Effects of ultrasound pretreatment on functional property, antioxidant activity, and digestibility of soy protein isolate nanofibrils

•Low amplitude ultrasound improved the solubility, EAI and WAC of SPI nanofibrils.•High amplitude ultrasound improved the foaming capacity and foaming stability.•Antioxidant activity of SPI nanofibrils was improved by 20% amplitude ultrasound.•In vitro digestion rate of 80% amplitude ultrasound-SPI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics sonochemistry Jg. 90; S. 106193
Hauptverfasser: Hu, Anna, Li, Liang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.11.2022
Elsevier
Schlagworte:
ISSN:1350-4177, 1873-2828, 1873-2828
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Low amplitude ultrasound improved the solubility, EAI and WAC of SPI nanofibrils.•High amplitude ultrasound improved the foaming capacity and foaming stability.•Antioxidant activity of SPI nanofibrils was improved by 20% amplitude ultrasound.•In vitro digestion rate of 80% amplitude ultrasound-SPI nanofibrils were the highest. Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry.
AbstractList •Low amplitude ultrasound improved the solubility, EAI and WAC of SPI nanofibrils.•High amplitude ultrasound improved the foaming capacity and foaming stability.•Antioxidant activity of SPI nanofibrils was improved by 20% amplitude ultrasound.•In vitro digestion rate of 80% amplitude ultrasound-SPI nanofibrils were the highest. Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry.
• Low amplitude ultrasound improved the solubility, EAI and WAC of SPI nanofibrils. • High amplitude ultrasound improved the foaming capacity and foaming stability. • Antioxidant activity of SPI nanofibrils was improved by 20% amplitude ultrasound. • In vitro digestion rate of 80% amplitude ultrasound-SPI nanofibrils were the highest. Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry.
Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry.
Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry.Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry.
ArticleNumber 106193
Author Hu, Anna
Li, Liang
Author_xml – sequence: 1
  givenname: Anna
  surname: Hu
  fullname: Hu, Anna
– sequence: 2
  givenname: Liang
  surname: Li
  fullname: Li, Liang
  email: liliangneau@163.com
BookMark eNqFkstuFDEQRVsoiDzgF1AvWTCDH-12t4QQKAoQKRIbWFtuuzypkccebHeU-QD-Gw8dkMImq7Ju-R5bVfe8OQkxQNO8pmRNCe3fbdezLzkGc7tmhLEq9nTkz5ozOki-YgMbTuqZC7LqqJSnzXnOW0IIHxl50ZzyngnJKD9rfl05B6bkNrq2EpPOcQ623ScoCXTZQShtDK2bgykYg_a1FfeQyuFtq0OV7tHW2uravsNFta3FDeSCE_oqHdE5Ho7GAhhazNHrAm3QITqcEvr8snnutM_w6qFeND8-X32__Lq6-fbl-vLTzcoI2pWV4yN3ou8nSS2hHYzGESDCut71k5Mj1UwL7rrBMQHaTcxIYykdNHduEEzzi-Z64dqot2qfcKfTQUWN6o8Q00bpVNB4UGLknSHSdRPVXSfFJIVhBqQk00DoaCvrw8Laz9MOrKmTSto_gj7uBLxVm3inRiFH0okKePMASPHnXOeldpgNeK8DxDkrJlnfkYERXq_2y1WTYs4J3L9nKFHHPKit-psHdcyDWvJQje__Mxos-rjJ-iX0T9s_LnaoS7lDSCobhGDAYqqpqVPDpxC_ARGC3Bo
CitedBy_id crossref_primary_10_3390_foods14162849
crossref_primary_10_1039_D4FB00321G
crossref_primary_10_1016_j_ijbiomac_2023_127539
crossref_primary_10_1016_j_foodchem_2024_138469
crossref_primary_10_1016_j_jfoodeng_2024_112444
crossref_primary_10_1016_j_foodhyd_2023_109110
crossref_primary_10_1016_j_foodhyd_2024_110663
crossref_primary_10_1016_j_fbio_2025_106531
crossref_primary_10_1016_j_foodhyd_2024_109871
crossref_primary_10_1002_jsfa_14110
crossref_primary_10_1016_j_foodchem_2025_145154
crossref_primary_10_1111_1541_4337_13161
crossref_primary_10_3389_fnut_2023_1135048
crossref_primary_10_1016_j_fochx_2025_102389
crossref_primary_10_1016_j_ecoenv_2025_117719
crossref_primary_10_1039_D5FB00196J
crossref_primary_10_1016_j_cofs_2024_101148
crossref_primary_10_1016_j_ijbiomac_2024_137494
crossref_primary_10_1016_j_ultsonch_2025_107479
crossref_primary_10_1016_j_foodchem_2024_142596
crossref_primary_10_1016_j_scib_2023_12_025
crossref_primary_10_1016_j_foodhyd_2024_110575
crossref_primary_10_1016_j_ultsonch_2025_107394
crossref_primary_10_1111_1750_3841_70137
crossref_primary_10_1016_j_foodchem_2024_141745
crossref_primary_10_1016_j_foodchem_2024_142559
crossref_primary_10_1016_j_foodchem_2025_145642
crossref_primary_10_1016_j_fbio_2024_103599
crossref_primary_10_1016_j_fbio_2024_105699
crossref_primary_10_1016_j_fochx_2025_102219
crossref_primary_10_1016_j_fpsl_2023_101163
crossref_primary_10_1016_j_foodhyd_2025_111609
crossref_primary_10_1016_j_lwt_2023_115589
crossref_primary_10_3390_foods13172817
crossref_primary_10_1016_j_ultsonch_2024_106799
crossref_primary_10_3389_fbioe_2023_1170676
crossref_primary_10_1016_j_foodchem_2023_136781
crossref_primary_10_1016_j_ultsonch_2023_106554
crossref_primary_10_1016_j_ultsonch_2023_106675
crossref_primary_10_1016_j_foodhyd_2024_110435
crossref_primary_10_1016_j_foodhyd_2023_109495
crossref_primary_10_1016_j_foodhyd_2023_109373
crossref_primary_10_1016_j_foodhyd_2024_109774
crossref_primary_10_1016_j_fbio_2025_106751
crossref_primary_10_1016_j_ultsonch_2024_106870
crossref_primary_10_1016_j_fbio_2025_107247
crossref_primary_10_1016_j_ijbiomac_2025_141811
crossref_primary_10_1111_ijfs_17433
crossref_primary_10_1007_s11483_024_09908_9
crossref_primary_10_1002_jsfa_14375
crossref_primary_10_1016_j_crfs_2025_101031
crossref_primary_10_1016_j_foodhyd_2024_110749
crossref_primary_10_1016_j_fbio_2023_103100
crossref_primary_10_1016_j_foodchem_2024_141968
crossref_primary_10_1002_pts_2833
crossref_primary_10_1016_j_crfs_2024_100965
crossref_primary_10_1111_ijfs_17196
crossref_primary_10_1016_j_foodhyd_2024_110672
crossref_primary_10_1016_j_foodchem_2024_139970
crossref_primary_10_1016_j_ijbiomac_2025_139942
crossref_primary_10_1021_acs_biomac_5c00112
crossref_primary_10_1016_j_ijbiomac_2025_147008
crossref_primary_10_1016_j_foodchem_2025_144499
Cites_doi 10.1016/j.ultsonch.2016.02.007
10.1016/j.ultsonch.2012.07.011
10.1039/C9FO02564B
10.1016/j.ijbiomac.2017.12.167
10.1016/j.ijbiomac.2018.02.039
10.1016/j.ultsonch.2021.105741
10.1016/j.foodhyd.2009.10.002
10.1016/j.foodchem.2021.129554
10.1016/j.ultsonch.2022.105964
10.1016/j.ultsonch.2020.105202
10.1016/j.ultsonch.2021.105659
10.1016/j.ijbiomac.2020.07.296
10.1016/j.ultsonch.2019.104625
10.1016/j.foodhyd.2019.105343
10.1016/j.ultsonch.2019.104957
10.1016/j.foodhyd.2019.04.005
10.1016/j.foodhyd.2019.105314
10.1016/j.foodres.2017.08.059
10.1016/j.foodchem.2021.129751
10.1016/j.foodhyd.2015.06.022
10.1016/j.biomaterials.2022.121455
10.1039/C9FO00961B
10.1016/j.lwt.2020.109563
10.1111/1750-3841.15063
10.1016/j.colsurfa.2019.124002
10.1016/j.molliq.2019.112394
10.1016/j.foodchem.2022.132457
10.1016/j.foodhyd.2015.09.012
10.1016/j.ultsonch.2021.105809
10.1016/j.jfoodeng.2013.08.023
10.1016/j.foodhyd.2021.107441
10.1016/j.lwt.2018.05.001
10.1039/C8RA10610J
10.1016/j.ijbiomac.2020.01.258
10.1016/j.foodhyd.2021.106759
10.1016/j.jcs.2021.103224
10.1016/j.foodhyd.2020.106327
10.1016/j.foodhyd.2021.107084
10.1007/s10068-014-0194-1
10.1016/j.colsurfa.2020.124463
10.1016/j.jfoodeng.2019.109697
10.1016/j.lwt.2021.111862
10.1016/j.foodres.2018.04.044
10.1016/j.tifs.2022.01.031
10.1016/j.foodchem.2020.128963
10.1016/j.tifs.2018.03.013
10.1016/j.foodhyd.2021.107264
10.1016/j.ultsonch.2021.105789
10.1039/C1FO10163C
10.1016/j.foodchem.2022.132508
10.1016/j.foodchem.2021.131942
10.1016/j.foodhyd.2012.08.001
10.1016/j.ijbiomac.2018.09.165
10.1021/jf4055215
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.ultsonch.2022.106193
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-2828
ExternalDocumentID oai_doaj_org_article_5934c07f4b1a4475b75c2ce770b8019d
PMC9579045
10_1016_j_ultsonch_2022_106193
S1350417722002899
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFPKN
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPM
RPZ
SCB
SDF
SDG
SES
SEW
SPC
SPD
SPG
SSK
SSQ
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7X8
5PM
ID FETCH-LOGICAL-c514t-f393f566b71d014e9cf0e05df6f6bf791a2a53f48f25eafb2c7cd118a3ff852a3
IEDL.DBID DOA
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000874667700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1350-4177
1873-2828
IngestDate Fri Oct 03 12:51:13 EDT 2025
Tue Sep 30 17:18:21 EDT 2025
Thu Oct 02 06:42:02 EDT 2025
Sat Nov 29 07:03:24 EST 2025
Tue Nov 18 20:59:27 EST 2025
Fri Feb 23 02:39:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ultrasound pretreatment
Functional property
Antioxidant activity
Soy protein isolate nanofibril
Digestibility
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-f393f566b71d014e9cf0e05df6f6bf791a2a53f48f25eafb2c7cd118a3ff852a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/5934c07f4b1a4475b75c2ce770b8019d
PMID 36257213
PQID 2726408203
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5934c07f4b1a4475b75c2ce770b8019d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9579045
proquest_miscellaneous_2726408203
crossref_primary_10_1016_j_ultsonch_2022_106193
crossref_citationtrail_10_1016_j_ultsonch_2022_106193
elsevier_sciencedirect_doi_10_1016_j_ultsonch_2022_106193
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Ultrasonics sonochemistry
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Jiang, Pan, Peng, Huang, Shen, Jin, Huang (b0040) 2022; 124
Wawer, Szocinski, Olszewski, Piatek, Naczk, Krakowiak (b0090) 2019; 121
Tian, Feng, Huang, Tian, Zhang, Jiang, Sui (b0260) 2020; 68
Yi, He, Peng, Fan (b0070) 2022; 377
Hu, Fan, Zhou, Xu, Fan, Wang, Huang, Pan, Zhu (b0115) 2013; 20
Dabbour, Xiang, Mintah, He, Jiang, Ma (b0250) 2020; 63
Munialo, Martin, van der Linden, de Jongh (b0075) 2014; 62
Ren, Li, Yang, Huang, Huang, Zhang, Yan (b0105) 2020; 265
Zou, Xu, Wu, Zhang, Sun, Sun, Wang, Cao, Xu (b0235) 2018; 113
Cheng, Cui (b0170) 2021; 80
Zou, Zhao, Sun, Dong, Yu (b0240) 2020; 589
Oboroceanu, Wang, Magner, Auty (b0025) 2014; 121
Wei, Cheng, Huang (b0005) 2019; 94
Wang, Shen, Qi, Li, Sun, Qiu, Li (b0130) 2020; 149
Wang, Wang, Huang, Hayat, Kurtz, Wu, Ahmad, Zheng (b0210) 2021; 80
Wei, Huang (b0085) 2020; 98
Xu, Shan, Hao, Li, Lan, Dong, Wen, Tian, Zhang, Jiang, Sui (b0060) 2022; 283
Amiri, Sharifian, Soltanizadeh (b0220) 2018; 111
Xia, Zhang, Chen, Hu, Rasulov, Bi, Huang, Pan (b0180) 2017; 100
Zhang, Fu, Li, Li, Shi, Xie, Li, Su, Li (b0045) 2021; 346
Ji, Xu, Ouyang, Mu, Li, Luo, Shen, Zheng (b0165) 2021; 149
Kroes-Nijboer, Venema, van der Linden (b0175) 2012; 3
Mohammadian, Madadlou (b0225) 2018; 75
Yuan, Zhou, Shen, Zhang, Lin, Zhao (b0190) 2021; 120
Ikram, Zhang, Ahmed, Wang (b0275) 2020; 85
Zhao, Wang, Lu, Sun, Zhu, Fang (b0030) 2021; 357
Hu, He, Woo, Xiong, Hu, Zhao (b0135) 2019; 10
Josefsson, Cronhamn, Ekman, Widehammar, Emmer, Lendel (b0065) 2019; 9
Li, Wang, Zhang, Yu, Chen (b0055) 2021; 100
Jin, Gao, Liu, Zhang, Mukherjee, Zhang, Dong, Bhunia, Bednarikova, Gazova, Liu, Han, Siebert (b0095) 2020; 161
Wei, Chen, Wijaya, Cheng, Xiao, Huang (b0080) 2020; 11
Huang, Jia, Zhang, Ma, Ding (b0230) 2020; 301
Hu, Li (b0120) 2021; 78
Deng, Ma, Lei, Zhu, Zhang, Hu, Lu, Guo, Zhang (b0200) 2021; 76
Dabbour, He, Mintah, Xiang, Ma (b0195) 2019; 58
Fadimu, Gill, Farahnaky, Truong (b0255) 2022; 383
Hu, Wu, Li-Chan, Zhu, Zhang, Xu, Fan, Wang, Huang, Pan (b0100) 2013; 30
Zhao, Huang, McClements, Liu, Wang, Liu (b0215) 2022; 126
Tong, Cao, Tian, Lyu, Miao, Lian, Cui, Liu, Wang, Jiang (b0125) 2022; 122
Higuera-Barraza, Del Toro-Sanchez, Ruiz-Cruz, Marquez-Rios (b0110) 2016; 31
Zhang, Huang (b0015) 2014; 23
Li, Wang, Geng, Zhang, Chen (b0020) 2021; 354
Ji, Yang, Yang (b0265) 2022; 384
Mohammadian, Madadlou (b0145) 2016; 52
Wei, Huang (b0160) 2020; 99
Deb, Kumar, Saxena (b0185) 2022; 13
Wang, Wang, Li, Bai, Li, Xu (b0150) 2020; 129
Farrokhi, Badii, Ehsani, Hashemi (b0155) 2019; 583
Misir, Koral (b0280) 2019; 31
Farrokhi, Ehsani, Badii, Hashemi (b0140) 2018; 95
Xiong, Xiong, Ge, Xia, Li, Chen (b0245) 2018; 109
Huyst, Deleu, Luyckx, Lambrecht, Van Camp, Delcour, Van der Meeren (b0050) 2021; 111
Zhang, Tang, Wen, Yang, Li, Deng (b0205) 2010; 24
Meng, Wei, Xue (b0010) 2022; 121
Wu, Nishinari, Gao, Zhao, Zhang, Fang, Phillips, Jiang (b0035) 2016; 52
Liu, Li, Sun, Wang, Liang, Zhao, He, Mo (b0270) 2022; 84
Wei (10.1016/j.ultsonch.2022.106193_b0085) 2020; 98
Farrokhi (10.1016/j.ultsonch.2022.106193_b0155) 2019; 583
Ji (10.1016/j.ultsonch.2022.106193_b0165) 2021; 149
Dabbour (10.1016/j.ultsonch.2022.106193_b0195) 2019; 58
Zhang (10.1016/j.ultsonch.2022.106193_b0045) 2021; 346
Hu (10.1016/j.ultsonch.2022.106193_b0100) 2013; 30
Zou (10.1016/j.ultsonch.2022.106193_b0240) 2020; 589
Ren (10.1016/j.ultsonch.2022.106193_b0105) 2020; 265
Oboroceanu (10.1016/j.ultsonch.2022.106193_b0025) 2014; 121
Munialo (10.1016/j.ultsonch.2022.106193_b0075) 2014; 62
Ji (10.1016/j.ultsonch.2022.106193_b0265) 2022; 384
Jin (10.1016/j.ultsonch.2022.106193_b0095) 2020; 161
Deb (10.1016/j.ultsonch.2022.106193_b0185) 2022; 13
Wang (10.1016/j.ultsonch.2022.106193_b0150) 2020; 129
Kroes-Nijboer (10.1016/j.ultsonch.2022.106193_b0175) 2012; 3
Zhang (10.1016/j.ultsonch.2022.106193_b0015) 2014; 23
Liu (10.1016/j.ultsonch.2022.106193_b0270) 2022; 84
Dabbour (10.1016/j.ultsonch.2022.106193_b0250) 2020; 63
Li (10.1016/j.ultsonch.2022.106193_b0055) 2021; 100
Farrokhi (10.1016/j.ultsonch.2022.106193_b0140) 2018; 95
Huang (10.1016/j.ultsonch.2022.106193_b0230) 2020; 301
Wei (10.1016/j.ultsonch.2022.106193_b0005) 2019; 94
Hu (10.1016/j.ultsonch.2022.106193_b0120) 2021; 78
Fadimu (10.1016/j.ultsonch.2022.106193_b0255) 2022; 383
Meng (10.1016/j.ultsonch.2022.106193_b0010) 2022; 121
Ikram (10.1016/j.ultsonch.2022.106193_b0275) 2020; 85
Mohammadian (10.1016/j.ultsonch.2022.106193_b0145) 2016; 52
Zou (10.1016/j.ultsonch.2022.106193_b0235) 2018; 113
Wei (10.1016/j.ultsonch.2022.106193_b0160) 2020; 99
Yuan (10.1016/j.ultsonch.2022.106193_b0190) 2021; 120
Xiong (10.1016/j.ultsonch.2022.106193_b0245) 2018; 109
Hu (10.1016/j.ultsonch.2022.106193_b0115) 2013; 20
Deng (10.1016/j.ultsonch.2022.106193_b0200) 2021; 76
Wu (10.1016/j.ultsonch.2022.106193_b0035) 2016; 52
Huyst (10.1016/j.ultsonch.2022.106193_b0050) 2021; 111
Yi (10.1016/j.ultsonch.2022.106193_b0070) 2022; 377
Wang (10.1016/j.ultsonch.2022.106193_b0210) 2021; 80
Zhao (10.1016/j.ultsonch.2022.106193_b0215) 2022; 126
Misir (10.1016/j.ultsonch.2022.106193_b0280) 2019; 31
Wei (10.1016/j.ultsonch.2022.106193_b0080) 2020; 11
Hu (10.1016/j.ultsonch.2022.106193_b0135) 2019; 10
Xia (10.1016/j.ultsonch.2022.106193_b0180) 2017; 100
Wang (10.1016/j.ultsonch.2022.106193_b0130) 2020; 149
Higuera-Barraza (10.1016/j.ultsonch.2022.106193_b0110) 2016; 31
Xu (10.1016/j.ultsonch.2022.106193_b0060) 2022; 283
Tong (10.1016/j.ultsonch.2022.106193_b0125) 2022; 122
Li (10.1016/j.ultsonch.2022.106193_b0020) 2021; 354
Amiri (10.1016/j.ultsonch.2022.106193_b0220) 2018; 111
Zhao (10.1016/j.ultsonch.2022.106193_b0030) 2021; 357
Jiang (10.1016/j.ultsonch.2022.106193_b0040) 2022; 124
Josefsson (10.1016/j.ultsonch.2022.106193_b0065) 2019; 9
Wawer (10.1016/j.ultsonch.2022.106193_b0090) 2019; 121
Tian (10.1016/j.ultsonch.2022.106193_b0260) 2020; 68
Cheng (10.1016/j.ultsonch.2022.106193_b0170) 2021; 80
Zhang (10.1016/j.ultsonch.2022.106193_b0205) 2010; 24
Mohammadian (10.1016/j.ultsonch.2022.106193_b0225) 2018; 75
References_xml – volume: 31
  start-page: 205
  year: 2019
  end-page: 223
  ident: b0280
  article-title: Effects of ultrasound treatment on structural, chemical and functional properties of protein hydrolysate of rainbow trout (Oncorhynchus Mykiss) by-products
  publication-title: Ital J. Food Sci.
– volume: 100
  start-page: 103224
  year: 2021
  ident: b0055
  article-title: Effect of ionic strength on assembly behaviors and rheological properties of rice glutelin based fibrils
  publication-title: J. Cereal Sci.
– volume: 283
  year: 2022
  ident: b0060
  article-title: Structure remodeling of soy protein-derived amyloid fibrils mediated by epigallocatechin-3-gallate
  publication-title: Biomaterials
– volume: 75
  start-page: 115
  year: 2018
  end-page: 128
  ident: b0225
  article-title: Technological functionality and biological properties of food protein nanofibrils formed by heating at acidic condition
  publication-title: Trends Food Sci. Tech.
– volume: 121
  start-page: 63
  year: 2019
  end-page: 70
  ident: b0090
  article-title: Influence of the ionic strength on the amyloid fibrillogenesis of hen egg white lysozyme
  publication-title: Int. J. Biol. Macromol.
– volume: 129
  start-page: 109563
  year: 2020
  ident: b0150
  article-title: Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate
  publication-title: Lwt
– volume: 100
  start-page: 268
  year: 2017
  end-page: 276
  ident: b0180
  article-title: Formation of amyloid fibrils from soy protein hydrolysate: Effects of selective proteolysis on beta-conglycinin
  publication-title: Food Res. Int.
– volume: 76
  year: 2021
  ident: b0200
  article-title: Ultrasonic structural modification of myofibrillar proteins from Coregonus peled improves emulsification properties
  publication-title: Ultrason. Sonochem.
– volume: 11
  start-page: 1478
  year: 2020
  end-page: 1488
  ident: b0080
  article-title: Hydrogels assembled from ovotransferrin fibrils and xanthan gum as dihydromyricetin delivery vehicles
  publication-title: Food Funct.
– volume: 589
  start-page: 124463
  year: 2020
  ident: b0240
  article-title: High-intensity ultrasonication treatment improved physicochemical and functional properties of mussel sarcoplasmic proteins and enhanced the stability of oil-in-water emulsion
  publication-title: Colloids Surf., A
– volume: 68
  year: 2020
  ident: b0260
  article-title: Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates
  publication-title: Ultrason. Sonochem.
– volume: 23
  start-page: 1417
  year: 2014
  end-page: 1423
  ident: b0015
  article-title: Effect of heat-induced formation of rice bran protein fibrils on morphological structure and physicochemical properties in solutions and gels
  publication-title: Food Sci. Biotechnol.
– volume: 9
  start-page: 6310
  year: 2019
  end-page: 6319
  ident: b0065
  article-title: Structural basis for the formation of soy protein nanofibrils
  publication-title: RSC Adv.
– volume: 377
  year: 2022
  ident: b0070
  article-title: Improved water solubility, chemical stability, antioxidant and anticancer activity of resveratrol via nanoencapsulation with pea protein nanofibrils
  publication-title: Food Chem.
– volume: 30
  start-page: 647
  year: 2013
  end-page: 655
  ident: b0100
  article-title: Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions
  publication-title: Food Hydrocolloids
– volume: 84
  start-page: 105964
  year: 2022
  ident: b0270
  article-title: Influence of ultrasound treatment on the physicochemical and antioxidant properties of mung bean protein hydrolysate
  publication-title: Ultrason. Sonochem.
– volume: 80
  year: 2021
  ident: b0210
  article-title: Ultrasound-assisted alkaline proteinase extraction enhances the yield of pecan protein and modifies its functional properties
  publication-title: Ultrason. Sonochem.
– volume: 149
  start-page: 609
  year: 2020
  end-page: 616
  ident: b0130
  article-title: Formation and physicochemical properties of amyloid fibrils from soy protein
  publication-title: Int. J. Biol. Macromol.
– volume: 63
  year: 2020
  ident: b0250
  article-title: Localized enzymolysis and sonochemically modified sunflower protein: Physical, functional and structure attributes
  publication-title: Ultrason. Sonochem.
– volume: 124
  start-page: 107264
  year: 2022
  ident: b0040
  article-title: Tunable self-assemblies of whey protein isolate fibrils for pickering emulsions structure regulation
  publication-title: Food Hydrocolloids
– volume: 80
  year: 2021
  ident: b0170
  article-title: Effects of high-intensity ultrasound on the structural, optical, mechanical and physicochemical properties of pea protein isolate-based edible film
  publication-title: Ultrason. Sonochem.
– volume: 58
  year: 2019
  ident: b0195
  article-title: Changes in functionalities, conformational characteristics and antioxidative capacities of sunflower protein by controlled enzymolysis and ultrasonication action
  publication-title: Ultrason. Sonochem.
– volume: 111
  start-page: 139
  year: 2018
  end-page: 147
  ident: b0220
  article-title: Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins
  publication-title: Int. J. Biol. Macromol.
– volume: 383
  year: 2022
  ident: b0255
  article-title: Improving the enzymolysis efficiency of lupin protein by ultrasound pretreatment: Effect on antihypertensive, antidiabetic and antioxidant activities of the hydrolysates
  publication-title: Food Chem.
– volume: 121
  start-page: 59
  year: 2022
  end-page: 75
  ident: b0010
  article-title: Protein fibrils from different food sources: a review of fibrillation conditions, properties, applications and research trends
  publication-title: Trends Food Sci. Tech.
– volume: 122
  start-page: 107084
  year: 2022
  ident: b0125
  article-title: Changes in structure, rheological property and antioxidant activity of soy protein isolate fibrils by ultrasound pretreatment and EGCG
  publication-title: Food Hydrocolloids
– volume: 99
  start-page: 105343
  year: 2020
  ident: b0160
  article-title: In vitro digestion and stability under environmental stresses of ovotransferrin nanofibrils
  publication-title: Food Hydrocolloids
– volume: 95
  start-page: 274
  year: 2018
  end-page: 281
  ident: b0140
  article-title: Structural and thermal properties of nanofibrillated whey protein isolate in the glassy state
  publication-title: Lwt
– volume: 121
  start-page: 102
  year: 2014
  end-page: 111
  ident: b0025
  article-title: Fibrillization of whey proteins improves foaming capacity and foam stability at low protein concentrations
  publication-title: J. Food Eng.
– volume: 384
  start-page: 132508
  year: 2022
  ident: b0265
  article-title: Effect of change in pH, heat and ultrasound pre-treatments on binding interactions between quercetin and whey protein concentrate
  publication-title: Food Chem.
– volume: 583
  start-page: 124002
  year: 2019
  ident: b0155
  article-title: Functional and thermal properties of nanofibrillated whey protein isolate as functions of denaturation temperature and solution pH
  publication-title: Colloids Surf., A
– volume: 354
  year: 2021
  ident: b0020
  article-title: Formation, structural characteristics, foaming and emulsifying properties of rice glutelin fibrils
  publication-title: Food Chem.
– volume: 31
  start-page: 558
  year: 2016
  end-page: 562
  ident: b0110
  article-title: Effects of high-energy ultrasound on the functional properties of proteins
  publication-title: Ultrason. Sonochem.
– volume: 149
  start-page: 111862
  year: 2021
  ident: b0165
  article-title: Effects of NaCl concentration and temperature on fibrillation, structure, and functional properties of soy protein isolate fibril dispersions
  publication-title: Lwt
– volume: 85
  start-page: 1045
  year: 2020
  end-page: 1059
  ident: b0275
  article-title: Ultrasonic pretreatment improved the antioxidant potential of enzymatic protein hydrolysates from highland barley brewer's spent grain (BSG)
  publication-title: J. Food Sci.
– volume: 109
  start-page: 260
  year: 2018
  end-page: 267
  ident: b0245
  article-title: Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate
  publication-title: Food Res. Int.
– volume: 3
  start-page: 221
  year: 2012
  end-page: 227
  ident: b0175
  article-title: Fibrillar structures in food
  publication-title: Food Funct.
– volume: 301
  start-page: 112394
  year: 2020
  ident: b0230
  article-title: Aggregation and emulsifying properties of soybean protein isolate pretreated by combination of dual-frequency ultrasound and ionic liquids
  publication-title: J. Mol. Liq.
– volume: 24
  start-page: 266
  year: 2010
  end-page: 274
  ident: b0205
  article-title: Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L.) protein isolate at pH 2.0: Influence of ionic strength
  publication-title: Food Hydrocolloids
– volume: 265
  start-page: 109697
  year: 2020
  ident: b0105
  article-title: Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality
  publication-title: J. Food Eng.
– volume: 126
  start-page: 107441
  year: 2022
  ident: b0215
  article-title: Improving pea protein functionality by combining high-pressure homogenization with an ultrasound-assisted Maillard reaction
  publication-title: Food Hydrocolloids
– volume: 98
  start-page: 105314
  year: 2020
  ident: b0085
  article-title: Impact of covalent or non-covalent bound epigallocatechin-3-gallate (EGCG) on assembly, physicochemical characteristics and digestion of ovotransferrin fibrils
  publication-title: Food Hydrocolloids
– volume: 62
  start-page: 2418
  year: 2014
  end-page: 2427
  ident: b0075
  article-title: Fibril formation from pea protein and subsequent gel formation
  publication-title: J. Agric. Food. Chem.
– volume: 120
  start-page: 106759
  year: 2021
  ident: b0190
  article-title: Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for pH-driven encapsulation and delivery of hydrophobic cargo curcumin
  publication-title: Food Hydrocolloids
– volume: 10
  start-page: 8106
  year: 2019
  end-page: 8115
  ident: b0135
  article-title: Formation of fibrils derived from whey protein isolate: structural characteristics and protease resistance
  publication-title: Food Funct.
– volume: 13
  start-page: 100205
  year: 2022
  ident: b0185
  article-title: Functional, thermal and structural properties of fractionated protein from waste banana peel
  publication-title: Food Chemistry: X
– volume: 78
  year: 2021
  ident: b0120
  article-title: Effect mechanism of ultrasound pretreatment on fibrillation kinetics, physicochemical properties and structure characteristics of soy protein isolate nanofibrils
  publication-title: Ultrason. Sonochem.
– volume: 111
  start-page: 106327
  year: 2021
  ident: b0050
  article-title: Influence of hydrophobic interfaces and shear on ovalbumin amyloid-like fibril formation in oil-in-water emulsions
  publication-title: Food Hydrocolloids
– volume: 346
  year: 2021
  ident: b0045
  article-title: Application of whey protein isolate fibrils in encapsulation and protection of beta-carotene
  publication-title: Food Chem.
– volume: 52
  start-page: 942
  year: 2016
  end-page: 951
  ident: b0035
  article-title: Gelation of β-lactoglobulin and its fibrils in the presence of transglutaminase
  publication-title: Food Hydrocolloids
– volume: 52
  start-page: 221
  year: 2016
  end-page: 230
  ident: b0145
  article-title: Characterization of fibrillated antioxidant whey protein hydrolysate and comparison with fibrillated protein solution
  publication-title: Food Hydrocolloids
– volume: 113
  start-page: 640
  year: 2018
  end-page: 647
  ident: b0235
  article-title: Effects of different ultrasound power on physicochemical property and functional performance of chicken actomyosin
  publication-title: Int. J. Biol. Macromol.
– volume: 161
  start-page: 1393
  year: 2020
  end-page: 1404
  ident: b0095
  article-title: Investigating the inhibitory effects of entacapone on amyloid fibril formation of human lysozyme
  publication-title: Int. J. Biol. Macromol.
– volume: 20
  start-page: 187
  year: 2013
  end-page: 195
  ident: b0115
  article-title: Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments
  publication-title: Ultrason. Sonochem.
– volume: 94
  start-page: 592
  year: 2019
  end-page: 602
  ident: b0005
  article-title: Food-grade Pickering emulsions stabilized by ovotransferrin fibrils
  publication-title: Food Hydrocolloids
– volume: 357
  year: 2021
  ident: b0030
  article-title: Evolution of physicochemical and antioxidant properties of whey protein isolate during fibrillization process
  publication-title: Food Chem.
– volume: 31
  start-page: 558
  year: 2016
  ident: 10.1016/j.ultsonch.2022.106193_b0110
  article-title: Effects of high-energy ultrasound on the functional properties of proteins
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.02.007
– volume: 20
  start-page: 187
  year: 2013
  ident: 10.1016/j.ultsonch.2022.106193_b0115
  article-title: Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2012.07.011
– volume: 11
  start-page: 1478
  year: 2020
  ident: 10.1016/j.ultsonch.2022.106193_b0080
  article-title: Hydrogels assembled from ovotransferrin fibrils and xanthan gum as dihydromyricetin delivery vehicles
  publication-title: Food Funct.
  doi: 10.1039/C9FO02564B
– volume: 111
  start-page: 139
  year: 2018
  ident: 10.1016/j.ultsonch.2022.106193_b0220
  article-title: Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.12.167
– volume: 113
  start-page: 640
  year: 2018
  ident: 10.1016/j.ultsonch.2022.106193_b0235
  article-title: Effects of different ultrasound power on physicochemical property and functional performance of chicken actomyosin
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.02.039
– volume: 78
  year: 2021
  ident: 10.1016/j.ultsonch.2022.106193_b0120
  article-title: Effect mechanism of ultrasound pretreatment on fibrillation kinetics, physicochemical properties and structure characteristics of soy protein isolate nanofibrils
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2021.105741
– volume: 24
  start-page: 266
  year: 2010
  ident: 10.1016/j.ultsonch.2022.106193_b0205
  article-title: Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L.) protein isolate at pH 2.0: Influence of ionic strength
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2009.10.002
– volume: 354
  year: 2021
  ident: 10.1016/j.ultsonch.2022.106193_b0020
  article-title: Formation, structural characteristics, foaming and emulsifying properties of rice glutelin fibrils
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.129554
– volume: 84
  start-page: 105964
  year: 2022
  ident: 10.1016/j.ultsonch.2022.106193_b0270
  article-title: Influence of ultrasound treatment on the physicochemical and antioxidant properties of mung bean protein hydrolysate
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2022.105964
– volume: 68
  year: 2020
  ident: 10.1016/j.ultsonch.2022.106193_b0260
  article-title: Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2020.105202
– volume: 31
  start-page: 205
  year: 2019
  ident: 10.1016/j.ultsonch.2022.106193_b0280
  article-title: Effects of ultrasound treatment on structural, chemical and functional properties of protein hydrolysate of rainbow trout (Oncorhynchus Mykiss) by-products
  publication-title: Ital J. Food Sci.
– volume: 76
  year: 2021
  ident: 10.1016/j.ultsonch.2022.106193_b0200
  article-title: Ultrasonic structural modification of myofibrillar proteins from Coregonus peled improves emulsification properties
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2021.105659
– volume: 161
  start-page: 1393
  year: 2020
  ident: 10.1016/j.ultsonch.2022.106193_b0095
  article-title: Investigating the inhibitory effects of entacapone on amyloid fibril formation of human lysozyme
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.07.296
– volume: 58
  year: 2019
  ident: 10.1016/j.ultsonch.2022.106193_b0195
  article-title: Changes in functionalities, conformational characteristics and antioxidative capacities of sunflower protein by controlled enzymolysis and ultrasonication action
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.104625
– volume: 99
  start-page: 105343
  year: 2020
  ident: 10.1016/j.ultsonch.2022.106193_b0160
  article-title: In vitro digestion and stability under environmental stresses of ovotransferrin nanofibrils
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.105343
– volume: 63
  year: 2020
  ident: 10.1016/j.ultsonch.2022.106193_b0250
  article-title: Localized enzymolysis and sonochemically modified sunflower protein: Physical, functional and structure attributes
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.104957
– volume: 94
  start-page: 592
  year: 2019
  ident: 10.1016/j.ultsonch.2022.106193_b0005
  article-title: Food-grade Pickering emulsions stabilized by ovotransferrin fibrils
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.04.005
– volume: 98
  start-page: 105314
  year: 2020
  ident: 10.1016/j.ultsonch.2022.106193_b0085
  article-title: Impact of covalent or non-covalent bound epigallocatechin-3-gallate (EGCG) on assembly, physicochemical characteristics and digestion of ovotransferrin fibrils
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.105314
– volume: 100
  start-page: 268
  year: 2017
  ident: 10.1016/j.ultsonch.2022.106193_b0180
  article-title: Formation of amyloid fibrils from soy protein hydrolysate: Effects of selective proteolysis on beta-conglycinin
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2017.08.059
– volume: 357
  year: 2021
  ident: 10.1016/j.ultsonch.2022.106193_b0030
  article-title: Evolution of physicochemical and antioxidant properties of whey protein isolate during fibrillization process
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.129751
– volume: 13
  start-page: 100205
  year: 2022
  ident: 10.1016/j.ultsonch.2022.106193_b0185
  article-title: Functional, thermal and structural properties of fractionated protein from waste banana peel
  publication-title: Food Chemistry: X
– volume: 52
  start-page: 221
  year: 2016
  ident: 10.1016/j.ultsonch.2022.106193_b0145
  article-title: Characterization of fibrillated antioxidant whey protein hydrolysate and comparison with fibrillated protein solution
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2015.06.022
– volume: 283
  year: 2022
  ident: 10.1016/j.ultsonch.2022.106193_b0060
  article-title: Structure remodeling of soy protein-derived amyloid fibrils mediated by epigallocatechin-3-gallate
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121455
– volume: 10
  start-page: 8106
  year: 2019
  ident: 10.1016/j.ultsonch.2022.106193_b0135
  article-title: Formation of fibrils derived from whey protein isolate: structural characteristics and protease resistance
  publication-title: Food Funct.
  doi: 10.1039/C9FO00961B
– volume: 129
  start-page: 109563
  year: 2020
  ident: 10.1016/j.ultsonch.2022.106193_b0150
  article-title: Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate
  publication-title: Lwt
  doi: 10.1016/j.lwt.2020.109563
– volume: 85
  start-page: 1045
  year: 2020
  ident: 10.1016/j.ultsonch.2022.106193_b0275
  article-title: Ultrasonic pretreatment improved the antioxidant potential of enzymatic protein hydrolysates from highland barley brewer's spent grain (BSG)
  publication-title: J. Food Sci.
  doi: 10.1111/1750-3841.15063
– volume: 583
  start-page: 124002
  year: 2019
  ident: 10.1016/j.ultsonch.2022.106193_b0155
  article-title: Functional and thermal properties of nanofibrillated whey protein isolate as functions of denaturation temperature and solution pH
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2019.124002
– volume: 301
  start-page: 112394
  year: 2020
  ident: 10.1016/j.ultsonch.2022.106193_b0230
  article-title: Aggregation and emulsifying properties of soybean protein isolate pretreated by combination of dual-frequency ultrasound and ionic liquids
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.112394
– volume: 383
  year: 2022
  ident: 10.1016/j.ultsonch.2022.106193_b0255
  article-title: Improving the enzymolysis efficiency of lupin protein by ultrasound pretreatment: Effect on antihypertensive, antidiabetic and antioxidant activities of the hydrolysates
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.132457
– volume: 52
  start-page: 942
  year: 2016
  ident: 10.1016/j.ultsonch.2022.106193_b0035
  article-title: Gelation of β-lactoglobulin and its fibrils in the presence of transglutaminase
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2015.09.012
– volume: 80
  year: 2021
  ident: 10.1016/j.ultsonch.2022.106193_b0170
  article-title: Effects of high-intensity ultrasound on the structural, optical, mechanical and physicochemical properties of pea protein isolate-based edible film
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2021.105809
– volume: 121
  start-page: 102
  year: 2014
  ident: 10.1016/j.ultsonch.2022.106193_b0025
  article-title: Fibrillization of whey proteins improves foaming capacity and foam stability at low protein concentrations
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2013.08.023
– volume: 126
  start-page: 107441
  year: 2022
  ident: 10.1016/j.ultsonch.2022.106193_b0215
  article-title: Improving pea protein functionality by combining high-pressure homogenization with an ultrasound-assisted Maillard reaction
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.107441
– volume: 95
  start-page: 274
  year: 2018
  ident: 10.1016/j.ultsonch.2022.106193_b0140
  article-title: Structural and thermal properties of nanofibrillated whey protein isolate in the glassy state
  publication-title: Lwt
  doi: 10.1016/j.lwt.2018.05.001
– volume: 9
  start-page: 6310
  year: 2019
  ident: 10.1016/j.ultsonch.2022.106193_b0065
  article-title: Structural basis for the formation of soy protein nanofibrils
  publication-title: RSC Adv.
  doi: 10.1039/C8RA10610J
– volume: 149
  start-page: 609
  year: 2020
  ident: 10.1016/j.ultsonch.2022.106193_b0130
  article-title: Formation and physicochemical properties of amyloid fibrils from soy protein
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.01.258
– volume: 120
  start-page: 106759
  year: 2021
  ident: 10.1016/j.ultsonch.2022.106193_b0190
  article-title: Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for pH-driven encapsulation and delivery of hydrophobic cargo curcumin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.106759
– volume: 100
  start-page: 103224
  year: 2021
  ident: 10.1016/j.ultsonch.2022.106193_b0055
  article-title: Effect of ionic strength on assembly behaviors and rheological properties of rice glutelin based fibrils
  publication-title: J. Cereal Sci.
  doi: 10.1016/j.jcs.2021.103224
– volume: 111
  start-page: 106327
  year: 2021
  ident: 10.1016/j.ultsonch.2022.106193_b0050
  article-title: Influence of hydrophobic interfaces and shear on ovalbumin amyloid-like fibril formation in oil-in-water emulsions
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2020.106327
– volume: 122
  start-page: 107084
  year: 2022
  ident: 10.1016/j.ultsonch.2022.106193_b0125
  article-title: Changes in structure, rheological property and antioxidant activity of soy protein isolate fibrils by ultrasound pretreatment and EGCG
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.107084
– volume: 23
  start-page: 1417
  year: 2014
  ident: 10.1016/j.ultsonch.2022.106193_b0015
  article-title: Effect of heat-induced formation of rice bran protein fibrils on morphological structure and physicochemical properties in solutions and gels
  publication-title: Food Sci. Biotechnol.
  doi: 10.1007/s10068-014-0194-1
– volume: 589
  start-page: 124463
  year: 2020
  ident: 10.1016/j.ultsonch.2022.106193_b0240
  article-title: High-intensity ultrasonication treatment improved physicochemical and functional properties of mussel sarcoplasmic proteins and enhanced the stability of oil-in-water emulsion
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2020.124463
– volume: 265
  start-page: 109697
  year: 2020
  ident: 10.1016/j.ultsonch.2022.106193_b0105
  article-title: Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2019.109697
– volume: 149
  start-page: 111862
  year: 2021
  ident: 10.1016/j.ultsonch.2022.106193_b0165
  article-title: Effects of NaCl concentration and temperature on fibrillation, structure, and functional properties of soy protein isolate fibril dispersions
  publication-title: Lwt
  doi: 10.1016/j.lwt.2021.111862
– volume: 109
  start-page: 260
  year: 2018
  ident: 10.1016/j.ultsonch.2022.106193_b0245
  article-title: Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2018.04.044
– volume: 121
  start-page: 59
  year: 2022
  ident: 10.1016/j.ultsonch.2022.106193_b0010
  article-title: Protein fibrils from different food sources: a review of fibrillation conditions, properties, applications and research trends
  publication-title: Trends Food Sci. Tech.
  doi: 10.1016/j.tifs.2022.01.031
– volume: 346
  year: 2021
  ident: 10.1016/j.ultsonch.2022.106193_b0045
  article-title: Application of whey protein isolate fibrils in encapsulation and protection of beta-carotene
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.128963
– volume: 75
  start-page: 115
  year: 2018
  ident: 10.1016/j.ultsonch.2022.106193_b0225
  article-title: Technological functionality and biological properties of food protein nanofibrils formed by heating at acidic condition
  publication-title: Trends Food Sci. Tech.
  doi: 10.1016/j.tifs.2018.03.013
– volume: 124
  start-page: 107264
  year: 2022
  ident: 10.1016/j.ultsonch.2022.106193_b0040
  article-title: Tunable self-assemblies of whey protein isolate fibrils for pickering emulsions structure regulation
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.107264
– volume: 80
  year: 2021
  ident: 10.1016/j.ultsonch.2022.106193_b0210
  article-title: Ultrasound-assisted alkaline proteinase extraction enhances the yield of pecan protein and modifies its functional properties
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2021.105789
– volume: 3
  start-page: 221
  year: 2012
  ident: 10.1016/j.ultsonch.2022.106193_b0175
  article-title: Fibrillar structures in food
  publication-title: Food Funct.
  doi: 10.1039/C1FO10163C
– volume: 384
  start-page: 132508
  year: 2022
  ident: 10.1016/j.ultsonch.2022.106193_b0265
  article-title: Effect of change in pH, heat and ultrasound pre-treatments on binding interactions between quercetin and whey protein concentrate
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.132508
– volume: 377
  year: 2022
  ident: 10.1016/j.ultsonch.2022.106193_b0070
  article-title: Improved water solubility, chemical stability, antioxidant and anticancer activity of resveratrol via nanoencapsulation with pea protein nanofibrils
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.131942
– volume: 30
  start-page: 647
  year: 2013
  ident: 10.1016/j.ultsonch.2022.106193_b0100
  article-title: Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2012.08.001
– volume: 121
  start-page: 63
  year: 2019
  ident: 10.1016/j.ultsonch.2022.106193_b0090
  article-title: Influence of the ionic strength on the amyloid fibrillogenesis of hen egg white lysozyme
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.09.165
– volume: 62
  start-page: 2418
  year: 2014
  ident: 10.1016/j.ultsonch.2022.106193_b0075
  article-title: Fibril formation from pea protein and subsequent gel formation
  publication-title: J. Agric. Food. Chem.
  doi: 10.1021/jf4055215
SSID ssj0003920
Score 2.5918663
Snippet •Low amplitude ultrasound improved the solubility, EAI and WAC of SPI nanofibrils.•High amplitude ultrasound improved the foaming capacity and foaming...
Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the...
• Low amplitude ultrasound improved the solubility, EAI and WAC of SPI nanofibrils. • High amplitude ultrasound improved the foaming capacity and foaming...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106193
SubjectTerms Antioxidant activity
Digestibility
Functional property
Short Communication
Soy protein isolate nanofibril
Ultrasound pretreatment
Title Effects of ultrasound pretreatment on functional property, antioxidant activity, and digestibility of soy protein isolate nanofibrils
URI https://dx.doi.org/10.1016/j.ultsonch.2022.106193
https://www.proquest.com/docview/2726408203
https://pubmed.ncbi.nlm.nih.gov/PMC9579045
https://doaj.org/article/5934c07f4b1a4475b75c2ce770b8019d
Volume 90
WOSCitedRecordID wos000874667700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1873-2828
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003920
  issn: 1350-4177
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: ScienceDirect (Freedom Collection)
  customDbUrl:
  eissn: 1873-2828
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003920
  issn: 1350-4177
  databaseCode: AIEXJ
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAsEFQQF1eVRG4kjaJI7X8REqKg6o4gBob5afItXKqTa7iP4A_jczdlJtTnvhtFIe1iT-1vNNPPMNIe-BcTjOSld4_LjR-MoXrWWsQFXcpbHNMqRC2p9fxdVVu1rJb3utvjAnLMsD5xd3ziVrbClCYyqN4nRGcFtbL0RpYHGVDldfYD1TMDWuweD1c30wL4umEmKvNvj6bLfeApdNWxF1fYYxkWQzt5TU-2feaY99znMn95zR5VPyZGSR9GO2_hm55-MxeXQxNW87Jg9TZqcdnpO_WZ94oH2gYNJGD9hIiWKe4ZRjTvtI0b_lz4Jwqr9Bxd0PVGMq5J_OwS_FAgjsM4FHHXVpXypn1t7i0EN_S5PmQxdpB3gGCkujjgBds-nWwwvy4_Lz94svxdh7obBAobZFYJIFoHpGVA6iKC9tKH3JXViGpQlCVrrWnIWmDTX3OpjaCusgWNEshJbXmr0kR7GP_oRQ6UMwvoHQijGgK07LYGBIrW1lYSC7IHx69cqOwuTYH2Otpgy0azVNmcIpU3nKFuT87r6bLM1x8I5POLN3V6O0djoAgFMj4NQhwC2InHChRpaS2QcM1R004N0EJAWAwL0ZHX2_G1QtgJkiHYNrxAxhM2vnZ2L3KwmC41YrUPNX_-PxXpPHaHAut3xDjrabnX9LHtjf227YnJL7YtWepv_aP4AlMes
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+ultrasound+pretreatment+on+functional+property%2C+antioxidant+activity%2C+and+digestibility+of+soy+protein+isolate+nanofibrils&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Hu%2C+Anna&rft.au=Li%2C+Liang&rft.date=2022-11-01&rft.pub=Elsevier+B.V&rft.issn=1350-4177&rft.eissn=1873-2828&rft.volume=90&rft_id=info:doi/10.1016%2Fj.ultsonch.2022.106193&rft.externalDocID=S1350417722002899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon