Effects of ultrasound pretreatment on functional property, antioxidant activity, and digestibility of soy protein isolate nanofibrils
•Low amplitude ultrasound improved the solubility, EAI and WAC of SPI nanofibrils.•High amplitude ultrasound improved the foaming capacity and foaming stability.•Antioxidant activity of SPI nanofibrils was improved by 20% amplitude ultrasound.•In vitro digestion rate of 80% amplitude ultrasound-SPI...
Gespeichert in:
| Veröffentlicht in: | Ultrasonics sonochemistry Jg. 90; S. 106193 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.11.2022
Elsevier |
| Schlagworte: | |
| ISSN: | 1350-4177, 1873-2828, 1873-2828 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Low amplitude ultrasound improved the solubility, EAI and WAC of SPI nanofibrils.•High amplitude ultrasound improved the foaming capacity and foaming stability.•Antioxidant activity of SPI nanofibrils was improved by 20% amplitude ultrasound.•In vitro digestion rate of 80% amplitude ultrasound-SPI nanofibrils were the highest.
Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry. |
|---|---|
| AbstractList | •Low amplitude ultrasound improved the solubility, EAI and WAC of SPI nanofibrils.•High amplitude ultrasound improved the foaming capacity and foaming stability.•Antioxidant activity of SPI nanofibrils was improved by 20% amplitude ultrasound.•In vitro digestion rate of 80% amplitude ultrasound-SPI nanofibrils were the highest.
Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry. • Low amplitude ultrasound improved the solubility, EAI and WAC of SPI nanofibrils. • High amplitude ultrasound improved the foaming capacity and foaming stability. • Antioxidant activity of SPI nanofibrils was improved by 20% amplitude ultrasound. • In vitro digestion rate of 80% amplitude ultrasound-SPI nanofibrils were the highest. Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry. Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry. Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry.Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry. |
| ArticleNumber | 106193 |
| Author | Hu, Anna Li, Liang |
| Author_xml | – sequence: 1 givenname: Anna surname: Hu fullname: Hu, Anna – sequence: 2 givenname: Liang surname: Li fullname: Li, Liang email: liliangneau@163.com |
| BookMark | eNqFkstuFDEQRVsoiDzgF1AvWTCDH-12t4QQKAoQKRIbWFtuuzypkccebHeU-QD-Gw8dkMImq7Ju-R5bVfe8OQkxQNO8pmRNCe3fbdezLzkGc7tmhLEq9nTkz5ozOki-YgMbTuqZC7LqqJSnzXnOW0IIHxl50ZzyngnJKD9rfl05B6bkNrq2EpPOcQ623ScoCXTZQShtDK2bgykYg_a1FfeQyuFtq0OV7tHW2uravsNFta3FDeSCE_oqHdE5Ho7GAhhazNHrAm3QITqcEvr8snnutM_w6qFeND8-X32__Lq6-fbl-vLTzcoI2pWV4yN3ou8nSS2hHYzGESDCut71k5Mj1UwL7rrBMQHaTcxIYykdNHduEEzzi-Z64dqot2qfcKfTQUWN6o8Q00bpVNB4UGLknSHSdRPVXSfFJIVhBqQk00DoaCvrw8Laz9MOrKmTSto_gj7uBLxVm3inRiFH0okKePMASPHnXOeldpgNeK8DxDkrJlnfkYERXq_2y1WTYs4J3L9nKFHHPKit-psHdcyDWvJQje__Mxos-rjJ-iX0T9s_LnaoS7lDSCobhGDAYqqpqVPDpxC_ARGC3Bo |
| CitedBy_id | crossref_primary_10_3390_foods14162849 crossref_primary_10_1039_D4FB00321G crossref_primary_10_1016_j_ijbiomac_2023_127539 crossref_primary_10_1016_j_foodchem_2024_138469 crossref_primary_10_1016_j_jfoodeng_2024_112444 crossref_primary_10_1016_j_foodhyd_2023_109110 crossref_primary_10_1016_j_foodhyd_2024_110663 crossref_primary_10_1016_j_fbio_2025_106531 crossref_primary_10_1016_j_foodhyd_2024_109871 crossref_primary_10_1002_jsfa_14110 crossref_primary_10_1016_j_foodchem_2025_145154 crossref_primary_10_1111_1541_4337_13161 crossref_primary_10_3389_fnut_2023_1135048 crossref_primary_10_1016_j_fochx_2025_102389 crossref_primary_10_1016_j_ecoenv_2025_117719 crossref_primary_10_1039_D5FB00196J crossref_primary_10_1016_j_cofs_2024_101148 crossref_primary_10_1016_j_ijbiomac_2024_137494 crossref_primary_10_1016_j_ultsonch_2025_107479 crossref_primary_10_1016_j_foodchem_2024_142596 crossref_primary_10_1016_j_scib_2023_12_025 crossref_primary_10_1016_j_foodhyd_2024_110575 crossref_primary_10_1016_j_ultsonch_2025_107394 crossref_primary_10_1111_1750_3841_70137 crossref_primary_10_1016_j_foodchem_2024_141745 crossref_primary_10_1016_j_foodchem_2024_142559 crossref_primary_10_1016_j_foodchem_2025_145642 crossref_primary_10_1016_j_fbio_2024_103599 crossref_primary_10_1016_j_fbio_2024_105699 crossref_primary_10_1016_j_fochx_2025_102219 crossref_primary_10_1016_j_fpsl_2023_101163 crossref_primary_10_1016_j_foodhyd_2025_111609 crossref_primary_10_1016_j_lwt_2023_115589 crossref_primary_10_3390_foods13172817 crossref_primary_10_1016_j_ultsonch_2024_106799 crossref_primary_10_3389_fbioe_2023_1170676 crossref_primary_10_1016_j_foodchem_2023_136781 crossref_primary_10_1016_j_ultsonch_2023_106554 crossref_primary_10_1016_j_ultsonch_2023_106675 crossref_primary_10_1016_j_foodhyd_2024_110435 crossref_primary_10_1016_j_foodhyd_2023_109495 crossref_primary_10_1016_j_foodhyd_2023_109373 crossref_primary_10_1016_j_foodhyd_2024_109774 crossref_primary_10_1016_j_fbio_2025_106751 crossref_primary_10_1016_j_ultsonch_2024_106870 crossref_primary_10_1016_j_fbio_2025_107247 crossref_primary_10_1016_j_ijbiomac_2025_141811 crossref_primary_10_1111_ijfs_17433 crossref_primary_10_1007_s11483_024_09908_9 crossref_primary_10_1002_jsfa_14375 crossref_primary_10_1016_j_crfs_2025_101031 crossref_primary_10_1016_j_foodhyd_2024_110749 crossref_primary_10_1016_j_fbio_2023_103100 crossref_primary_10_1016_j_foodchem_2024_141968 crossref_primary_10_1002_pts_2833 crossref_primary_10_1016_j_crfs_2024_100965 crossref_primary_10_1111_ijfs_17196 crossref_primary_10_1016_j_foodhyd_2024_110672 crossref_primary_10_1016_j_foodchem_2024_139970 crossref_primary_10_1016_j_ijbiomac_2025_139942 crossref_primary_10_1021_acs_biomac_5c00112 crossref_primary_10_1016_j_ijbiomac_2025_147008 crossref_primary_10_1016_j_foodchem_2025_144499 |
| Cites_doi | 10.1016/j.ultsonch.2016.02.007 10.1016/j.ultsonch.2012.07.011 10.1039/C9FO02564B 10.1016/j.ijbiomac.2017.12.167 10.1016/j.ijbiomac.2018.02.039 10.1016/j.ultsonch.2021.105741 10.1016/j.foodhyd.2009.10.002 10.1016/j.foodchem.2021.129554 10.1016/j.ultsonch.2022.105964 10.1016/j.ultsonch.2020.105202 10.1016/j.ultsonch.2021.105659 10.1016/j.ijbiomac.2020.07.296 10.1016/j.ultsonch.2019.104625 10.1016/j.foodhyd.2019.105343 10.1016/j.ultsonch.2019.104957 10.1016/j.foodhyd.2019.04.005 10.1016/j.foodhyd.2019.105314 10.1016/j.foodres.2017.08.059 10.1016/j.foodchem.2021.129751 10.1016/j.foodhyd.2015.06.022 10.1016/j.biomaterials.2022.121455 10.1039/C9FO00961B 10.1016/j.lwt.2020.109563 10.1111/1750-3841.15063 10.1016/j.colsurfa.2019.124002 10.1016/j.molliq.2019.112394 10.1016/j.foodchem.2022.132457 10.1016/j.foodhyd.2015.09.012 10.1016/j.ultsonch.2021.105809 10.1016/j.jfoodeng.2013.08.023 10.1016/j.foodhyd.2021.107441 10.1016/j.lwt.2018.05.001 10.1039/C8RA10610J 10.1016/j.ijbiomac.2020.01.258 10.1016/j.foodhyd.2021.106759 10.1016/j.jcs.2021.103224 10.1016/j.foodhyd.2020.106327 10.1016/j.foodhyd.2021.107084 10.1007/s10068-014-0194-1 10.1016/j.colsurfa.2020.124463 10.1016/j.jfoodeng.2019.109697 10.1016/j.lwt.2021.111862 10.1016/j.foodres.2018.04.044 10.1016/j.tifs.2022.01.031 10.1016/j.foodchem.2020.128963 10.1016/j.tifs.2018.03.013 10.1016/j.foodhyd.2021.107264 10.1016/j.ultsonch.2021.105789 10.1039/C1FO10163C 10.1016/j.foodchem.2022.132508 10.1016/j.foodchem.2021.131942 10.1016/j.foodhyd.2012.08.001 10.1016/j.ijbiomac.2018.09.165 10.1021/jf4055215 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. 2022 The Authors 2022 |
| Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2022 The Authors 2022 |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.1016/j.ultsonch.2022.106193 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1873-2828 |
| ExternalDocumentID | oai_doaj_org_article_5934c07f4b1a4475b75c2ce770b8019d PMC9579045 10_1016_j_ultsonch_2022_106193 S1350417722002899 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABJNI ABLJU ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFPKN AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPM RPZ SCB SDF SDG SES SEW SPC SPD SPG SSK SSQ SSZ T5K WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7X8 5PM |
| ID | FETCH-LOGICAL-c514t-f393f566b71d014e9cf0e05df6f6bf791a2a53f48f25eafb2c7cd118a3ff852a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000874667700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1350-4177 1873-2828 |
| IngestDate | Fri Oct 03 12:51:13 EDT 2025 Tue Sep 30 17:18:21 EDT 2025 Thu Oct 02 06:42:02 EDT 2025 Sat Nov 29 07:03:24 EST 2025 Tue Nov 18 20:59:27 EST 2025 Fri Feb 23 02:39:38 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ultrasound pretreatment Functional property Antioxidant activity Soy protein isolate nanofibril Digestibility |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-f393f566b71d014e9cf0e05df6f6bf791a2a53f48f25eafb2c7cd118a3ff852a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/5934c07f4b1a4475b75c2ce770b8019d |
| PMID | 36257213 |
| PQID | 2726408203 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5934c07f4b1a4475b75c2ce770b8019d pubmedcentral_primary_oai_pubmedcentral_nih_gov_9579045 proquest_miscellaneous_2726408203 crossref_primary_10_1016_j_ultsonch_2022_106193 crossref_citationtrail_10_1016_j_ultsonch_2022_106193 elsevier_sciencedirect_doi_10_1016_j_ultsonch_2022_106193 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Ultrasonics sonochemistry |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Jiang, Pan, Peng, Huang, Shen, Jin, Huang (b0040) 2022; 124 Wawer, Szocinski, Olszewski, Piatek, Naczk, Krakowiak (b0090) 2019; 121 Tian, Feng, Huang, Tian, Zhang, Jiang, Sui (b0260) 2020; 68 Yi, He, Peng, Fan (b0070) 2022; 377 Hu, Fan, Zhou, Xu, Fan, Wang, Huang, Pan, Zhu (b0115) 2013; 20 Dabbour, Xiang, Mintah, He, Jiang, Ma (b0250) 2020; 63 Munialo, Martin, van der Linden, de Jongh (b0075) 2014; 62 Ren, Li, Yang, Huang, Huang, Zhang, Yan (b0105) 2020; 265 Zou, Xu, Wu, Zhang, Sun, Sun, Wang, Cao, Xu (b0235) 2018; 113 Cheng, Cui (b0170) 2021; 80 Zou, Zhao, Sun, Dong, Yu (b0240) 2020; 589 Oboroceanu, Wang, Magner, Auty (b0025) 2014; 121 Wei, Cheng, Huang (b0005) 2019; 94 Wang, Shen, Qi, Li, Sun, Qiu, Li (b0130) 2020; 149 Wang, Wang, Huang, Hayat, Kurtz, Wu, Ahmad, Zheng (b0210) 2021; 80 Wei, Huang (b0085) 2020; 98 Xu, Shan, Hao, Li, Lan, Dong, Wen, Tian, Zhang, Jiang, Sui (b0060) 2022; 283 Amiri, Sharifian, Soltanizadeh (b0220) 2018; 111 Xia, Zhang, Chen, Hu, Rasulov, Bi, Huang, Pan (b0180) 2017; 100 Zhang, Fu, Li, Li, Shi, Xie, Li, Su, Li (b0045) 2021; 346 Ji, Xu, Ouyang, Mu, Li, Luo, Shen, Zheng (b0165) 2021; 149 Kroes-Nijboer, Venema, van der Linden (b0175) 2012; 3 Mohammadian, Madadlou (b0225) 2018; 75 Yuan, Zhou, Shen, Zhang, Lin, Zhao (b0190) 2021; 120 Ikram, Zhang, Ahmed, Wang (b0275) 2020; 85 Zhao, Wang, Lu, Sun, Zhu, Fang (b0030) 2021; 357 Hu, He, Woo, Xiong, Hu, Zhao (b0135) 2019; 10 Josefsson, Cronhamn, Ekman, Widehammar, Emmer, Lendel (b0065) 2019; 9 Li, Wang, Zhang, Yu, Chen (b0055) 2021; 100 Jin, Gao, Liu, Zhang, Mukherjee, Zhang, Dong, Bhunia, Bednarikova, Gazova, Liu, Han, Siebert (b0095) 2020; 161 Wei, Chen, Wijaya, Cheng, Xiao, Huang (b0080) 2020; 11 Huang, Jia, Zhang, Ma, Ding (b0230) 2020; 301 Hu, Li (b0120) 2021; 78 Deng, Ma, Lei, Zhu, Zhang, Hu, Lu, Guo, Zhang (b0200) 2021; 76 Dabbour, He, Mintah, Xiang, Ma (b0195) 2019; 58 Fadimu, Gill, Farahnaky, Truong (b0255) 2022; 383 Hu, Wu, Li-Chan, Zhu, Zhang, Xu, Fan, Wang, Huang, Pan (b0100) 2013; 30 Zhao, Huang, McClements, Liu, Wang, Liu (b0215) 2022; 126 Tong, Cao, Tian, Lyu, Miao, Lian, Cui, Liu, Wang, Jiang (b0125) 2022; 122 Higuera-Barraza, Del Toro-Sanchez, Ruiz-Cruz, Marquez-Rios (b0110) 2016; 31 Zhang, Huang (b0015) 2014; 23 Li, Wang, Geng, Zhang, Chen (b0020) 2021; 354 Ji, Yang, Yang (b0265) 2022; 384 Mohammadian, Madadlou (b0145) 2016; 52 Wei, Huang (b0160) 2020; 99 Deb, Kumar, Saxena (b0185) 2022; 13 Wang, Wang, Li, Bai, Li, Xu (b0150) 2020; 129 Farrokhi, Badii, Ehsani, Hashemi (b0155) 2019; 583 Misir, Koral (b0280) 2019; 31 Farrokhi, Ehsani, Badii, Hashemi (b0140) 2018; 95 Xiong, Xiong, Ge, Xia, Li, Chen (b0245) 2018; 109 Huyst, Deleu, Luyckx, Lambrecht, Van Camp, Delcour, Van der Meeren (b0050) 2021; 111 Zhang, Tang, Wen, Yang, Li, Deng (b0205) 2010; 24 Meng, Wei, Xue (b0010) 2022; 121 Wu, Nishinari, Gao, Zhao, Zhang, Fang, Phillips, Jiang (b0035) 2016; 52 Liu, Li, Sun, Wang, Liang, Zhao, He, Mo (b0270) 2022; 84 Wei (10.1016/j.ultsonch.2022.106193_b0085) 2020; 98 Farrokhi (10.1016/j.ultsonch.2022.106193_b0155) 2019; 583 Ji (10.1016/j.ultsonch.2022.106193_b0165) 2021; 149 Dabbour (10.1016/j.ultsonch.2022.106193_b0195) 2019; 58 Zhang (10.1016/j.ultsonch.2022.106193_b0045) 2021; 346 Hu (10.1016/j.ultsonch.2022.106193_b0100) 2013; 30 Zou (10.1016/j.ultsonch.2022.106193_b0240) 2020; 589 Ren (10.1016/j.ultsonch.2022.106193_b0105) 2020; 265 Oboroceanu (10.1016/j.ultsonch.2022.106193_b0025) 2014; 121 Munialo (10.1016/j.ultsonch.2022.106193_b0075) 2014; 62 Ji (10.1016/j.ultsonch.2022.106193_b0265) 2022; 384 Jin (10.1016/j.ultsonch.2022.106193_b0095) 2020; 161 Deb (10.1016/j.ultsonch.2022.106193_b0185) 2022; 13 Wang (10.1016/j.ultsonch.2022.106193_b0150) 2020; 129 Kroes-Nijboer (10.1016/j.ultsonch.2022.106193_b0175) 2012; 3 Zhang (10.1016/j.ultsonch.2022.106193_b0015) 2014; 23 Liu (10.1016/j.ultsonch.2022.106193_b0270) 2022; 84 Dabbour (10.1016/j.ultsonch.2022.106193_b0250) 2020; 63 Li (10.1016/j.ultsonch.2022.106193_b0055) 2021; 100 Farrokhi (10.1016/j.ultsonch.2022.106193_b0140) 2018; 95 Huang (10.1016/j.ultsonch.2022.106193_b0230) 2020; 301 Wei (10.1016/j.ultsonch.2022.106193_b0005) 2019; 94 Hu (10.1016/j.ultsonch.2022.106193_b0120) 2021; 78 Fadimu (10.1016/j.ultsonch.2022.106193_b0255) 2022; 383 Meng (10.1016/j.ultsonch.2022.106193_b0010) 2022; 121 Ikram (10.1016/j.ultsonch.2022.106193_b0275) 2020; 85 Mohammadian (10.1016/j.ultsonch.2022.106193_b0145) 2016; 52 Zou (10.1016/j.ultsonch.2022.106193_b0235) 2018; 113 Wei (10.1016/j.ultsonch.2022.106193_b0160) 2020; 99 Yuan (10.1016/j.ultsonch.2022.106193_b0190) 2021; 120 Xiong (10.1016/j.ultsonch.2022.106193_b0245) 2018; 109 Hu (10.1016/j.ultsonch.2022.106193_b0115) 2013; 20 Deng (10.1016/j.ultsonch.2022.106193_b0200) 2021; 76 Wu (10.1016/j.ultsonch.2022.106193_b0035) 2016; 52 Huyst (10.1016/j.ultsonch.2022.106193_b0050) 2021; 111 Yi (10.1016/j.ultsonch.2022.106193_b0070) 2022; 377 Wang (10.1016/j.ultsonch.2022.106193_b0210) 2021; 80 Zhao (10.1016/j.ultsonch.2022.106193_b0215) 2022; 126 Misir (10.1016/j.ultsonch.2022.106193_b0280) 2019; 31 Wei (10.1016/j.ultsonch.2022.106193_b0080) 2020; 11 Hu (10.1016/j.ultsonch.2022.106193_b0135) 2019; 10 Xia (10.1016/j.ultsonch.2022.106193_b0180) 2017; 100 Wang (10.1016/j.ultsonch.2022.106193_b0130) 2020; 149 Higuera-Barraza (10.1016/j.ultsonch.2022.106193_b0110) 2016; 31 Xu (10.1016/j.ultsonch.2022.106193_b0060) 2022; 283 Tong (10.1016/j.ultsonch.2022.106193_b0125) 2022; 122 Li (10.1016/j.ultsonch.2022.106193_b0020) 2021; 354 Amiri (10.1016/j.ultsonch.2022.106193_b0220) 2018; 111 Zhao (10.1016/j.ultsonch.2022.106193_b0030) 2021; 357 Jiang (10.1016/j.ultsonch.2022.106193_b0040) 2022; 124 Josefsson (10.1016/j.ultsonch.2022.106193_b0065) 2019; 9 Wawer (10.1016/j.ultsonch.2022.106193_b0090) 2019; 121 Tian (10.1016/j.ultsonch.2022.106193_b0260) 2020; 68 Cheng (10.1016/j.ultsonch.2022.106193_b0170) 2021; 80 Zhang (10.1016/j.ultsonch.2022.106193_b0205) 2010; 24 Mohammadian (10.1016/j.ultsonch.2022.106193_b0225) 2018; 75 |
| References_xml | – volume: 31 start-page: 205 year: 2019 end-page: 223 ident: b0280 article-title: Effects of ultrasound treatment on structural, chemical and functional properties of protein hydrolysate of rainbow trout (Oncorhynchus Mykiss) by-products publication-title: Ital J. Food Sci. – volume: 100 start-page: 103224 year: 2021 ident: b0055 article-title: Effect of ionic strength on assembly behaviors and rheological properties of rice glutelin based fibrils publication-title: J. Cereal Sci. – volume: 283 year: 2022 ident: b0060 article-title: Structure remodeling of soy protein-derived amyloid fibrils mediated by epigallocatechin-3-gallate publication-title: Biomaterials – volume: 75 start-page: 115 year: 2018 end-page: 128 ident: b0225 article-title: Technological functionality and biological properties of food protein nanofibrils formed by heating at acidic condition publication-title: Trends Food Sci. Tech. – volume: 121 start-page: 63 year: 2019 end-page: 70 ident: b0090 article-title: Influence of the ionic strength on the amyloid fibrillogenesis of hen egg white lysozyme publication-title: Int. J. Biol. Macromol. – volume: 129 start-page: 109563 year: 2020 ident: b0150 article-title: Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate publication-title: Lwt – volume: 100 start-page: 268 year: 2017 end-page: 276 ident: b0180 article-title: Formation of amyloid fibrils from soy protein hydrolysate: Effects of selective proteolysis on beta-conglycinin publication-title: Food Res. Int. – volume: 76 year: 2021 ident: b0200 article-title: Ultrasonic structural modification of myofibrillar proteins from Coregonus peled improves emulsification properties publication-title: Ultrason. Sonochem. – volume: 11 start-page: 1478 year: 2020 end-page: 1488 ident: b0080 article-title: Hydrogels assembled from ovotransferrin fibrils and xanthan gum as dihydromyricetin delivery vehicles publication-title: Food Funct. – volume: 589 start-page: 124463 year: 2020 ident: b0240 article-title: High-intensity ultrasonication treatment improved physicochemical and functional properties of mussel sarcoplasmic proteins and enhanced the stability of oil-in-water emulsion publication-title: Colloids Surf., A – volume: 68 year: 2020 ident: b0260 article-title: Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates publication-title: Ultrason. Sonochem. – volume: 23 start-page: 1417 year: 2014 end-page: 1423 ident: b0015 article-title: Effect of heat-induced formation of rice bran protein fibrils on morphological structure and physicochemical properties in solutions and gels publication-title: Food Sci. Biotechnol. – volume: 9 start-page: 6310 year: 2019 end-page: 6319 ident: b0065 article-title: Structural basis for the formation of soy protein nanofibrils publication-title: RSC Adv. – volume: 377 year: 2022 ident: b0070 article-title: Improved water solubility, chemical stability, antioxidant and anticancer activity of resveratrol via nanoencapsulation with pea protein nanofibrils publication-title: Food Chem. – volume: 30 start-page: 647 year: 2013 end-page: 655 ident: b0100 article-title: Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions publication-title: Food Hydrocolloids – volume: 84 start-page: 105964 year: 2022 ident: b0270 article-title: Influence of ultrasound treatment on the physicochemical and antioxidant properties of mung bean protein hydrolysate publication-title: Ultrason. Sonochem. – volume: 80 year: 2021 ident: b0210 article-title: Ultrasound-assisted alkaline proteinase extraction enhances the yield of pecan protein and modifies its functional properties publication-title: Ultrason. Sonochem. – volume: 149 start-page: 609 year: 2020 end-page: 616 ident: b0130 article-title: Formation and physicochemical properties of amyloid fibrils from soy protein publication-title: Int. J. Biol. Macromol. – volume: 63 year: 2020 ident: b0250 article-title: Localized enzymolysis and sonochemically modified sunflower protein: Physical, functional and structure attributes publication-title: Ultrason. Sonochem. – volume: 124 start-page: 107264 year: 2022 ident: b0040 article-title: Tunable self-assemblies of whey protein isolate fibrils for pickering emulsions structure regulation publication-title: Food Hydrocolloids – volume: 80 year: 2021 ident: b0170 article-title: Effects of high-intensity ultrasound on the structural, optical, mechanical and physicochemical properties of pea protein isolate-based edible film publication-title: Ultrason. Sonochem. – volume: 58 year: 2019 ident: b0195 article-title: Changes in functionalities, conformational characteristics and antioxidative capacities of sunflower protein by controlled enzymolysis and ultrasonication action publication-title: Ultrason. Sonochem. – volume: 111 start-page: 139 year: 2018 end-page: 147 ident: b0220 article-title: Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins publication-title: Int. J. Biol. Macromol. – volume: 383 year: 2022 ident: b0255 article-title: Improving the enzymolysis efficiency of lupin protein by ultrasound pretreatment: Effect on antihypertensive, antidiabetic and antioxidant activities of the hydrolysates publication-title: Food Chem. – volume: 121 start-page: 59 year: 2022 end-page: 75 ident: b0010 article-title: Protein fibrils from different food sources: a review of fibrillation conditions, properties, applications and research trends publication-title: Trends Food Sci. Tech. – volume: 122 start-page: 107084 year: 2022 ident: b0125 article-title: Changes in structure, rheological property and antioxidant activity of soy protein isolate fibrils by ultrasound pretreatment and EGCG publication-title: Food Hydrocolloids – volume: 99 start-page: 105343 year: 2020 ident: b0160 article-title: In vitro digestion and stability under environmental stresses of ovotransferrin nanofibrils publication-title: Food Hydrocolloids – volume: 95 start-page: 274 year: 2018 end-page: 281 ident: b0140 article-title: Structural and thermal properties of nanofibrillated whey protein isolate in the glassy state publication-title: Lwt – volume: 121 start-page: 102 year: 2014 end-page: 111 ident: b0025 article-title: Fibrillization of whey proteins improves foaming capacity and foam stability at low protein concentrations publication-title: J. Food Eng. – volume: 384 start-page: 132508 year: 2022 ident: b0265 article-title: Effect of change in pH, heat and ultrasound pre-treatments on binding interactions between quercetin and whey protein concentrate publication-title: Food Chem. – volume: 583 start-page: 124002 year: 2019 ident: b0155 article-title: Functional and thermal properties of nanofibrillated whey protein isolate as functions of denaturation temperature and solution pH publication-title: Colloids Surf., A – volume: 354 year: 2021 ident: b0020 article-title: Formation, structural characteristics, foaming and emulsifying properties of rice glutelin fibrils publication-title: Food Chem. – volume: 31 start-page: 558 year: 2016 end-page: 562 ident: b0110 article-title: Effects of high-energy ultrasound on the functional properties of proteins publication-title: Ultrason. Sonochem. – volume: 149 start-page: 111862 year: 2021 ident: b0165 article-title: Effects of NaCl concentration and temperature on fibrillation, structure, and functional properties of soy protein isolate fibril dispersions publication-title: Lwt – volume: 85 start-page: 1045 year: 2020 end-page: 1059 ident: b0275 article-title: Ultrasonic pretreatment improved the antioxidant potential of enzymatic protein hydrolysates from highland barley brewer's spent grain (BSG) publication-title: J. Food Sci. – volume: 109 start-page: 260 year: 2018 end-page: 267 ident: b0245 article-title: Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate publication-title: Food Res. Int. – volume: 3 start-page: 221 year: 2012 end-page: 227 ident: b0175 article-title: Fibrillar structures in food publication-title: Food Funct. – volume: 301 start-page: 112394 year: 2020 ident: b0230 article-title: Aggregation and emulsifying properties of soybean protein isolate pretreated by combination of dual-frequency ultrasound and ionic liquids publication-title: J. Mol. Liq. – volume: 24 start-page: 266 year: 2010 end-page: 274 ident: b0205 article-title: Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L.) protein isolate at pH 2.0: Influence of ionic strength publication-title: Food Hydrocolloids – volume: 265 start-page: 109697 year: 2020 ident: b0105 article-title: Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality publication-title: J. Food Eng. – volume: 126 start-page: 107441 year: 2022 ident: b0215 article-title: Improving pea protein functionality by combining high-pressure homogenization with an ultrasound-assisted Maillard reaction publication-title: Food Hydrocolloids – volume: 98 start-page: 105314 year: 2020 ident: b0085 article-title: Impact of covalent or non-covalent bound epigallocatechin-3-gallate (EGCG) on assembly, physicochemical characteristics and digestion of ovotransferrin fibrils publication-title: Food Hydrocolloids – volume: 62 start-page: 2418 year: 2014 end-page: 2427 ident: b0075 article-title: Fibril formation from pea protein and subsequent gel formation publication-title: J. Agric. Food. Chem. – volume: 120 start-page: 106759 year: 2021 ident: b0190 article-title: Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for pH-driven encapsulation and delivery of hydrophobic cargo curcumin publication-title: Food Hydrocolloids – volume: 10 start-page: 8106 year: 2019 end-page: 8115 ident: b0135 article-title: Formation of fibrils derived from whey protein isolate: structural characteristics and protease resistance publication-title: Food Funct. – volume: 13 start-page: 100205 year: 2022 ident: b0185 article-title: Functional, thermal and structural properties of fractionated protein from waste banana peel publication-title: Food Chemistry: X – volume: 78 year: 2021 ident: b0120 article-title: Effect mechanism of ultrasound pretreatment on fibrillation kinetics, physicochemical properties and structure characteristics of soy protein isolate nanofibrils publication-title: Ultrason. Sonochem. – volume: 111 start-page: 106327 year: 2021 ident: b0050 article-title: Influence of hydrophobic interfaces and shear on ovalbumin amyloid-like fibril formation in oil-in-water emulsions publication-title: Food Hydrocolloids – volume: 346 year: 2021 ident: b0045 article-title: Application of whey protein isolate fibrils in encapsulation and protection of beta-carotene publication-title: Food Chem. – volume: 52 start-page: 942 year: 2016 end-page: 951 ident: b0035 article-title: Gelation of β-lactoglobulin and its fibrils in the presence of transglutaminase publication-title: Food Hydrocolloids – volume: 52 start-page: 221 year: 2016 end-page: 230 ident: b0145 article-title: Characterization of fibrillated antioxidant whey protein hydrolysate and comparison with fibrillated protein solution publication-title: Food Hydrocolloids – volume: 113 start-page: 640 year: 2018 end-page: 647 ident: b0235 article-title: Effects of different ultrasound power on physicochemical property and functional performance of chicken actomyosin publication-title: Int. J. Biol. Macromol. – volume: 161 start-page: 1393 year: 2020 end-page: 1404 ident: b0095 article-title: Investigating the inhibitory effects of entacapone on amyloid fibril formation of human lysozyme publication-title: Int. J. Biol. Macromol. – volume: 20 start-page: 187 year: 2013 end-page: 195 ident: b0115 article-title: Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments publication-title: Ultrason. Sonochem. – volume: 94 start-page: 592 year: 2019 end-page: 602 ident: b0005 article-title: Food-grade Pickering emulsions stabilized by ovotransferrin fibrils publication-title: Food Hydrocolloids – volume: 357 year: 2021 ident: b0030 article-title: Evolution of physicochemical and antioxidant properties of whey protein isolate during fibrillization process publication-title: Food Chem. – volume: 31 start-page: 558 year: 2016 ident: 10.1016/j.ultsonch.2022.106193_b0110 article-title: Effects of high-energy ultrasound on the functional properties of proteins publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.02.007 – volume: 20 start-page: 187 year: 2013 ident: 10.1016/j.ultsonch.2022.106193_b0115 article-title: Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2012.07.011 – volume: 11 start-page: 1478 year: 2020 ident: 10.1016/j.ultsonch.2022.106193_b0080 article-title: Hydrogels assembled from ovotransferrin fibrils and xanthan gum as dihydromyricetin delivery vehicles publication-title: Food Funct. doi: 10.1039/C9FO02564B – volume: 111 start-page: 139 year: 2018 ident: 10.1016/j.ultsonch.2022.106193_b0220 article-title: Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.12.167 – volume: 113 start-page: 640 year: 2018 ident: 10.1016/j.ultsonch.2022.106193_b0235 article-title: Effects of different ultrasound power on physicochemical property and functional performance of chicken actomyosin publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.02.039 – volume: 78 year: 2021 ident: 10.1016/j.ultsonch.2022.106193_b0120 article-title: Effect mechanism of ultrasound pretreatment on fibrillation kinetics, physicochemical properties and structure characteristics of soy protein isolate nanofibrils publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2021.105741 – volume: 24 start-page: 266 year: 2010 ident: 10.1016/j.ultsonch.2022.106193_b0205 article-title: Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L.) protein isolate at pH 2.0: Influence of ionic strength publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2009.10.002 – volume: 354 year: 2021 ident: 10.1016/j.ultsonch.2022.106193_b0020 article-title: Formation, structural characteristics, foaming and emulsifying properties of rice glutelin fibrils publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.129554 – volume: 84 start-page: 105964 year: 2022 ident: 10.1016/j.ultsonch.2022.106193_b0270 article-title: Influence of ultrasound treatment on the physicochemical and antioxidant properties of mung bean protein hydrolysate publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2022.105964 – volume: 68 year: 2020 ident: 10.1016/j.ultsonch.2022.106193_b0260 article-title: Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2020.105202 – volume: 31 start-page: 205 year: 2019 ident: 10.1016/j.ultsonch.2022.106193_b0280 article-title: Effects of ultrasound treatment on structural, chemical and functional properties of protein hydrolysate of rainbow trout (Oncorhynchus Mykiss) by-products publication-title: Ital J. Food Sci. – volume: 76 year: 2021 ident: 10.1016/j.ultsonch.2022.106193_b0200 article-title: Ultrasonic structural modification of myofibrillar proteins from Coregonus peled improves emulsification properties publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2021.105659 – volume: 161 start-page: 1393 year: 2020 ident: 10.1016/j.ultsonch.2022.106193_b0095 article-title: Investigating the inhibitory effects of entacapone on amyloid fibril formation of human lysozyme publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.07.296 – volume: 58 year: 2019 ident: 10.1016/j.ultsonch.2022.106193_b0195 article-title: Changes in functionalities, conformational characteristics and antioxidative capacities of sunflower protein by controlled enzymolysis and ultrasonication action publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.104625 – volume: 99 start-page: 105343 year: 2020 ident: 10.1016/j.ultsonch.2022.106193_b0160 article-title: In vitro digestion and stability under environmental stresses of ovotransferrin nanofibrils publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.105343 – volume: 63 year: 2020 ident: 10.1016/j.ultsonch.2022.106193_b0250 article-title: Localized enzymolysis and sonochemically modified sunflower protein: Physical, functional and structure attributes publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.104957 – volume: 94 start-page: 592 year: 2019 ident: 10.1016/j.ultsonch.2022.106193_b0005 article-title: Food-grade Pickering emulsions stabilized by ovotransferrin fibrils publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.04.005 – volume: 98 start-page: 105314 year: 2020 ident: 10.1016/j.ultsonch.2022.106193_b0085 article-title: Impact of covalent or non-covalent bound epigallocatechin-3-gallate (EGCG) on assembly, physicochemical characteristics and digestion of ovotransferrin fibrils publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.105314 – volume: 100 start-page: 268 year: 2017 ident: 10.1016/j.ultsonch.2022.106193_b0180 article-title: Formation of amyloid fibrils from soy protein hydrolysate: Effects of selective proteolysis on beta-conglycinin publication-title: Food Res. Int. doi: 10.1016/j.foodres.2017.08.059 – volume: 357 year: 2021 ident: 10.1016/j.ultsonch.2022.106193_b0030 article-title: Evolution of physicochemical and antioxidant properties of whey protein isolate during fibrillization process publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.129751 – volume: 13 start-page: 100205 year: 2022 ident: 10.1016/j.ultsonch.2022.106193_b0185 article-title: Functional, thermal and structural properties of fractionated protein from waste banana peel publication-title: Food Chemistry: X – volume: 52 start-page: 221 year: 2016 ident: 10.1016/j.ultsonch.2022.106193_b0145 article-title: Characterization of fibrillated antioxidant whey protein hydrolysate and comparison with fibrillated protein solution publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2015.06.022 – volume: 283 year: 2022 ident: 10.1016/j.ultsonch.2022.106193_b0060 article-title: Structure remodeling of soy protein-derived amyloid fibrils mediated by epigallocatechin-3-gallate publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121455 – volume: 10 start-page: 8106 year: 2019 ident: 10.1016/j.ultsonch.2022.106193_b0135 article-title: Formation of fibrils derived from whey protein isolate: structural characteristics and protease resistance publication-title: Food Funct. doi: 10.1039/C9FO00961B – volume: 129 start-page: 109563 year: 2020 ident: 10.1016/j.ultsonch.2022.106193_b0150 article-title: Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate publication-title: Lwt doi: 10.1016/j.lwt.2020.109563 – volume: 85 start-page: 1045 year: 2020 ident: 10.1016/j.ultsonch.2022.106193_b0275 article-title: Ultrasonic pretreatment improved the antioxidant potential of enzymatic protein hydrolysates from highland barley brewer's spent grain (BSG) publication-title: J. Food Sci. doi: 10.1111/1750-3841.15063 – volume: 583 start-page: 124002 year: 2019 ident: 10.1016/j.ultsonch.2022.106193_b0155 article-title: Functional and thermal properties of nanofibrillated whey protein isolate as functions of denaturation temperature and solution pH publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2019.124002 – volume: 301 start-page: 112394 year: 2020 ident: 10.1016/j.ultsonch.2022.106193_b0230 article-title: Aggregation and emulsifying properties of soybean protein isolate pretreated by combination of dual-frequency ultrasound and ionic liquids publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.112394 – volume: 383 year: 2022 ident: 10.1016/j.ultsonch.2022.106193_b0255 article-title: Improving the enzymolysis efficiency of lupin protein by ultrasound pretreatment: Effect on antihypertensive, antidiabetic and antioxidant activities of the hydrolysates publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.132457 – volume: 52 start-page: 942 year: 2016 ident: 10.1016/j.ultsonch.2022.106193_b0035 article-title: Gelation of β-lactoglobulin and its fibrils in the presence of transglutaminase publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2015.09.012 – volume: 80 year: 2021 ident: 10.1016/j.ultsonch.2022.106193_b0170 article-title: Effects of high-intensity ultrasound on the structural, optical, mechanical and physicochemical properties of pea protein isolate-based edible film publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2021.105809 – volume: 121 start-page: 102 year: 2014 ident: 10.1016/j.ultsonch.2022.106193_b0025 article-title: Fibrillization of whey proteins improves foaming capacity and foam stability at low protein concentrations publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2013.08.023 – volume: 126 start-page: 107441 year: 2022 ident: 10.1016/j.ultsonch.2022.106193_b0215 article-title: Improving pea protein functionality by combining high-pressure homogenization with an ultrasound-assisted Maillard reaction publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.107441 – volume: 95 start-page: 274 year: 2018 ident: 10.1016/j.ultsonch.2022.106193_b0140 article-title: Structural and thermal properties of nanofibrillated whey protein isolate in the glassy state publication-title: Lwt doi: 10.1016/j.lwt.2018.05.001 – volume: 9 start-page: 6310 year: 2019 ident: 10.1016/j.ultsonch.2022.106193_b0065 article-title: Structural basis for the formation of soy protein nanofibrils publication-title: RSC Adv. doi: 10.1039/C8RA10610J – volume: 149 start-page: 609 year: 2020 ident: 10.1016/j.ultsonch.2022.106193_b0130 article-title: Formation and physicochemical properties of amyloid fibrils from soy protein publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.01.258 – volume: 120 start-page: 106759 year: 2021 ident: 10.1016/j.ultsonch.2022.106193_b0190 article-title: Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for pH-driven encapsulation and delivery of hydrophobic cargo curcumin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.106759 – volume: 100 start-page: 103224 year: 2021 ident: 10.1016/j.ultsonch.2022.106193_b0055 article-title: Effect of ionic strength on assembly behaviors and rheological properties of rice glutelin based fibrils publication-title: J. Cereal Sci. doi: 10.1016/j.jcs.2021.103224 – volume: 111 start-page: 106327 year: 2021 ident: 10.1016/j.ultsonch.2022.106193_b0050 article-title: Influence of hydrophobic interfaces and shear on ovalbumin amyloid-like fibril formation in oil-in-water emulsions publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.106327 – volume: 122 start-page: 107084 year: 2022 ident: 10.1016/j.ultsonch.2022.106193_b0125 article-title: Changes in structure, rheological property and antioxidant activity of soy protein isolate fibrils by ultrasound pretreatment and EGCG publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.107084 – volume: 23 start-page: 1417 year: 2014 ident: 10.1016/j.ultsonch.2022.106193_b0015 article-title: Effect of heat-induced formation of rice bran protein fibrils on morphological structure and physicochemical properties in solutions and gels publication-title: Food Sci. Biotechnol. doi: 10.1007/s10068-014-0194-1 – volume: 589 start-page: 124463 year: 2020 ident: 10.1016/j.ultsonch.2022.106193_b0240 article-title: High-intensity ultrasonication treatment improved physicochemical and functional properties of mussel sarcoplasmic proteins and enhanced the stability of oil-in-water emulsion publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2020.124463 – volume: 265 start-page: 109697 year: 2020 ident: 10.1016/j.ultsonch.2022.106193_b0105 article-title: Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2019.109697 – volume: 149 start-page: 111862 year: 2021 ident: 10.1016/j.ultsonch.2022.106193_b0165 article-title: Effects of NaCl concentration and temperature on fibrillation, structure, and functional properties of soy protein isolate fibril dispersions publication-title: Lwt doi: 10.1016/j.lwt.2021.111862 – volume: 109 start-page: 260 year: 2018 ident: 10.1016/j.ultsonch.2022.106193_b0245 article-title: Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate publication-title: Food Res. Int. doi: 10.1016/j.foodres.2018.04.044 – volume: 121 start-page: 59 year: 2022 ident: 10.1016/j.ultsonch.2022.106193_b0010 article-title: Protein fibrils from different food sources: a review of fibrillation conditions, properties, applications and research trends publication-title: Trends Food Sci. Tech. doi: 10.1016/j.tifs.2022.01.031 – volume: 346 year: 2021 ident: 10.1016/j.ultsonch.2022.106193_b0045 article-title: Application of whey protein isolate fibrils in encapsulation and protection of beta-carotene publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.128963 – volume: 75 start-page: 115 year: 2018 ident: 10.1016/j.ultsonch.2022.106193_b0225 article-title: Technological functionality and biological properties of food protein nanofibrils formed by heating at acidic condition publication-title: Trends Food Sci. Tech. doi: 10.1016/j.tifs.2018.03.013 – volume: 124 start-page: 107264 year: 2022 ident: 10.1016/j.ultsonch.2022.106193_b0040 article-title: Tunable self-assemblies of whey protein isolate fibrils for pickering emulsions structure regulation publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2021.107264 – volume: 80 year: 2021 ident: 10.1016/j.ultsonch.2022.106193_b0210 article-title: Ultrasound-assisted alkaline proteinase extraction enhances the yield of pecan protein and modifies its functional properties publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2021.105789 – volume: 3 start-page: 221 year: 2012 ident: 10.1016/j.ultsonch.2022.106193_b0175 article-title: Fibrillar structures in food publication-title: Food Funct. doi: 10.1039/C1FO10163C – volume: 384 start-page: 132508 year: 2022 ident: 10.1016/j.ultsonch.2022.106193_b0265 article-title: Effect of change in pH, heat and ultrasound pre-treatments on binding interactions between quercetin and whey protein concentrate publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.132508 – volume: 377 year: 2022 ident: 10.1016/j.ultsonch.2022.106193_b0070 article-title: Improved water solubility, chemical stability, antioxidant and anticancer activity of resveratrol via nanoencapsulation with pea protein nanofibrils publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.131942 – volume: 30 start-page: 647 year: 2013 ident: 10.1016/j.ultsonch.2022.106193_b0100 article-title: Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2012.08.001 – volume: 121 start-page: 63 year: 2019 ident: 10.1016/j.ultsonch.2022.106193_b0090 article-title: Influence of the ionic strength on the amyloid fibrillogenesis of hen egg white lysozyme publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.09.165 – volume: 62 start-page: 2418 year: 2014 ident: 10.1016/j.ultsonch.2022.106193_b0075 article-title: Fibril formation from pea protein and subsequent gel formation publication-title: J. Agric. Food. Chem. doi: 10.1021/jf4055215 |
| SSID | ssj0003920 |
| Score | 2.5918663 |
| Snippet | •Low amplitude ultrasound improved the solubility, EAI and WAC of SPI nanofibrils.•High amplitude ultrasound improved the foaming capacity and foaming... Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the... • Low amplitude ultrasound improved the solubility, EAI and WAC of SPI nanofibrils. • High amplitude ultrasound improved the foaming capacity and foaming... |
| SourceID | doaj pubmedcentral proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106193 |
| SubjectTerms | Antioxidant activity Digestibility Functional property Short Communication Soy protein isolate nanofibril Ultrasound pretreatment |
| Title | Effects of ultrasound pretreatment on functional property, antioxidant activity, and digestibility of soy protein isolate nanofibrils |
| URI | https://dx.doi.org/10.1016/j.ultsonch.2022.106193 https://www.proquest.com/docview/2726408203 https://pubmed.ncbi.nlm.nih.gov/PMC9579045 https://doaj.org/article/5934c07f4b1a4475b75c2ce770b8019d |
| Volume | 90 |
| WOSCitedRecordID | wos000874667700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1873-2828 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003920 issn: 1350-4177 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: ScienceDirect (Freedom Collection) customDbUrl: eissn: 1873-2828 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003920 issn: 1350-4177 databaseCode: AIEXJ dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAsEFQQF1eVRG4kjaJI7X8REqKg6o4gBob5afItXKqTa7iP4A_jczdlJtTnvhtFIe1iT-1vNNPPMNIe-BcTjOSld4_LjR-MoXrWWsQFXcpbHNMqRC2p9fxdVVu1rJb3utvjAnLMsD5xd3ziVrbClCYyqN4nRGcFtbL0RpYHGVDldfYD1TMDWuweD1c30wL4umEmKvNvj6bLfeApdNWxF1fYYxkWQzt5TU-2feaY99znMn95zR5VPyZGSR9GO2_hm55-MxeXQxNW87Jg9TZqcdnpO_WZ94oH2gYNJGD9hIiWKe4ZRjTvtI0b_lz4Jwqr9Bxd0PVGMq5J_OwS_FAgjsM4FHHXVpXypn1t7i0EN_S5PmQxdpB3gGCkujjgBds-nWwwvy4_Lz94svxdh7obBAobZFYJIFoHpGVA6iKC9tKH3JXViGpQlCVrrWnIWmDTX3OpjaCusgWNEshJbXmr0kR7GP_oRQ6UMwvoHQijGgK07LYGBIrW1lYSC7IHx69cqOwuTYH2Otpgy0azVNmcIpU3nKFuT87r6bLM1x8I5POLN3V6O0djoAgFMj4NQhwC2InHChRpaS2QcM1R004N0EJAWAwL0ZHX2_G1QtgJkiHYNrxAxhM2vnZ2L3KwmC41YrUPNX_-PxXpPHaHAut3xDjrabnX9LHtjf227YnJL7YtWepv_aP4AlMes |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+ultrasound+pretreatment+on+functional+property%2C+antioxidant+activity%2C+and+digestibility+of+soy+protein+isolate+nanofibrils&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Hu%2C+Anna&rft.au=Li%2C+Liang&rft.date=2022-11-01&rft.pub=Elsevier+B.V&rft.issn=1350-4177&rft.eissn=1873-2828&rft.volume=90&rft_id=info:doi/10.1016%2Fj.ultsonch.2022.106193&rft.externalDocID=S1350417722002899 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon |