Improving hash-q exact string matching algorithm with perfect hashing for DNA sequences

Exact string matching algorithms involve finding all occurrences of a pattern P in a text T. These algorithms have been extensively studied in computer science, primarily because of their applications in various fields such as text search and computational biology. The main goal of exact string matc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers in biology and medicine Ročník 131; s. 104292
Hlavní autoři: Karcioglu, Abdullah Ammar, Bulut, Hasan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.04.2021
Elsevier Limited
Témata:
ISSN:0010-4825, 1879-0534, 1879-0534
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Exact string matching algorithms involve finding all occurrences of a pattern P in a text T. These algorithms have been extensively studied in computer science, primarily because of their applications in various fields such as text search and computational biology. The main goal of exact string matching algorithms is to find all pattern matches correctly within the shortest possible time frame. Although hash-based string matching algorithms run fast, there are shortcomings, such as hash collisions. In this study, a novel hash function has been proposed that eliminates hash collisions for DNA sequences. It provides us perfect hashing and produces hash values in a time-efficient manner. We have proposed two exact string matching algorithms based on the proposed hash function. In the first approach, we replace the traditional Hash-q algorithm's hash function with the proposed one. In the second approach, we improved the first approach by utilizing the shift size indicated at the (m−1)th entry in the good suffix shift table when an exact matching is found. In these approaches, we eliminate the need to compare the last q characters of the pattern and text. We have included six algorithms from the literature in our evaluations. E. Coli and Human Chromosome1 datasets from the literature and a synthetic dataset produced randomly are utilized for comparisons. The results show that the proposed approaches achieve better performance metrics in terms of the average runtime, the average number of character comparisons, and the average number of hash comparisons. [Display omitted] •A novel collision free hash function is proposed for DNA sequences.•Based on the proposed hash function, we propose Hash-q Algorithm with Unique FNG algorithm as a first improvement to the traditional Hash-q algorithm.•Based on the proposed hash function, we propose Hash-q Boyer-Moore Algorithm with UniqueFNG algorithm as a second improvement to the traditional Hash-q algorithm.•The approaches are compared for E. Coli, synthetic dataset and Human Chromosome1 datasets.•Significant improvements have been achieved for the avg. runtime, the avg. # of character and the avg. # of hash comparisons.
AbstractList Exact string matching algorithms involve finding all occurrences of a pattern P in a text T. These algorithms have been extensively studied in computer science, primarily because of their applications in various fields such as text search and computational biology. The main goal of exact string matching algorithms is to find all pattern matches correctly within the shortest possible time frame. Although hash-based string matching algorithms run fast, there are shortcomings, such as hash collisions. In this study, a novel hash function has been proposed that eliminates hash collisions for DNA sequences. It provides us perfect hashing and produces hash values in a time-efficient manner. We have proposed two exact string matching algorithms based on the proposed hash function. In the first approach, we replace the traditional Hash-q algorithm's hash function with the proposed one. In the second approach, we improved the first approach by utilizing the shift size indicated at the (m−1)th entry in the good suffix shift table when an exact matching is found. In these approaches, we eliminate the need to compare the last q characters of the pattern and text. We have included six algorithms from the literature in our evaluations. E. Coli and Human Chromosome1 datasets from the literature and a synthetic dataset produced randomly are utilized for comparisons. The results show that the proposed approaches achieve better performance metrics in terms of the average runtime, the average number of character comparisons, and the average number of hash comparisons. [Display omitted] •A novel collision free hash function is proposed for DNA sequences.•Based on the proposed hash function, we propose Hash-q Algorithm with Unique FNG algorithm as a first improvement to the traditional Hash-q algorithm.•Based on the proposed hash function, we propose Hash-q Boyer-Moore Algorithm with UniqueFNG algorithm as a second improvement to the traditional Hash-q algorithm.•The approaches are compared for E. Coli, synthetic dataset and Human Chromosome1 datasets.•Significant improvements have been achieved for the avg. runtime, the avg. # of character and the avg. # of hash comparisons.
Exact string matching algorithms involve finding all occurrences of a pattern P in a text T. These algorithms have been extensively studied in computer science, primarily because of their applications in various fields such as text search and computational biology. The main goal of exact string matching algorithms is to find all pattern matches correctly within the shortest possible time frame. Although hash-based string matching algorithms run fast, there are shortcomings, such as hash collisions. In this study, a novel hash function has been proposed that eliminates hash collisions for DNA sequences. It provides us perfect hashing and produces hash values in a time-efficient manner. We have proposed two exact string matching algorithms based on the proposed hash function. In the first approach, we replace the traditional Hash-q algorithm's hash function with the proposed one. In the second approach, we improved the first approach by utilizing the shift size indicated at the (m-1)th entry in the good suffix shift table when an exact matching is found. In these approaches, we eliminate the need to compare the last q characters of the pattern and text. We have included six algorithms from the literature in our evaluations. E. Coli and Human Chromosome1 datasets from the literature and a synthetic dataset produced randomly are utilized for comparisons. The results show that the proposed approaches achieve better performance metrics in terms of the average runtime, the average number of character comparisons, and the average number of hash comparisons.Exact string matching algorithms involve finding all occurrences of a pattern P in a text T. These algorithms have been extensively studied in computer science, primarily because of their applications in various fields such as text search and computational biology. The main goal of exact string matching algorithms is to find all pattern matches correctly within the shortest possible time frame. Although hash-based string matching algorithms run fast, there are shortcomings, such as hash collisions. In this study, a novel hash function has been proposed that eliminates hash collisions for DNA sequences. It provides us perfect hashing and produces hash values in a time-efficient manner. We have proposed two exact string matching algorithms based on the proposed hash function. In the first approach, we replace the traditional Hash-q algorithm's hash function with the proposed one. In the second approach, we improved the first approach by utilizing the shift size indicated at the (m-1)th entry in the good suffix shift table when an exact matching is found. In these approaches, we eliminate the need to compare the last q characters of the pattern and text. We have included six algorithms from the literature in our evaluations. E. Coli and Human Chromosome1 datasets from the literature and a synthetic dataset produced randomly are utilized for comparisons. The results show that the proposed approaches achieve better performance metrics in terms of the average runtime, the average number of character comparisons, and the average number of hash comparisons.
Exact string matching algorithms involve finding all occurrences of a pattern P in a text T. These algorithms have been extensively studied in computer science, primarily because of their applications in various fields such as text search and computational biology. The main goal of exact string matching algorithms is to find all pattern matches correctly within the shortest possible time frame. Although hash-based string matching algorithms run fast, there are shortcomings, such as hash collisions. In this study, a novel hash function has been proposed that eliminates hash collisions for DNA sequences. It provides us perfect hashing and produces hash values in a time-efficient manner. We have proposed two exact string matching algorithms based on the proposed hash function. In the first approach, we replace the traditional Hash-q algorithm's hash function with the proposed one. In the second approach, we improved the first approach by utilizing the shift size indicated at the (m-1) entry in the good suffix shift table when an exact matching is found. In these approaches, we eliminate the need to compare the last q characters of the pattern and text. We have included six algorithms from the literature in our evaluations. E. Coli and Human Chromosome1 datasets from the literature and a synthetic dataset produced randomly are utilized for comparisons. The results show that the proposed approaches achieve better performance metrics in terms of the average runtime, the average number of character comparisons, and the average number of hash comparisons.
Exact string matching algorithms involve finding all occurrences of a pattern P in a text T. These algorithms have been extensively studied in computer science, primarily because of their applications in various fields such as text search and computational biology. The main goal of exact string matching algorithms is to find all pattern matches correctly within the shortest possible time frame. Although hash-based string matching algorithms run fast, there are shortcomings, such as hash collisions. In this study, a novel hash function has been proposed that eliminates hash collisions for DNA sequences. It provides us perfect hashing and produces hash values in a time-efficient manner. We have proposed two exact string matching algorithms based on the proposed hash function. In the first approach, we replace the traditional Hash-q algorithm's hash function with the proposed one. In the second approach, we improved the first approach by utilizing the shift size indicated at the (m−1)th entry in the good suffix shift table when an exact matching is found. In these approaches, we eliminate the need to compare the last q characters of the pattern and text. We have included six algorithms from the literature in our evaluations. E. Coli and Human Chromosome1 datasets from the literature and a synthetic dataset produced randomly are utilized for comparisons. The results show that the proposed approaches achieve better performance metrics in terms of the average runtime, the average number of character comparisons, and the average number of hash comparisons.
AbstractExact string matching algorithms involve finding all occurrences of a pattern P in a text T. These algorithms have been extensively studied in computer science, primarily because of their applications in various fields such as text search and computational biology. The main goal of exact string matching algorithms is to find all pattern matches correctly within the shortest possible time frame. Although hash-based string matching algorithms run fast, there are shortcomings, such as hash collisions. In this study, a novel hash function has been proposed that eliminates hash collisions for DNA sequences. It provides us perfect hashing and produces hash values in a time-efficient manner. We have proposed two exact string matching algorithms based on the proposed hash function. In the first approach, we replace the traditional Hash-q algorithm’s hash function with the proposed one. In the second approach, we improved the first approach by utilizing the shift size indicated at the (m−1)th entry in the good suffix shift table when an exact matching is found. In these approaches, we eliminate the need to compare the last q characters of the pattern and text. We have included six algorithms from the literature in our evaluations. E. Coli and Human Chromosome1 datasets from the literature and a synthetic dataset produced randomly are utilized for comparisons. The results show that the proposed approaches achieve better performance metrics in terms of the average runtime, the average number of character comparisons, and the average number of hash comparisons.
ArticleNumber 104292
Author Bulut, Hasan
Karcioglu, Abdullah Ammar
Author_xml – sequence: 1
  givenname: Abdullah Ammar
  surname: Karcioglu
  fullname: Karcioglu, Abdullah Ammar
  email: abdullah.ammar.karcioglu@ege.edu.tr
– sequence: 2
  givenname: Hasan
  surname: Bulut
  fullname: Bulut, Hasan
  email: hasan.bulut@ege.edu.tr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33662682$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQtVAR3Rb-AorEhUu246_UuVSUQmmlqhwAwc1ynHHXSxJv7Wxp_z2OtgVppUp7sa3xmzcz780B2RvCgIQUFOYUaHW0nNvQrxofemznDBjNYcFq9oLMqDquS5Bc7JEZAIVSKCb3yUFKSwAQwOEV2ee8qlil2Iz8vOxXMdz54aZYmLQobwu8N3Ys0hinWG9Gu5geprsJ0Y-LvviTz2KF0WGGTTnTtwux-HR9WiS8XeNgMb0mL53pEr55vA_Jj_PP388uyquvXy7PTq9KK6kYSyeUUbUVKBraCsCWgURZ2eMGpHOSsVq01jkuaxQOG-WowIYLi63kqm0VPyTvN7x5ilw6jbr3yWLXmQHDOmkmaiWzQFRk6Lst6DKs45C700wCVVLyCjLq7SNq3WR19Sr63sQH_SRZBpxsADaGlCI6bf1oRh-GMRrfaQp68kgv9X-P9OSR3niUCdQWwVONHVI_blIxS3rnMepk_aR362O2Q7fB70JyskViOz94a7rf-IDpnyhUJ6ZBf5u2aFoiRvMCqepXJvjwPMFuPfwF9PXchQ
CitedBy_id crossref_primary_10_1016_j_compbiomed_2022_105534
crossref_primary_10_1155_2021_1716182
crossref_primary_10_21597_jist_1404898
crossref_primary_10_1155_2023_3278505
crossref_primary_10_2478_qic_2025_0016
crossref_primary_10_4018_IJDST_341269
crossref_primary_10_1002_cpe_6505
crossref_primary_10_1016_j_compbiomed_2021_104656
crossref_primary_10_1016_j_jksuci_2024_102089
crossref_primary_10_1155_2022_6521905
Cites_doi 10.1145/79173.79184
10.1016/j.imu.2020.100356
10.1137/0206024
10.1016/j.compbiomed.2004.06.002
10.1016/j.compbiolchem.2010.03.007
10.1016/j.compbiomed.2003.11.003
10.1002/spe.4380100608
10.1155/2019/7074387
10.1002/(SICI)1097-024X(199707)27:7<851::AID-SPE108>3.0.CO;2-D
10.1109/ACCESS.2019.2914071
10.1016/j.ipl.2007.01.002
10.1145/2431211.2431212
10.1145/359842.359859
10.1186/1748-7188-8-25
10.1016/j.imu.2020.100323
10.1016/j.compbiomed.2019.04.002
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
2021. Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
– notice: 2021. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2021.104292
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 104292
ExternalDocumentID 33662682
10_1016_j_compbiomed_2021_104292
S001048252100086X
1_s2_0_S001048252100086X
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
9DU
AAYXX
AFFHD
CITATION
AGCQF
AGRNS
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c514t-f48a89c4e4b1d40ed205e56c7b05ff52294dcff359e4feb8f14eb34ced538dd83
IEDL.DBID M7P
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000631619900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4825
1879-0534
IngestDate Sat Sep 27 17:59:21 EDT 2025
Sat Nov 29 14:44:16 EST 2025
Mon Jul 21 05:20:46 EDT 2025
Sat Nov 29 07:31:44 EST 2025
Tue Nov 18 21:48:56 EST 2025
Fri Feb 23 02:45:19 EST 2024
Tue Feb 25 20:03:27 EST 2025
Tue Oct 14 19:33:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Hash function
Sequence analysis
Pattern matching
String matching algorithms
DNA Sequences
Hash Function
Pattern Matching
Sequence Analysis
String Matching Algorithms
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-f48a89c4e4b1d40ed205e56c7b05ff52294dcff359e4feb8f14eb34ced538dd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 33662682
PQID 2501855360
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2498502114
proquest_journals_2501855360
pubmed_primary_33662682
crossref_citationtrail_10_1016_j_compbiomed_2021_104292
crossref_primary_10_1016_j_compbiomed_2021_104292
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_104292
elsevier_clinicalkeyesjournals_1_s2_0_S001048252100086X
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_104292
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Horspool (bib21) 1980; 10
Deorowicz, Grabowski (bib4) 2013; 8
Boyer, Moore (bib20) 1977; 20
Kim, Kim (bib16) 1999, August
Faro (bib15) 2016
Upama, Khan, Zemim, Yasmin, Sakib (bib2) 2015, December
Lecroq (bib13) 2007; 102
Hakak, Kamsin, Shivakumara, Gilkar, Khan, M Imran (bib17) 2019; 7
Wandelt, Bux, Leser (bib3) 2014; 3
Kanuga (bib10) 2015, March
Wu, Manber (bib12) 1994
Chen, Lu, Ram (bib8) 2004, August
Karp (bib11) 1987
Mane, Pangu (bib1) 2016
Tarhio, Peltola (bib14) 1997; 27
Lander (bib29) 2004
Faro, Lecroq (bib18) 2013; 45
Sunday (bib22) 1990; 33
Plunkett (bib28) 2008
Najam, Rasool, Ahmad, Ashraf, Malik (bib9) 2019
Naghibzadeh, Savari, Savadi, Saadati, Mehrazin (bib27) 2020
Berry, Ravindran (bib23) 1999
Wang, Li, Cai, Chen (bib25) 2005; 35
Bakr, Sharawi (bib5) 2013; 3
Jeong, Park, Kang, Lim (bib6) 2010; 34
Hyyrö, Juhola, Vihinen (bib24) 2005; 35
Xu, Yang, Kang, Wang, Liu (bib26) 2019; 108
Khitmoh, Smanchat, Tongsima (bib7) 2020
Knuth, Morris, Pratt (bib19) 1977; 6
Faro (10.1016/j.compbiomed.2021.104292_bib15) 2016
Horspool (10.1016/j.compbiomed.2021.104292_bib21) 1980; 10
Sunday (10.1016/j.compbiomed.2021.104292_bib22) 1990; 33
Bakr (10.1016/j.compbiomed.2021.104292_bib5) 2013; 3
Karp (10.1016/j.compbiomed.2021.104292_bib11)
Wang (10.1016/j.compbiomed.2021.104292_bib25) 2005; 35
Hakak (10.1016/j.compbiomed.2021.104292_bib17) 2019; 7
Berry (10.1016/j.compbiomed.2021.104292_bib23) 1999
Wu (10.1016/j.compbiomed.2021.104292_bib12) 1994
Najam (10.1016/j.compbiomed.2021.104292_bib9) 2019
Lecroq (10.1016/j.compbiomed.2021.104292_bib13) 2007; 102
Upama (10.1016/j.compbiomed.2021.104292_bib2) 2015
Deorowicz (10.1016/j.compbiomed.2021.104292_bib4) 2013; 8
Chen (10.1016/j.compbiomed.2021.104292_bib8) 2004
Kim (10.1016/j.compbiomed.2021.104292_bib16) 1999
Naghibzadeh (10.1016/j.compbiomed.2021.104292_bib27) 2020
Jeong (10.1016/j.compbiomed.2021.104292_bib6) 2010; 34
Khitmoh (10.1016/j.compbiomed.2021.104292_bib7) 2020
Xu (10.1016/j.compbiomed.2021.104292_bib26) 2019; 108
Lander (10.1016/j.compbiomed.2021.104292_bib29)
Boyer (10.1016/j.compbiomed.2021.104292_bib20) 1977; 20
Hyyrö (10.1016/j.compbiomed.2021.104292_bib24) 2005; 35
Kanuga (10.1016/j.compbiomed.2021.104292_bib10) 2015
Mane (10.1016/j.compbiomed.2021.104292_bib1) 2016
Faro (10.1016/j.compbiomed.2021.104292_bib18) 2013; 45
Knuth (10.1016/j.compbiomed.2021.104292_bib19) 1977; 6
Wandelt (10.1016/j.compbiomed.2021.104292_bib3) 2014; 3
Plunkett (10.1016/j.compbiomed.2021.104292_bib28)
Tarhio (10.1016/j.compbiomed.2021.104292_bib14) 1997; 27
References_xml – volume: 3
  start-page: 315
  year: 2014
  end-page: 326
  ident: bib3
  article-title: Trends in genome compression, Current Bioinformatics, vol
  publication-title: 9, no
– year: 2004
  ident: bib29
  article-title: Homo sapiens chromosome, GRCh38.p13 Primary Assembly, NCBI data
– volume: 33
  start-page: 132
  year: 1990
  end-page: 142
  ident: bib22
  article-title: A very fast substring search algorithm
  publication-title: Commun. ACM
– year: 2008
  ident: bib28
  article-title: Escherichia coli str. K-12 substr. DH10B, complete sequence dataset, NCBI data
– volume: 45
  start-page: 1
  year: 2013
  end-page: 42
  ident: bib18
  article-title: The exact online string matching problem: a review of the most recent results
  publication-title: ACM Comput. Surv.
– start-page: 1
  year: 2016
  end-page: 5
  ident: bib1
  article-title: Disease diagnosis using pattern matching algorithm from DNA sequencing: a sequential and GPGPU based approach
  publication-title: Proceedings of the International Conference on Informatics and Analytics
– start-page: 62
  year: 2004, August
  end-page: 68
  ident: bib8
  article-title: Compressed pattern matching in dna sequences
  publication-title: Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004
– start-page: 1
  year: 1994
  end-page: 11
  ident: bib12
  article-title: A Fast Algorithm for Multi-Pattern Searching
– start-page: 16
  year: 1999
  end-page: 28
  ident: bib23
  article-title: A fast string matching algorithm and experimental results
  publication-title: Stringology
– start-page: 44
  year: 1999, August
  end-page: 49
  ident: bib16
  article-title: A fast multiple string-pattern matching algorithm
  publication-title: Proceedings of 17th AoM/IAoM Conference on Computer Science
– start-page: 172
  year: 2015, December
  end-page: 177
  ident: bib2
  article-title: A new approach in pattern matching: codon Detection in DNA and RNA using hash function (CDDRHF)
  publication-title: 2015 18th International Conference on Computer and Information Technology (ICCIT)
– start-page: 65
  year: 2016
  end-page: 76
  ident: bib15
  article-title: A very fast string matching algorithm based on condensed alphabets
  publication-title: International Conference on Algorithmic Applications in Management
– volume: 3
  start-page: 72
  year: 2013
  end-page: 81
  ident: bib5
  article-title: DNA lossless compression algorithms, American Journal of Bioinformatics Research, vol
  publication-title: 3, no
– volume: 8
  year: 2013
  ident: bib4
  article-title: Data compression for sequencing data
  publication-title: Algorithm Mol. Biol.
– volume: 6
  start-page: 323
  year: 1977
  end-page: 350
  ident: bib19
  article-title: Fast pattern matching in strings
  publication-title: SIAM J. Comput.
– volume: 10
  start-page: 501
  year: 1980
  end-page: 506
  ident: bib21
  article-title: Practical fast searching in strings
  publication-title: Software Pract. Ex.
– volume: 34
  start-page: 131
  year: 2010
  end-page: 136
  ident: bib6
  article-title: An efficient similarity search based on indexing in large DNA databases
  publication-title: Comput. Biol. Chem.
– year: 2020
  ident: bib7
  article-title: Stretch Profile: a pruning technique to accelerate DNA sequence search
  publication-title: Informatics in Medicine Unlocked
– volume: 27
  start-page: 851
  year: 1997
  end-page: 861
  ident: bib14
  article-title: String matching in the DNA alphabet
  publication-title: Software Pract. Ex.
– volume: 35
  start-page: 173
  year: 2005
  end-page: 181
  ident: bib24
  article-title: On exact string matching of unique oligonucleotides
  publication-title: Comput. Biol. Med.
– year: 2019
  ident: bib9
  article-title: Pattern matching for dna sequencing data using multiple bloom filters
  publication-title: BioMed Res. Int.
– start-page: 100356
  year: 2020
  ident: bib27
  article-title: Developing an ultra-efficient microsatellite discoverer to find structural differences between SARS-CoV-1 and Covid-19
  publication-title: Informatics in Medicine Unlocked
– volume: 7
  start-page: 69614
  year: 2019
  end-page: 69637
  ident: bib17
  article-title: Exact string matching algorithms: survey, issues, and future research directions
  publication-title: IEEE Access
– start-page: 1
  year: 2015, March
  end-page: 6
  ident: bib10
  article-title: Clustering Oriented Hashing Based Multiple String Pattern Matching Algorithm. In 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]
– volume: 108
  start-page: 122
  year: 2019
  end-page: 132
  ident: bib26
  article-title: Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition
  publication-title: Comput. Biol. Med.
– volume: 20
  start-page: 762
  year: 1977
  end-page: 772
  ident: bib20
  article-title: A fast string searching algorithm
  publication-title: Commun. ACM
– volume: 102
  start-page: 229
  year: 2007
  end-page: 235
  ident: bib13
  article-title: Fast exact string matching algorithms
  publication-title: Inf. Process. Lett.
– year: 1987
  ident: bib11
  article-title: Efficient randomized pattern-matching algorithms, the IBM journal of research and development
– volume: 35
  start-page: 717
  year: 2005
  end-page: 724
  ident: bib25
  article-title: Assessment of approximate string matching in a biomedical text retrieval problem
  publication-title: Comput. Biol. Med.
– start-page: 62
  year: 2004
  ident: 10.1016/j.compbiomed.2021.104292_bib8
  article-title: Compressed pattern matching in dna sequences
– start-page: 44
  year: 1999
  ident: 10.1016/j.compbiomed.2021.104292_bib16
  article-title: A fast multiple string-pattern matching algorithm
– volume: 33
  start-page: 132
  issue: 8
  year: 1990
  ident: 10.1016/j.compbiomed.2021.104292_bib22
  article-title: A very fast substring search algorithm
  publication-title: Commun. ACM
  doi: 10.1145/79173.79184
– volume: 3
  start-page: 315
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104292_bib3
  article-title: Trends in genome compression, Current Bioinformatics, vol
  publication-title: 9, no
– volume: 3
  start-page: 72
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104292_bib5
  article-title: DNA lossless compression algorithms, American Journal of Bioinformatics Research, vol
  publication-title: 3, no
– start-page: 100356
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104292_bib27
  article-title: Developing an ultra-efficient microsatellite discoverer to find structural differences between SARS-CoV-1 and Covid-19
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2020.100356
– ident: 10.1016/j.compbiomed.2021.104292_bib11
– volume: 6
  start-page: 323
  issue: 2
  year: 1977
  ident: 10.1016/j.compbiomed.2021.104292_bib19
  article-title: Fast pattern matching in strings
  publication-title: SIAM J. Comput.
  doi: 10.1137/0206024
– volume: 35
  start-page: 717
  issue: 8
  year: 2005
  ident: 10.1016/j.compbiomed.2021.104292_bib25
  article-title: Assessment of approximate string matching in a biomedical text retrieval problem
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2004.06.002
– volume: 34
  start-page: 131
  issue: 2
  year: 2010
  ident: 10.1016/j.compbiomed.2021.104292_bib6
  article-title: An efficient similarity search based on indexing in large DNA databases
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2010.03.007
– volume: 35
  start-page: 173
  issue: 2
  year: 2005
  ident: 10.1016/j.compbiomed.2021.104292_bib24
  article-title: On exact string matching of unique oligonucleotides
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2003.11.003
– ident: 10.1016/j.compbiomed.2021.104292_bib29
– start-page: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104292_bib1
  article-title: Disease diagnosis using pattern matching algorithm from DNA sequencing: a sequential and GPGPU based approach
– start-page: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2021.104292_bib10
– volume: 10
  start-page: 501
  issue: 6
  year: 1980
  ident: 10.1016/j.compbiomed.2021.104292_bib21
  article-title: Practical fast searching in strings
  publication-title: Software Pract. Ex.
  doi: 10.1002/spe.4380100608
– year: 2019
  ident: 10.1016/j.compbiomed.2021.104292_bib9
  article-title: Pattern matching for dna sequencing data using multiple bloom filters
  publication-title: BioMed Res. Int.
  doi: 10.1155/2019/7074387
– start-page: 1
  year: 1994
  ident: 10.1016/j.compbiomed.2021.104292_bib12
– volume: 27
  start-page: 851
  issue: 7
  year: 1997
  ident: 10.1016/j.compbiomed.2021.104292_bib14
  article-title: String matching in the DNA alphabet
  publication-title: Software Pract. Ex.
  doi: 10.1002/(SICI)1097-024X(199707)27:7<851::AID-SPE108>3.0.CO;2-D
– volume: 7
  start-page: 69614
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104292_bib17
  article-title: Exact string matching algorithms: survey, issues, and future research directions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914071
– volume: 102
  start-page: 229
  issue: 6
  year: 2007
  ident: 10.1016/j.compbiomed.2021.104292_bib13
  article-title: Fast exact string matching algorithms
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2007.01.002
– start-page: 65
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104292_bib15
  article-title: A very fast string matching algorithm based on condensed alphabets
– volume: 45
  start-page: 1
  issue: 2
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104292_bib18
  article-title: The exact online string matching problem: a review of the most recent results
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2431211.2431212
– volume: 20
  start-page: 762
  issue: 10
  year: 1977
  ident: 10.1016/j.compbiomed.2021.104292_bib20
  article-title: A fast string searching algorithm
  publication-title: Commun. ACM
  doi: 10.1145/359842.359859
– ident: 10.1016/j.compbiomed.2021.104292_bib28
– volume: 8
  issue: no. 1
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104292_bib4
  article-title: Data compression for sequencing data
  publication-title: Algorithm Mol. Biol.
  doi: 10.1186/1748-7188-8-25
– year: 2020
  ident: 10.1016/j.compbiomed.2021.104292_bib7
  article-title: Stretch Profile: a pruning technique to accelerate DNA sequence search
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2020.100323
– start-page: 16
  year: 1999
  ident: 10.1016/j.compbiomed.2021.104292_bib23
  article-title: A fast string matching algorithm and experimental results
– volume: 108
  start-page: 122
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104292_bib26
  article-title: Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.04.002
– start-page: 172
  year: 2015
  ident: 10.1016/j.compbiomed.2021.104292_bib2
  article-title: A new approach in pattern matching: codon Detection in DNA and RNA using hash function (CDDRHF)
SSID ssj0004030
Score 2.3904524
Snippet Exact string matching algorithms involve finding all occurrences of a pattern P in a text T. These algorithms have been extensively studied in computer...
AbstractExact string matching algorithms involve finding all occurrences of a pattern P in a text T. These algorithms have been extensively studied in computer...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104292
SubjectTerms Algorithms
Collisions
Computer applications
Datasets
Deoxyribonucleic acid
Dictionaries
DNA
DNA Sequences
E coli
Gene sequencing
Hash based algorithms
Hash function
Internal Medicine
Nucleotide sequence
Other
Pattern matching
Performance measurement
Run time (computers)
Sequence analysis
String matching
String matching algorithms
Title Improving hash-q exact string matching algorithm with perfect hashing for DNA sequences
URI https://www.clinicalkey.com/#!/content/1-s2.0-S001048252100086X
https://www.clinicalkey.es/playcontent/1-s2.0-S001048252100086X
https://dx.doi.org/10.1016/j.compbiomed.2021.104292
https://www.ncbi.nlm.nih.gov/pubmed/33662682
https://www.proquest.com/docview/2501855360
https://www.proquest.com/docview/2498502114
Volume 131
WOSCitedRecordID wos000631619900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: P5Z
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: K7-
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoixAX3o9AWRmJq0Xix9oRB1SgFRJ0WRUoKy5W4gcLKrvbTYr4-YwdJ3uhaCUulvIYO8lMxjOezzMIPZNWOOuVI8YYSrhQntSly0mtfG4ULVwVa0aevpeTiZrNymlacGsSrLLXiVFR26UJa-TPacg8JwQb5y9X5yRUjQrR1VRCYwfthSwJNEL3ppt9kTnrtqCAruHgCiUkT4fvCpDtbos7eIm0CMFOWtLLpqfLzM84DR3d_N8XuIVuJAMUH3QScxtdcYs76NpxCrHfRV-GZQY8r5o5Ocfud2VaHOp7wDkwcCP6Eldn36D3dv4Th6VcvHLrAAyJNOEy2ML4zeQAD1Dte-jz0eGn129Jqr5ADBhRLfFcVao03PG6sDx3lubCibGRdS68B7Ot5NZ4z0TpuHfA24KDY86Ns6BDrVXsPtpdLBfuIcKVVYqFCK7ljDvvy7pmVrJaWAnykNMMyf6ja5NSk4cKGWe6x6D90Bt26cAu3bErQ8VAuerSc2xBU_Z81f32U1CYGuaQLWjl32hdk_78Rhe6oTrXH2PiI5A5WkS3cZahFwNlMm46o2XLcfd7odLDUBuJytDT4TKohxDzqRZueQH38FIJ6KfgGXrQCe7woRgbgzur6KN_d_4YXQ9P0sGV9tFuu75wT9BV86v93qxHaEeenIZ2JmOrRmjv1eFkegJH7ySB9ph-GMX_Etqp-PoHEWA8ig
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70eggJHgGJH4sXGEEKooVavdrpAosDc38YMFld3tJuXxp_iNjOMke6FoLz1wjTPOw9-MZ-xvPADPMiOscdLGWmsacyFdXOY2iUvpEi1paoumZuTHUTYey8kkf7cBv7tcGE-r7GxiY6jNXPs18hfUnzwnBBskrxcnsa8a5XdXuxIaARZD--sHhmzVq_0dHN_nlO6-PXyzF7dVBWKNzkEdOy4LmWtueZkanlhDE2HFQGdlIpxDdyTnRjvHRG65s_jOKceAk2tr0DYYIxn2ewEuciYzr1fDLF7lYSYspLygbeMYerXMocAn8xTxkFKPUSlN_eYqzelZ0-FZ7m4z7e1e_99-2A241jrYZDtoxE3YsLNbcPmgpRDchk_9MgqZFtU0PiH2Z6Fr4uuX4DV04Bt2KSmOP-PX1NNvxC9Vk4VdeuJLI-Ob0dcnO-Nt0lPR78CHc_msu7A5m8_sfSCFkZL5HWrDGbfO5WXJTMZKYTLEe0IjyLpBVro9et1XADlWHcfuq1rBQ3l4qACPCNJechGOH1lDJu9wpLr0WpwQFM6Ra8hmf5O1VWvZKpWqiqpEvW8OdkKM07QJiycRvOwlW-ctOGVrPnerA7HqH7VCcARP-2Y0f35Pq5jZ-Snew3MpsJ-UR3AvKEr_oxgbYLgu6YN_d_4EruwdHozUaH88fAhX_VsFatYWbNbLU_sILunv9Zdq-bjRdgJH560tfwBUd5TF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VgipeuI9AgUWCR6v2HvFaCKGKEFG1RJG4Il629h6kVUnS2OX4a_w6Zr2280JRXvrAq9ez58zszO43OwDPUiOscdJGWmsacSFdVGQ2jgrpYi1pYvM6Z-Sng3Q0kpNJNt6A320sjIdVtjqxVtRmrv0Z-Q71L88JwfrxjmtgEePB8NXiNPIZpPxNa5tOI7DIvv31A9238uXeANf6OaXDNx9ev42aDAORRkOhihyXucw0t7xIDI-tobGwoq_TIhbOoWmScaOdYyKz3Fnsf8LR-eTaGtQTxkiG9V6Cyyn6mB5OOBZfVjGZMQvhL6jnOLphDYooYMs8XDyE16OHShN_0Uozet7WeJ7pW2-Bw-v_8-TdgGuN4U12g6TchA07uwVb7xpowW343B2vkGleTqNTYn_muiI-rwl-Q8O-Rp2S_OQrjqaafiP-CJss7NIDYmoaX4w-ABmMdkkHUb8DHy9kWHdhczaf2ftAciMl8zfXhjNuncuKgpmUFcKkKAcx7UHaLrjSzZPsPjPIiWqxd8dqxSrKs4oKrNKDpKNchGdJ1qDJWp5SbdgtbhQK9841aNO_0dqy0XilSlRJVaze1w8-Ib_TpHaXJz140VE2Rl0w1tZsd7tlaNU1teLmHjztilEt-ruufGbnZ_gPz6TAehLeg3tBaLqJYqyPbrykD_5d-RPYQiFRB3uj_Ydw1XcqILa2YbNantlHcEV_r47K5eNa8AkcXrSw_AHJtp3p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+hash-q+exact+string+matching+algorithm+with+perfect+hashing+for+DNA+sequences&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Karcioglu%2C+Abdullah+Ammar&rft.au=Bulut%2C+Hasan&rft.date=2021-04-01&rft.issn=0010-4825&rft.volume=131&rft.spage=104292&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.104292&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2021_104292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon