFvWzvhbJ5qBt30R0XrlJSCkdn43aOz4bhv6fE-9r7araIQvtD2f5Qt98JiroTScm9Pt65StvdioNGD9GDxsB4oIH3CHXS_DG6pyVN10_QTMHvAEe4xR4uMmywh7ewhwFS2GDvABvkYYM8rJGnqhnkYY08rJH3FH378nl0NOw3ih59AYF51c9i6qRSGzqKhCtiynwWsdi3XZ6KxAtIxLKAkyzmXuZEXhAxh8YcgvzM50IkvvCeob28yNMXCKe-yxMieArxPgy6My4iKtP52cTJqB-RHvpgHmkomnT3UnVlFt5gvx50WqbyQmd5ubnaO7BNW0NmZh8OTkJZZivdBM9ZOT301pguhK5avmLweIu6DB2IA7lMxOv_pQ6zWeAwFtg99Fybuz2fGziBpJX2EN0Bws4F7f6STycqZTzxGee-_fJ29_kK3d-8nK_RXrWs0zforlhV03K5j7p0zPYV0n8DHHvlig
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HACD1+%2C+a+regulator+of+membrane+composition+and+fluidity%2C+promotes+myoblast+fusion+and+skeletal+muscle+growth&rft.jtitle=Journal+of+molecular+cell+biology&rft.au=Blondelle%2C+Jordan&rft.au=Ohno%2C+Yusuke&rft.au=Gache%2C+Vincent&rft.au=Guyot%2C+St%C3%A9phane&rft.date=2015-10-01&rft.issn=1674-2788&rft.eissn=1759-4685&rft.volume=7&rft.issue=5&rft.spage=429&rft.epage=440&rft_id=info:doi/10.1093%2Fjmcb%2Fmjv049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_jmcb_mjv049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2788&client=summon