Enhanced depression detection from speech using Quantum Whale Optimization Algorithm for feature selection
There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectra...
Uloženo v:
| Vydáno v: | Computers in biology and medicine Ročník 150; s. 106122 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.11.2022
Elsevier Limited |
| Témata: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods.
•Non-invasive low-complexity two-phase speech-based depression detection system.•Proposed two-phase approach involving QWOA gives high performance.•Spectral temporal and spectro-temporal features investigated extensively.•Selected speech features by the method are relevant and statistically significant. |
|---|---|
| AbstractList | AbstractThere is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods. There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods. •Non-invasive low-complexity two-phase speech-based depression detection system.•Proposed two-phase approach involving QWOA gives high performance.•Spectral temporal and spectro-temporal features investigated extensively.•Selected speech features by the method are relevant and statistically significant. There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods.There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods. There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods. |
| ArticleNumber | 106122 |
| Author | Rathi, Swati Kaur, Baljeet Agrawal, R.K. |
| Author_xml | – sequence: 1 givenname: Baljeet orcidid: 0000-0003-2821-2219 surname: Kaur fullname: Kaur, Baljeet email: baljeetkaur26@hotmail.com organization: Hansraj College, University of Delhi, India – sequence: 2 givenname: Swati orcidid: 0000-0003-4385-0120 surname: Rathi fullname: Rathi, Swati email: swatirathi362@gmail.com organization: School of Computer and Systems Sciences, Jawaharlal Nehru University, Delhi, India – sequence: 3 givenname: R.K. orcidid: 0000-0003-3122-5096 surname: Agrawal fullname: Agrawal, R.K. email: rkajnu@gmail.com organization: School of Computer and Systems Sciences, Jawaharlal Nehru University, Delhi, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36182759$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkltrFTEUhYNU7Gn1L8iAL77McecytxexlnqBQhEVH0Mm2enJcWYyJjNC_fVmOvUIBaE-ZRO-vVistU_I0eAHJCSjsKVAy1f7rfb92Drfo9kyYCx9l5SxR2RD66rJoeDiiGwAKOSiZsUxOYlxDwACODwhx7ykNauKZkP2F8NODRpNZnAMGKPzQxon1NMy2eD7LI6IepfN0Q3X2adZDdPcZ992qsPsapxc736pW_isu_bBTbs-sz5kFtU0B8widqvYU_LYqi7is7v3lHx9d_Hl_EN-efX-4_nZZa4LKqZcs4pyFIIXBoxQtBVG1UbXZdlUvC0tZQ2IxtZKgGG2pdoobFhpLS2EwcLwU_Jy1R2D_zFjnGTvosauUwP6OUpWMRBM8LpI6It76N7PYUjuFqppBC-bJlHP76i5TYHLMbhehRv5J8UE1Cugg48xoD0gFORSmNzLv4XJpTC5FpZWX99b1W66jXMKynUPEXi7CmCK9KfDIKN2uDTqQspdGu_-w8VBRHducFp13_EG4yEUKiOTID8vh7XcFWMANYcqCbz5t8DDPPwGvZ3juA |
| CitedBy_id | crossref_primary_10_1007_s00034_023_02571_4 crossref_primary_10_1007_s10586_024_04716_9 crossref_primary_10_1109_ACCESS_2023_3272556 crossref_primary_10_1007_s00500_024_09664_5 crossref_primary_10_1007_s10489_022_04446_8 crossref_primary_10_1049_cit2_12317 crossref_primary_10_3233_JIFS_224474 crossref_primary_10_1016_j_artmed_2023_102605 crossref_primary_10_1007_s11831_023_09928_7 crossref_primary_10_1007_s11128_025_04787_6 crossref_primary_10_3390_a18030154 crossref_primary_10_3389_fpubh_2025_1561332 crossref_primary_10_3390_app132212410 crossref_primary_10_32604_cmc_2024_055080 crossref_primary_10_1109_TAFFC_2025_3552835 crossref_primary_10_1007_s00500_025_10540_z crossref_primary_10_1016_j_jksuci_2023_101554 crossref_primary_10_1038_s41598_024_60278_1 |
| Cites_doi | 10.1038/scientificamerican0792-66 10.1207/s15327752jpa6703_13 10.1016/j.jad.2017.08.038 10.1037/0033-2909.99.2.143 10.1016/j.enconman.2008.06.009 10.1016/j.compbiomed.2022.105690 10.1017/S1351324916000383 10.1121/1.1490365 10.1016/S0022-3956(00)00017-0 10.1109/TAFFC.2018.2870398 10.1159/000265931 10.1016/j.advengsoft.2013.12.007 10.1016/j.swevo.2011.02.002 10.1016/j.csl.2018.08.004 10.1109/TIT.1967.1053964 10.1016/j.compbiomed.2021.104499 10.1016/j.jneuroling.2006.04.001 10.1186/s13636-014-0038-1 10.1046/j.1525-1497.2001.016009606.x 10.1016/0021-9924(84)90013-3 10.1016/j.imavis.2014.06.001 10.1109/TBME.2004.827544 10.1016/j.compbiomed.2019.103381 10.1121/1.396114 10.1093/biomet/13.1.25 10.1016/j.eswa.2021.116076 10.1109/TASL.2013.2245653 10.1109/TASSP.1980.1163420 10.1109/10.846676 10.1023/A:1022627411411 10.1109/TBME.2010.2091640 10.1136/jnnp.23.1.56 10.1109/ICNN.1995.488968 10.1016/j.compbiomed.2022.105420 10.1016/j.applthermaleng.2012.03.022 10.1001/archpsyc.1961.01710180071008 10.1109/89.848224 10.1109/JBHI.2017.2676878 10.1016/j.asoc.2020.106092 10.1016/j.advengsoft.2016.01.008 10.1016/j.neucom.2022.01.012 10.1109/TEVC.2002.804320 10.1142/S0219720005001004 10.1037/0022-006X.61.3.434 10.1080/00221309.1992.9921178 10.3390/app10238701 10.1016/S0004-3702(97)00043-X |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Nov 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Nov 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2022.106122 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library ProQuest Biological Science Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 106122 |
| ExternalDocumentID | 36182759 10_1016_j_compbiomed_2022_106122 S0010482522008307 1_s2_0_S0010482522008307 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR 9DU AAYXX AFFHD CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c514t-c2713e4435d0d4a1b4da8dc866973b6f129049f8a40d2fb1cdae926ff154de5d3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864036200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Sep 28 00:58:59 EDT 2025 Sat Nov 29 14:35:18 EST 2025 Mon Jul 21 05:54:58 EDT 2025 Tue Nov 18 21:08:22 EST 2025 Sat Nov 29 07:30:47 EST 2025 Fri Feb 23 02:39:20 EST 2024 Tue Feb 25 20:12:01 EST 2025 Tue Oct 14 19:33:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Depression Speech Feature extraction Feature selection Quantum-based Whale Optimization Algorithm |
| Language | English |
| License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-c2713e4435d0d4a1b4da8dc866973b6f129049f8a40d2fb1cdae926ff154de5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3122-5096 0000-0003-2821-2219 0000-0003-4385-0120 |
| PMID | 36182759 |
| PQID | 2729943699 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2720424385 proquest_journals_2729943699 pubmed_primary_36182759 crossref_primary_10_1016_j_compbiomed_2022_106122 crossref_citationtrail_10_1016_j_compbiomed_2022_106122 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_106122 elsevier_clinicalkeyesjournals_1_s2_0_S0010482522008307 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_106122 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Nasir, Jati, Shivakumar, Nallan Chakravarthula, Georgiou (bib28) 2016 Alku, Bäckström, Vilkman (bib56) 2002; 112 Pampouchidou, Simantiraki, Fazlollahi, Pediaditis, Manousos, Roniotis, Giannakakis, Meriaudeau, Simos, Marias, Yang, Tsiknakis (bib13) 2016 Ostwald (bib67) 1961; 5 J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, IEEE, n.d.: pp. 1942–1948. Low, Maddage, Lech, Sheeber, Allen (bib60) 2011; 58 Lemke, Wendorff, Mieth, Buhl, Linnemann (bib20) 2000; 34 Song, Shen, Valstar (bib89) 2018 Guyon, Elisseeff (bib73) 2003; 3 Duda, Hart, Stork (bib34) 1973 Davis, Mermelstein (bib59) 1980; 28 Drugman, Alwan (bib61) 2019 Williamson, Godoy, Cha, Schwarzentruber, Khorrami, Gwon, Kung, Dagli, Quatieri (bib83) 2016 Mariani, Duck, Guerra, Coelho, Rao (bib77) 2012; 42 Soni, Seal, Yazidi, Krejcar (bib23) 2022; 145 Vlasenko, Sagha, Cummins, Schuller (bib85) 2017 dos Santos Coelho, Mariani (bib79) 2008; 49 Ding, Peng (bib35) 2005; 3 Ma, Yang, Chen, Huang, Wang (bib87) 2016 Scherer, Stratou, Gratch, Morency (bib12) 2013 Sardari, Nakisa, Rastgoo, Eklund (bib88) 2022; 189 Valstar, Gratch, Schuller, Ringeval, Lalanne, Torres Torres, Scherer, Stratou, Cowie, Pantic (bib43) 2016 Ding, Zhang, Sun, Shi (bib76) 2022; 480 Agrawal, Kaur, Sharma (bib33) 2020; 89 (bib37) 1992; 267 Beck, Steer, Ball, Ranieri (bib4) 1996; 67 Bou-Ghazale, Hansen (bib65) 2000; 8 J. Gratch, R. Artstein, G. Lucas, G. Stratou, S. Scherer, A. Nazarian, R. Wood, J. Boberg, D. Devault, S. Marsella, D. Traum, S. Rizzo, L.-P. Morency, The Distress Analysis Interview Corpus of Human and Computer Interviews, n.d. http://www.biopac.com. Henry, Strupp, Butler, Schacht, Binder (bib49) 1993; 61 Ozdas, Shiavi, Silverman, Silverman, Wilkes (bib7) 2004; 51 Toğaçar, Ergen (bib45) 2018 . Hacki (bib57) 1989; 41 Gao, Wang (bib78) 2011; 217 Kroenke, Spitzer, Williams (bib5) 2001; 16 Cummins, Epps, Breakspear, Goecke (bib8) 2011 Dibeklioglu, Hammal, Cohn (bib29) 2018; 22 Kane, Gobl (bib70) 2013; 21 Niu, Chen, Chen, Yang (bib84) 2021 France, Shiavi, Silverman, Silverman, Wilkes (bib6) 2000; 47 Saxena, Krug, Chestnov (bib1) 2014 Lin, Chen, Shen, Zhang (bib48) 2020; 10 bib2 Sethu, Ambikairajah, Epps (bib19) 2008 Rabiner, Juang (bib64) 1993 Cover, Hart (bib81) 1967; 13 Calvo, Milne, Hussain, Christensen (bib21) 2017; 23 bib51 Yang, Jiang, He, Pei, Oveneke, Sahli (bib14) 2016 Darby, Simmons, Berger (bib66) 1984; 17 Scherer, Stratou, Lucas, Mahmoud, Boberg, Gratch, Rizzo, Morency (bib11) 2014; 32 Cummins, Vlasenko, Sagha, Schuller (bib15) 2017 Chiong, Budhi, Dhakal, Chiong (bib22) 2021; 135 Degottex, Erro (bib68) 2014 Derrac, García, Molina, Herrera (bib86) 2011; 1 Byun, Kim, Jang, Kim, Choi, Yu, Jeon (bib25) 2019; 112 bib54 Williamson, Quatieri, Helfer, Ciccarelli, Mehta (bib31) 2014 Chang, Hsieh, Lin, Fan, Wang (bib53) 2008; 9 Alghowinem, Goecke, Wagner, Epps, Parker, Breakspear (bib10) 2013 Rohanian, Hough, Purver (bib27) 2019 Pearson (bib36) 1920; 13 bib52 Alghowinem, Goecke, Wagner, Epps, Breakspear, Parker (bib9) 2013 Kane, Gobl (bib72) 2011 Degottex, Kane, Drugman, Raitio, Scherer (bib42) 2014 Hamilton (bib3) 1960; 23 Sethu, Ambikairajah, Epps (bib18) 2009 Nakamura, Pereira, Rodrigues, Costa, Papa, Yang (bib39) 2013 Williamson, Young, Nierenberg, Niemi, Helfer, Quatieri (bib17) 2019; 55 Han (bib80) 2002; 6 O'Shaughnessy (bib58) 1999 Mirjalili, Lewis (bib75) 2016; 95 Mundt, Snyder, Cannizzaro, Chappie, Geralts (bib55) 2007; 20 al Hanai, Ghassemi, Glass (bib46) 2018 Scherer, Hammal, Yang, Morency, Cohn (bib71) 2014 Fant, Liljencrants, Lin (bib69) 1985; 26 Huang, Epps, Joachim (bib47) 2020 Yang, Jiang, Sahli (bib26) 2021; 12 Cortes, Vapnik (bib82) 1995; 20 Taguchi, Tachikawa, Nemoto, Suzuki, Nagano, Tachibana, Nishimura, Arai (bib16) 2018; 225 Mirjalili, Mirjalili, Lewis (bib40) 2014; 69 Özdaş (bib50) 2001 Alghowinem, Goecke, Epps, Wagner, Cohn (bib32) 2016 Toğaçar, Ergen, Sertkaya, Programı, Meslek, Okulu, Üniversitesi, Mühendisliği, Fakültesi (bib44) 2019 Zhang, Wang, Wei, Guo, Wen, Luo (bib24) 2022; 147 Scherer (bib30) 1986; 99 Kohavi, John (bib74) 1997; 97 Nilsonne, Sundberg, Ternström, Askenfelt (bib63) 1988; 83 Breznitz (bib62) 1992; 119 Yang (10.1016/j.compbiomed.2022.106122_bib14) 2016 Dibeklioglu (10.1016/j.compbiomed.2022.106122_bib29) 2018; 22 Song (10.1016/j.compbiomed.2022.106122_bib89) 2018 Mirjalili (10.1016/j.compbiomed.2022.106122_bib40) 2014; 69 Ding (10.1016/j.compbiomed.2022.106122_bib76) 2022; 480 Lin (10.1016/j.compbiomed.2022.106122_bib48) 2020; 10 Drugman (10.1016/j.compbiomed.2022.106122_bib61) 2019 Han (10.1016/j.compbiomed.2022.106122_bib80) 2002; 6 Nasir (10.1016/j.compbiomed.2022.106122_bib28) 2016 Williamson (10.1016/j.compbiomed.2022.106122_bib31) 2014 Darby (10.1016/j.compbiomed.2022.106122_bib66) 1984; 17 Yang (10.1016/j.compbiomed.2022.106122_bib26) 2021; 12 Low (10.1016/j.compbiomed.2022.106122_bib60) 2011; 58 Calvo (10.1016/j.compbiomed.2022.106122_bib21) 2017; 23 Lemke (10.1016/j.compbiomed.2022.106122_bib20) 2000; 34 Gao (10.1016/j.compbiomed.2022.106122_bib78) 2011; 217 Alku (10.1016/j.compbiomed.2022.106122_bib56) 2002; 112 Cover (10.1016/j.compbiomed.2022.106122_bib81) 1967; 13 Alghowinem (10.1016/j.compbiomed.2022.106122_bib10) 2013 Huang (10.1016/j.compbiomed.2022.106122_bib47) 2020 Rabiner (10.1016/j.compbiomed.2022.106122_bib64) 1993 Chiong (10.1016/j.compbiomed.2022.106122_bib22) 2021; 135 Agrawal (10.1016/j.compbiomed.2022.106122_bib33) 2020; 89 10.1016/j.compbiomed.2022.106122_bib38 Scherer (10.1016/j.compbiomed.2022.106122_bib30) 1986; 99 Hacki (10.1016/j.compbiomed.2022.106122_bib57) 1989; 41 Ostwald (10.1016/j.compbiomed.2022.106122_bib67) 1961; 5 Taguchi (10.1016/j.compbiomed.2022.106122_bib16) 2018; 225 Toğaçar (10.1016/j.compbiomed.2022.106122_bib44) 2019 Özdaş (10.1016/j.compbiomed.2022.106122_bib50) 2001 Mirjalili (10.1016/j.compbiomed.2022.106122_bib75) 2016; 95 Breznitz (10.1016/j.compbiomed.2022.106122_bib62) 1992; 119 Rohanian (10.1016/j.compbiomed.2022.106122_bib27) 2019 Zhang (10.1016/j.compbiomed.2022.106122_bib24) 2022; 147 Scherer (10.1016/j.compbiomed.2022.106122_bib12) 2013 Bou-Ghazale (10.1016/j.compbiomed.2022.106122_bib65) 2000; 8 Saxena (10.1016/j.compbiomed.2022.106122_bib1) 2014 Pampouchidou (10.1016/j.compbiomed.2022.106122_bib13) 2016 Pearson (10.1016/j.compbiomed.2022.106122_bib36) 1920; 13 Sethu (10.1016/j.compbiomed.2022.106122_bib18) 2009 Williamson (10.1016/j.compbiomed.2022.106122_bib17) 2019; 55 Mundt (10.1016/j.compbiomed.2022.106122_bib55) 2007; 20 Kane (10.1016/j.compbiomed.2022.106122_bib70) 2013; 21 Kane (10.1016/j.compbiomed.2022.106122_bib72) 2011 Byun (10.1016/j.compbiomed.2022.106122_bib25) 2019; 112 Toğaçar (10.1016/j.compbiomed.2022.106122_bib45) 2018 Soni (10.1016/j.compbiomed.2022.106122_bib23) 2022; 145 dos Santos Coelho (10.1016/j.compbiomed.2022.106122_bib79) 2008; 49 Cummins (10.1016/j.compbiomed.2022.106122_bib8) 2011 Henry (10.1016/j.compbiomed.2022.106122_bib49) 1993; 61 Williamson (10.1016/j.compbiomed.2022.106122_bib83) 2016 Ozdas (10.1016/j.compbiomed.2022.106122_bib7) 2004; 51 Nakamura (10.1016/j.compbiomed.2022.106122_bib39) 2013 Guyon (10.1016/j.compbiomed.2022.106122_bib73) 2003; 3 (10.1016/j.compbiomed.2022.106122_bib37) 1992; 267 Chang (10.1016/j.compbiomed.2022.106122_bib53) 2008; 9 Ma (10.1016/j.compbiomed.2022.106122_bib87) 2016 Hamilton (10.1016/j.compbiomed.2022.106122_bib3) 1960; 23 O'Shaughnessy (10.1016/j.compbiomed.2022.106122_bib58) 1999 10.1016/j.compbiomed.2022.106122_bib41 Derrac (10.1016/j.compbiomed.2022.106122_bib86) 2011; 1 Scherer (10.1016/j.compbiomed.2022.106122_bib71) 2014 Niu (10.1016/j.compbiomed.2022.106122_bib84) 2021 Nilsonne (10.1016/j.compbiomed.2022.106122_bib63) 1988; 83 Duda (10.1016/j.compbiomed.2022.106122_bib34) 1973 Degottex (10.1016/j.compbiomed.2022.106122_bib68) 2014 Sethu (10.1016/j.compbiomed.2022.106122_bib19) 2008 Scherer (10.1016/j.compbiomed.2022.106122_bib11) 2014; 32 Kohavi (10.1016/j.compbiomed.2022.106122_bib74) 1997; 97 Alghowinem (10.1016/j.compbiomed.2022.106122_bib9) 2013 Kroenke (10.1016/j.compbiomed.2022.106122_bib5) 2001; 16 Degottex (10.1016/j.compbiomed.2022.106122_bib42) 2014 Mariani (10.1016/j.compbiomed.2022.106122_bib77) 2012; 42 al Hanai (10.1016/j.compbiomed.2022.106122_bib46) 2018 Valstar (10.1016/j.compbiomed.2022.106122_bib43) 2016 Davis (10.1016/j.compbiomed.2022.106122_bib59) 1980; 28 Fant (10.1016/j.compbiomed.2022.106122_bib69) 1985; 26 Vlasenko (10.1016/j.compbiomed.2022.106122_bib85) 2017 Sardari (10.1016/j.compbiomed.2022.106122_bib88) 2022; 189 Beck (10.1016/j.compbiomed.2022.106122_bib4) 1996; 67 Alghowinem (10.1016/j.compbiomed.2022.106122_bib32) 2016 Cummins (10.1016/j.compbiomed.2022.106122_bib15) 2017 Ding (10.1016/j.compbiomed.2022.106122_bib35) 2005; 3 Cortes (10.1016/j.compbiomed.2022.106122_bib82) 1995; 20 France (10.1016/j.compbiomed.2022.106122_bib6) 2000; 47 |
| References_xml | – start-page: 43 year: 2016 end-page: 50 ident: bib28 article-title: Multimodal and multiresolution depression detection from speech and facial landmark features publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib73 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 55 start-page: 40 year: 2019 end-page: 56 ident: bib17 article-title: Tracking depression severity from audio and video based on speech articulatory coordination publication-title: Comput. Speech Lang – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib40 article-title: Grey Wolf optimizer publication-title: Adv. Eng. Software – year: 2019 ident: bib61 article-title: Joint Robust Voicing Detection and Pitch Estimation Based on Residual Harmonics – volume: 23 start-page: 649 year: 2017 end-page: 685 ident: bib21 article-title: Natural language processing in mental health applications using non-clinical texts publication-title: Nat. Lang. Eng. – volume: 83 start-page: 716 year: 1988 end-page: 728 ident: bib63 article-title: Measuring the rate of change of voice fundamental frequency in fluent speech during mental depression publication-title: J. Acoust. Soc. Am. – start-page: 209 year: 2017 end-page: 214 ident: bib15 article-title: Enhancing Speech-Based Depression Detection through Gender Dependent Vowel-Level Formant Features – start-page: 65 year: 2014 end-page: 72 ident: bib31 article-title: Vocal and facial biomarkers of depression based on motor incoordination and timing publication-title: Proceedings of the 4th International Workshop on Audio/Visual Emotion Challenge - AVEC ’14 – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib82 article-title: Support-vector networks publication-title: Mach. Learn. – start-page: 1943 year: 2016 ident: bib32 article-title: Cross-cultural depression recognition from vocal biomarkers publication-title: Interspeech 2016, ISCA – start-page: 112 year: 2014 end-page: 119 ident: bib71 article-title: Dyadic behavior analysis in depression severity assessment interviews publication-title: Proceedings of the 16th International Conference on Multimodal Interaction – volume: 9 start-page: 1871 year: 2008 end-page: 1874 ident: bib53 article-title: LIBLINEAR: a library for large linear classification cross-lingual dependency parsing view project min-max optimization view project liblinear: a library for large linear classification publication-title: Article in Journal of Machine Learning Research – volume: 17 start-page: 75 year: 1984 end-page: 85 ident: bib66 article-title: Speech and voice parameters of depression: a pilot study publication-title: J. Commun. Disord. – start-page: 89 year: 2016 end-page: 96 ident: bib14 article-title: Decision tree based depression classification from audio video and language information publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge – start-page: 1 year: 2018 end-page: 5 ident: bib45 article-title: Deep learning approach for classification of breast cancer publication-title: International Conference on Artificial Intelligence and Data Processing (IDAP) – volume: 26 start-page: 119 year: 1985 end-page: 156 ident: bib69 article-title: The LF-model revisited. Transformations and frequency domain analysis publication-title: STL-QPSR. – volume: 112 year: 2019 ident: bib25 article-title: Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol publication-title: Comput. Biol. Med. – start-page: 27 year: 2016 end-page: 34 ident: bib13 article-title: Depression assessment by fusing high and low level features from audio, video and text publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge – volume: 10 start-page: 8701 year: 2020 ident: bib48 article-title: Towards automatic depression detection: a BiLSTM/1D CNN-based model publication-title: Appl. Sci. – year: 1973 ident: bib34 article-title: Pattern Classification – volume: 67 start-page: 588 year: 1996 end-page: 597 ident: bib4 article-title: Comparison of beck depression inventories-IA and-II in psychiatric outpatients publication-title: J. Pers. Assess. – ident: bib51 article-title: Black dog institute | science. Compassion. Action – volume: 8 start-page: 429 year: 2000 end-page: 442 ident: bib65 article-title: A comparative study of traditional and newly proposed features for recognition of speech under stress publication-title: IEEE Trans. Speech Audio Process. – start-page: 1443 year: 2019 end-page: 1447 ident: bib27 article-title: Detecting depression with word-level multimodal fusion publication-title: Interspeech 2019, ISCA – volume: 47 start-page: 829 year: 2000 end-page: 837 ident: bib6 article-title: Acoustical properties of speech as indicators of depression and suicidal risk publication-title: IEEE Trans. Biomed. Eng. – start-page: 38 year: 2014 ident: bib68 article-title: A uniform phase representation for the harmonic model in speech synthesis applications publication-title: EURASIP J. Audio Speech Music Process. – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, IEEE, n.d.: pp. 1942–1948. – volume: 23 start-page: 56 year: 1960 end-page: 62 ident: bib3 article-title: A rating scale for depression publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 20 start-page: 50 year: 2007 end-page: 64 ident: bib55 article-title: Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology publication-title: J. Neurolinguistics – volume: 135 year: 2021 ident: bib22 article-title: A textual-based featuring approach for depression detection using machine learning classifiers and social media texts publication-title: Comput. Biol. Med. – start-page: 5017 year: 2008 end-page: 5020 ident: bib19 article-title: Empirical mode decomposition based weighted frequency feature for speech-based emotion classification publication-title: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE – volume: 147 year: 2022 ident: bib24 article-title: Minimal EEG channel selection for depression detection with connectivity features during sleep publication-title: Comput. Biol. Med. – start-page: 4693 year: 2009 end-page: 4696 ident: bib18 article-title: Speaker dependency of spectral features and speech production cues for automatic emotion classification publication-title: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE – volume: 41 start-page: 43 year: 1989 end-page: 48 ident: bib57 article-title: Klassifizierung von Glottisdysfunktionen mit Hilfe der Elektroglottographie publication-title: Folia Phoniatrica Logop. – volume: 13 start-page: 25 year: 1920 end-page: 45 ident: bib36 article-title: Notes on the history of correlation publication-title: Biometrika – ident: bib52 – year: 1999 ident: bib58 article-title: Speech Communications: Human and Machine – start-page: 2997 year: 2011 end-page: 3000 ident: bib8 article-title: An investigation of depressed speech detection: features and normalization publication-title: Interspeech 2011, ISCA – year: 2014 ident: bib1 article-title: World health organization. Department of mental health and substance abuse publication-title: Preventing Suicide : a Global Imperative, World Health Organization – volume: 145 year: 2022 ident: bib23 article-title: Graphical representation learning-based approach for automatic classification of electroencephalogram signals in depression publication-title: Comput. Biol. Med. – start-page: 960 year: 2014 end-page: 964 ident: bib42 article-title: COVAREP: a collaborative voice analysis repository for speech technologies publication-title: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE – volume: 12 start-page: 239 year: 2021 end-page: 253 ident: bib26 article-title: Integrating deep and shallow models for multi-modal depression analysis—hybrid architectures publication-title: IEEE Trans Affect Comput – volume: 51 start-page: 1530 year: 2004 end-page: 1540 ident: bib7 article-title: Investigation of vocal jitter and glottal flow spectrum as possible cues for depression and near-term suicidal risk publication-title: IEEE Trans. Biomed. Eng. – volume: 58 start-page: 574 year: 2011 end-page: 586 ident: bib60 article-title: Detection of clinical depression in adolescents' speech during family interactions publication-title: IEEE Trans. Biomed. Eng. – year: 2011 ident: bib72 article-title: Identifying regions of non-modal phonation using features of the wavelet transform publication-title: Identifying regions of non-modal phonation using features of the wavelet transform – volume: 42 start-page: 119 year: 2012 end-page: 128 ident: bib77 article-title: A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers publication-title: Appl. Therm. Eng. – reference: J. Gratch, R. Artstein, G. Lucas, G. Stratou, S. Scherer, A. Nazarian, R. Wood, J. Boberg, D. Devault, S. Marsella, D. Traum, S. Rizzo, L.-P. Morency, The Distress Analysis Interview Corpus of Human and Computer Interviews, n.d. http://www.biopac.com. – start-page: 11 year: 2016 end-page: 18 ident: bib83 article-title: Detecting depression using vocal, facial and semantic communication cues publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge – start-page: 158 year: 2018 end-page: 165 ident: bib89 article-title: Human behaviour-based automatic depression analysis using hand-crafted statistics and deep learned spectral features publication-title: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018) – volume: 34 start-page: 277 year: 2000 end-page: 283 ident: bib20 article-title: Spatiotemporal gait patterns during over ground locomotion in major depression compared with healthy controls publication-title: J. Psychiatr. Res. – ident: bib2 article-title: Apa - DSM - diagnostic and statistical manual of mental Disorders – start-page: 225 year: 2013 end-page: 237 ident: bib39 article-title: Binary Bat algorithm for feature selection publication-title: Swarm Intelligence and Bio-Inspired Computation – volume: 480 start-page: 146 year: 2022 end-page: 156 ident: bib76 article-title: Multiple birth support vector machine based on dynamic quantum particle swarm optimization algorithm publication-title: Neurocomputing – start-page: 3 year: 2016 end-page: 10 ident: bib43 article-title: AVEC publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge, ACM, New York, NY, USA – year: 2019 ident: bib44 article-title: Zatürre Hastalığının Derin Öğrenme Modeli Ile Tespiti – volume: 119 start-page: 351 year: 1992 end-page: 363 ident: bib62 article-title: Verbal indicators of depression publication-title: J. Gen. Psychol. – volume: 49 start-page: 3080 year: 2008 end-page: 3085 ident: bib79 article-title: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects publication-title: Energy Convers. Manag. – start-page: 35 year: 2016 end-page: 42 ident: bib87 article-title: DepAudioNet publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge – volume: 22 start-page: 525 year: 2018 end-page: 536 ident: bib29 article-title: Dynamic multimodal measurement of depression severity using deep autoencoding publication-title: IEEE J Biomed Health Inform – start-page: 6549 year: 2020 end-page: 6553 ident: bib47 article-title: Exploiting vocal tract coordination using dilated CNNS for depression detection in naturalistic environments publication-title: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: bib37 article-title: Genetic algorithms - john H. Holland publication-title: Sci. Am. – volume: 61 start-page: 434 year: 1993 end-page: 440 ident: bib49 article-title: Effects of training in time-limited dynamic psychotherapy: changes in therapist behavior publication-title: J. Consult. Clin. Psychol. – volume: 32 start-page: 648 year: 2014 end-page: 658 ident: bib11 article-title: Automatic audiovisual behavior descriptors for psychological disorder analysis publication-title: Image Vis Comput. – volume: 99 start-page: 143 year: 1986 end-page: 165 ident: bib30 article-title: Vocal affect expression: a review and a model for future research publication-title: Psychol. Bull. – year: 1993 ident: bib64 article-title: Fundamentals of Speech Recognition – volume: 28 start-page: 357 year: 1980 end-page: 366 ident: bib59 article-title: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences publication-title: IEEE Trans Acoust – volume: 217 start-page: 4754 year: 2011 end-page: 4770 ident: bib78 article-title: A hybrid quantum-inspired immune algorithm for multiobjective optimization publication-title: Appl. Math. Comput. – start-page: 7547 year: 2013 end-page: 7551 ident: bib9 article-title: Detecting depression: a comparison between spontaneous and read speech publication-title: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE – volume: 16 start-page: 606 year: 2001 end-page: 613 ident: bib5 article-title: The PHQ-9 publication-title: J. Gen. Intern. Med. – volume: 89 year: 2020 ident: bib33 article-title: Quantum based Whale Optimization Algorithm for wrapper feature selection publication-title: Appl. Soft Comput. – volume: 112 start-page: 701 year: 2002 end-page: 710 ident: bib56 article-title: Normalized amplitude quotient for parametrization of the glottal flow publication-title: J. Acoust. Soc. Am. – ident: bib54 article-title: Exploring biomarkers for depression - full text view - ClinicalTrials.gov – start-page: 4235 year: 2021 end-page: 4239 ident: bib84 article-title: HCAG: a hierarchical context-aware graph attention model for depression detection publication-title: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – start-page: 2534 year: 2013 end-page: 2538 ident: bib10 article-title: Characterising depressed speech for classification publication-title: Interspeech 2013, ISCA – start-page: 847 year: 2013 end-page: 851 ident: bib12 article-title: Investigating voice quality as a speaker-independent indicator of depression and PTSD publication-title: Interspeech 2013, ISCA – start-page: 3266 year: 2017 end-page: 3270 ident: bib85 article-title: Implementing gender-dependent vowel-level analysis for boosting speech-based depression recognition publication-title: Interspeech 2017, ISCA – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: bib75 article-title: The whale optimization algorithm publication-title: Adv. Eng. Software – volume: 5 start-page: 587 year: 1961 ident: bib67 article-title: The sounds of emotional disturbance publication-title: Arch. Gen. Psychiatr. – reference: . – start-page: 1716 year: 2018 end-page: 1720 ident: bib46 article-title: Detecting depression with audio/text sequence modeling of interviews publication-title: Interspeech 2018, ISCA – volume: 6 start-page: 580 year: 2002 end-page: 593 ident: bib80 article-title: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization publication-title: IEEE Trans. Evol. Comput. – volume: 225 start-page: 214 year: 2018 end-page: 220 ident: bib16 article-title: Major depressive disorder discrimination using vocal acoustic features publication-title: J. Affect. Disord. – volume: 21 start-page: 1170 year: 2013 end-page: 1179 ident: bib70 article-title: Wavelet maxima dispersion for breathy to tense voice discrimination publication-title: IEEE Trans. Audio Speech Lang. Process. – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: bib81 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theor. – volume: 189 year: 2022 ident: bib88 article-title: Audio based depression detection using Convolutional Autoencoder publication-title: Expert Syst. Appl. – year: 2001 ident: bib50 article-title: Analysis of Paralinguistic Properties of Speech for Near-Term Suicidal Risk Assessment – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib86 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 3 start-page: 185 year: 2005 end-page: 205 ident: bib35 article-title: Minimum redundancy feature selection from microarray gene expression data publication-title: J. Bioinf. Comput. Biol. – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: bib74 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. – start-page: 11 year: 2016 ident: 10.1016/j.compbiomed.2022.106122_bib83 article-title: Detecting depression using vocal, facial and semantic communication cues – volume: 267 start-page: 66 year: 1992 ident: 10.1016/j.compbiomed.2022.106122_bib37 article-title: Genetic algorithms - john H. Holland publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – volume: 67 start-page: 588 year: 1996 ident: 10.1016/j.compbiomed.2022.106122_bib4 article-title: Comparison of beck depression inventories-IA and-II in psychiatric outpatients publication-title: J. Pers. Assess. doi: 10.1207/s15327752jpa6703_13 – volume: 225 start-page: 214 year: 2018 ident: 10.1016/j.compbiomed.2022.106122_bib16 article-title: Major depressive disorder discrimination using vocal acoustic features publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2017.08.038 – volume: 99 start-page: 143 year: 1986 ident: 10.1016/j.compbiomed.2022.106122_bib30 article-title: Vocal affect expression: a review and a model for future research publication-title: Psychol. Bull. doi: 10.1037/0033-2909.99.2.143 – year: 1999 ident: 10.1016/j.compbiomed.2022.106122_bib58 – volume: 49 start-page: 3080 year: 2008 ident: 10.1016/j.compbiomed.2022.106122_bib79 article-title: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2008.06.009 – volume: 147 year: 2022 ident: 10.1016/j.compbiomed.2022.106122_bib24 article-title: Minimal EEG channel selection for depression detection with connectivity features during sleep publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105690 – start-page: 847 year: 2013 ident: 10.1016/j.compbiomed.2022.106122_bib12 article-title: Investigating voice quality as a speaker-independent indicator of depression and PTSD – volume: 23 start-page: 649 year: 2017 ident: 10.1016/j.compbiomed.2022.106122_bib21 article-title: Natural language processing in mental health applications using non-clinical texts publication-title: Nat. Lang. Eng. doi: 10.1017/S1351324916000383 – volume: 112 start-page: 701 year: 2002 ident: 10.1016/j.compbiomed.2022.106122_bib56 article-title: Normalized amplitude quotient for parametrization of the glottal flow publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1490365 – volume: 34 start-page: 277 year: 2000 ident: 10.1016/j.compbiomed.2022.106122_bib20 article-title: Spatiotemporal gait patterns during over ground locomotion in major depression compared with healthy controls publication-title: J. Psychiatr. Res. doi: 10.1016/S0022-3956(00)00017-0 – start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2022.106122_bib45 article-title: Deep learning approach for classification of breast cancer – volume: 12 start-page: 239 year: 2021 ident: 10.1016/j.compbiomed.2022.106122_bib26 article-title: Integrating deep and shallow models for multi-modal depression analysis—hybrid architectures publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2018.2870398 – volume: 41 start-page: 43 year: 1989 ident: 10.1016/j.compbiomed.2022.106122_bib57 article-title: Klassifizierung von Glottisdysfunktionen mit Hilfe der Elektroglottographie publication-title: Folia Phoniatrica Logop. doi: 10.1159/000265931 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.compbiomed.2022.106122_bib40 article-title: Grey Wolf optimizer publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.compbiomed.2022.106122_bib86 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – start-page: 1716 year: 2018 ident: 10.1016/j.compbiomed.2022.106122_bib46 article-title: Detecting depression with audio/text sequence modeling of interviews – volume: 55 start-page: 40 year: 2019 ident: 10.1016/j.compbiomed.2022.106122_bib17 article-title: Tracking depression severity from audio and video based on speech articulatory coordination publication-title: Comput. Speech Lang doi: 10.1016/j.csl.2018.08.004 – start-page: 5017 year: 2008 ident: 10.1016/j.compbiomed.2022.106122_bib19 article-title: Empirical mode decomposition based weighted frequency feature for speech-based emotion classification – volume: 13 start-page: 21 year: 1967 ident: 10.1016/j.compbiomed.2022.106122_bib81 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theor. doi: 10.1109/TIT.1967.1053964 – volume: 135 year: 2021 ident: 10.1016/j.compbiomed.2022.106122_bib22 article-title: A textual-based featuring approach for depression detection using machine learning classifiers and social media texts publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104499 – volume: 20 start-page: 50 year: 2007 ident: 10.1016/j.compbiomed.2022.106122_bib55 article-title: Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology publication-title: J. Neurolinguistics doi: 10.1016/j.jneuroling.2006.04.001 – start-page: 38 year: 2014 ident: 10.1016/j.compbiomed.2022.106122_bib68 article-title: A uniform phase representation for the harmonic model in speech synthesis applications publication-title: EURASIP J. Audio Speech Music Process. doi: 10.1186/s13636-014-0038-1 – volume: 16 start-page: 606 year: 2001 ident: 10.1016/j.compbiomed.2022.106122_bib5 article-title: The PHQ-9 publication-title: J. Gen. Intern. Med. doi: 10.1046/j.1525-1497.2001.016009606.x – start-page: 27 year: 2016 ident: 10.1016/j.compbiomed.2022.106122_bib13 article-title: Depression assessment by fusing high and low level features from audio, video and text – start-page: 2997 year: 2011 ident: 10.1016/j.compbiomed.2022.106122_bib8 article-title: An investigation of depressed speech detection: features and normalization – volume: 17 start-page: 75 year: 1984 ident: 10.1016/j.compbiomed.2022.106122_bib66 article-title: Speech and voice parameters of depression: a pilot study publication-title: J. Commun. Disord. doi: 10.1016/0021-9924(84)90013-3 – start-page: 89 year: 2016 ident: 10.1016/j.compbiomed.2022.106122_bib14 article-title: Decision tree based depression classification from audio video and language information – start-page: 7547 year: 2013 ident: 10.1016/j.compbiomed.2022.106122_bib9 article-title: Detecting depression: a comparison between spontaneous and read speech – start-page: 960 year: 2014 ident: 10.1016/j.compbiomed.2022.106122_bib42 article-title: COVAREP: a collaborative voice analysis repository for speech technologies – start-page: 3 year: 2016 ident: 10.1016/j.compbiomed.2022.106122_bib43 article-title: AVEC – volume: 32 start-page: 648 year: 2014 ident: 10.1016/j.compbiomed.2022.106122_bib11 article-title: Automatic audiovisual behavior descriptors for psychological disorder analysis publication-title: Image Vis Comput. doi: 10.1016/j.imavis.2014.06.001 – start-page: 65 year: 2014 ident: 10.1016/j.compbiomed.2022.106122_bib31 article-title: Vocal and facial biomarkers of depression based on motor incoordination and timing – year: 1993 ident: 10.1016/j.compbiomed.2022.106122_bib64 – start-page: 158 year: 2018 ident: 10.1016/j.compbiomed.2022.106122_bib89 article-title: Human behaviour-based automatic depression analysis using hand-crafted statistics and deep learned spectral features – year: 2014 ident: 10.1016/j.compbiomed.2022.106122_bib1 article-title: World health organization. Department of mental health and substance abuse publication-title: Preventing Suicide : a Global Imperative, World Health Organization – volume: 51 start-page: 1530 year: 2004 ident: 10.1016/j.compbiomed.2022.106122_bib7 article-title: Investigation of vocal jitter and glottal flow spectrum as possible cues for depression and near-term suicidal risk publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827544 – volume: 112 year: 2019 ident: 10.1016/j.compbiomed.2022.106122_bib25 article-title: Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103381 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.compbiomed.2022.106122_bib73 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 83 start-page: 716 year: 1988 ident: 10.1016/j.compbiomed.2022.106122_bib63 article-title: Measuring the rate of change of voice fundamental frequency in fluent speech during mental depression publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.396114 – year: 1973 ident: 10.1016/j.compbiomed.2022.106122_bib34 – volume: 13 start-page: 25 year: 1920 ident: 10.1016/j.compbiomed.2022.106122_bib36 article-title: Notes on the history of correlation publication-title: Biometrika doi: 10.1093/biomet/13.1.25 – start-page: 225 year: 2013 ident: 10.1016/j.compbiomed.2022.106122_bib39 article-title: Binary Bat algorithm for feature selection – year: 2011 ident: 10.1016/j.compbiomed.2022.106122_bib72 article-title: Identifying regions of non-modal phonation using features of the wavelet transform publication-title: Identifying regions of non-modal phonation using features of the wavelet transform – volume: 189 year: 2022 ident: 10.1016/j.compbiomed.2022.106122_bib88 article-title: Audio based depression detection using Convolutional Autoencoder publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116076 – start-page: 35 year: 2016 ident: 10.1016/j.compbiomed.2022.106122_bib87 article-title: DepAudioNet – volume: 21 start-page: 1170 year: 2013 ident: 10.1016/j.compbiomed.2022.106122_bib70 article-title: Wavelet maxima dispersion for breathy to tense voice discrimination publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2013.2245653 – start-page: 3266 year: 2017 ident: 10.1016/j.compbiomed.2022.106122_bib85 article-title: Implementing gender-dependent vowel-level analysis for boosting speech-based depression recognition – volume: 28 start-page: 357 year: 1980 ident: 10.1016/j.compbiomed.2022.106122_bib59 article-title: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences publication-title: IEEE Trans Acoust doi: 10.1109/TASSP.1980.1163420 – volume: 47 start-page: 829 year: 2000 ident: 10.1016/j.compbiomed.2022.106122_bib6 article-title: Acoustical properties of speech as indicators of depression and suicidal risk publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.846676 – volume: 26 start-page: 119 year: 1985 ident: 10.1016/j.compbiomed.2022.106122_bib69 article-title: The LF-model revisited. Transformations and frequency domain analysis publication-title: STL-QPSR. – year: 2019 ident: 10.1016/j.compbiomed.2022.106122_bib44 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.compbiomed.2022.106122_bib82 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 217 start-page: 4754 year: 2011 ident: 10.1016/j.compbiomed.2022.106122_bib78 article-title: A hybrid quantum-inspired immune algorithm for multiobjective optimization publication-title: Appl. Math. Comput. – start-page: 4693 year: 2009 ident: 10.1016/j.compbiomed.2022.106122_bib18 article-title: Speaker dependency of spectral features and speech production cues for automatic emotion classification – year: 2001 ident: 10.1016/j.compbiomed.2022.106122_bib50 – volume: 58 start-page: 574 year: 2011 ident: 10.1016/j.compbiomed.2022.106122_bib60 article-title: Detection of clinical depression in adolescents' speech during family interactions publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2091640 – volume: 23 start-page: 56 year: 1960 ident: 10.1016/j.compbiomed.2022.106122_bib3 article-title: A rating scale for depression publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.23.1.56 – ident: 10.1016/j.compbiomed.2022.106122_bib38 doi: 10.1109/ICNN.1995.488968 – start-page: 6549 year: 2020 ident: 10.1016/j.compbiomed.2022.106122_bib47 article-title: Exploiting vocal tract coordination using dilated CNNS for depression detection in naturalistic environments – year: 2019 ident: 10.1016/j.compbiomed.2022.106122_bib61 – start-page: 209 year: 2017 ident: 10.1016/j.compbiomed.2022.106122_bib15 – volume: 145 year: 2022 ident: 10.1016/j.compbiomed.2022.106122_bib23 article-title: Graphical representation learning-based approach for automatic classification of electroencephalogram signals in depression publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105420 – start-page: 1943 year: 2016 ident: 10.1016/j.compbiomed.2022.106122_bib32 article-title: Cross-cultural depression recognition from vocal biomarkers – volume: 42 start-page: 119 year: 2012 ident: 10.1016/j.compbiomed.2022.106122_bib77 article-title: A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.03.022 – volume: 5 start-page: 587 year: 1961 ident: 10.1016/j.compbiomed.2022.106122_bib67 article-title: The sounds of emotional disturbance publication-title: Arch. Gen. Psychiatr. doi: 10.1001/archpsyc.1961.01710180071008 – volume: 9 start-page: 1871 year: 2008 ident: 10.1016/j.compbiomed.2022.106122_bib53 article-title: LIBLINEAR: a library for large linear classification cross-lingual dependency parsing view project min-max optimization view project liblinear: a library for large linear classification publication-title: Article in Journal of Machine Learning Research – volume: 8 start-page: 429 year: 2000 ident: 10.1016/j.compbiomed.2022.106122_bib65 article-title: A comparative study of traditional and newly proposed features for recognition of speech under stress publication-title: IEEE Trans. Speech Audio Process. doi: 10.1109/89.848224 – volume: 22 start-page: 525 year: 2018 ident: 10.1016/j.compbiomed.2022.106122_bib29 article-title: Dynamic multimodal measurement of depression severity using deep autoencoding publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2676878 – volume: 89 year: 2020 ident: 10.1016/j.compbiomed.2022.106122_bib33 article-title: Quantum based Whale Optimization Algorithm for wrapper feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106092 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.compbiomed.2022.106122_bib75 article-title: The whale optimization algorithm publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 480 start-page: 146 year: 2022 ident: 10.1016/j.compbiomed.2022.106122_bib76 article-title: Multiple birth support vector machine based on dynamic quantum particle swarm optimization algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.01.012 – volume: 6 start-page: 580 year: 2002 ident: 10.1016/j.compbiomed.2022.106122_bib80 article-title: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2002.804320 – start-page: 4235 year: 2021 ident: 10.1016/j.compbiomed.2022.106122_bib84 article-title: HCAG: a hierarchical context-aware graph attention model for depression detection – volume: 3 start-page: 185 year: 2005 ident: 10.1016/j.compbiomed.2022.106122_bib35 article-title: Minimum redundancy feature selection from microarray gene expression data publication-title: J. Bioinf. Comput. Biol. doi: 10.1142/S0219720005001004 – ident: 10.1016/j.compbiomed.2022.106122_bib41 – volume: 61 start-page: 434 year: 1993 ident: 10.1016/j.compbiomed.2022.106122_bib49 article-title: Effects of training in time-limited dynamic psychotherapy: changes in therapist behavior publication-title: J. Consult. Clin. Psychol. doi: 10.1037/0022-006X.61.3.434 – volume: 119 start-page: 351 year: 1992 ident: 10.1016/j.compbiomed.2022.106122_bib62 article-title: Verbal indicators of depression publication-title: J. Gen. Psychol. doi: 10.1080/00221309.1992.9921178 – start-page: 112 year: 2014 ident: 10.1016/j.compbiomed.2022.106122_bib71 article-title: Dyadic behavior analysis in depression severity assessment interviews – start-page: 1443 year: 2019 ident: 10.1016/j.compbiomed.2022.106122_bib27 article-title: Detecting depression with word-level multimodal fusion – start-page: 43 year: 2016 ident: 10.1016/j.compbiomed.2022.106122_bib28 article-title: Multimodal and multiresolution depression detection from speech and facial landmark features – volume: 10 start-page: 8701 year: 2020 ident: 10.1016/j.compbiomed.2022.106122_bib48 article-title: Towards automatic depression detection: a BiLSTM/1D CNN-based model publication-title: Appl. Sci. doi: 10.3390/app10238701 – volume: 97 start-page: 273 year: 1997 ident: 10.1016/j.compbiomed.2022.106122_bib74 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – start-page: 2534 year: 2013 ident: 10.1016/j.compbiomed.2022.106122_bib10 article-title: Characterising depressed speech for classification |
| SSID | ssj0004030 |
| Score | 2.4308522 |
| Snippet | There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal... AbstractThere is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 106122 |
| SubjectTerms | Acoustics Algorithms Animals Biomarkers Computer applications Datasets Depression Depression - diagnosis Discriminant analysis Evolutionary algorithms Experiments Feature extraction Feature selection Frequency Genetic algorithms Humans Internal Medicine Mental depression Optimization Optimization algorithms Other Quantum-based Whale Optimization Algorithm Self evaluation Speech Statistical analysis Statistical tests Suicides & suicide attempts Support vector machines Temporal variations Whales |
| Title | Enhanced depression detection from speech using Quantum Whale Optimization Algorithm for feature selection |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522008307 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522008307 https://dx.doi.org/10.1016/j.compbiomed.2022.106122 https://www.ncbi.nlm.nih.gov/pubmed/36182759 https://www.proquest.com/docview/2729943699 https://www.proquest.com/docview/2720424385 |
| Volume | 150 |
| WOSCitedRecordID | wos000864036200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: P5Z dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: K7- dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7RV dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAv45sFRmUkXgOx48SxeEADdUKCdWV8VbxYju2sTGtalpS_n7PjpC8MVeLlVCm5xuld78P-3R1CL0CkqUjLPBbU6JipUsUlYzrWitAq4ZUpKy_pj3wyKWYzMQ0bbk2AVfY20Rtqs9Ruj_wVhShQsDQX4s3qV-ymRrnT1TBCYwftEUqJ0_MPPN7URSZpV4ICtoZBKhSQPB2-y0G2uxJ3yBIpfelyI0qvc0_XhZ_eDR3f-d8XuIv2QwCKjzqNuYdu2Po-unUSjtgfoItxPfeoADyAZGv42HrIVo1dOQpuVtbqOXaY-XP8aQ3CWS_w9zn4GnwKJmgRajvx0eU5rKCdLzCExriyvokobvzoHbj-EH09Hn959z4OAxliDXFVG2sKKa1lEGGZxDBFSmZUYXSR54KDvCu3p8VEVSiWGFqVRBtlBc2rCuI0YzOTPkK79bK2BwjbjGiVW3ChRDBClWtiUzLu-hMmZVbmEeK9HKQO3crd0IxL2cPSLuRGgtJJUHYSjBAZOFddx44teEQvatlXpIINleBWtuDlf-O1TTAGjSSyoTKRn30vJFBD6jAnYFsj9HrgDPFOF8ds-dzDXs_k8KiNkkXo-XAZLIY7BlK1Xa79Pe68Oy2yCD3udHn4odIc8k2eiSf__vKn6LZbSVeTeYh226u1fYZu6t_tz-ZqhHb42TdHZ9zTYoT23o4n07OR_3sCPaGnjvIp0Gn24w8VlkK_ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigX3pRAASPBMZA43iQWQqiCVq26XUAUsTfj2E6XqptdmiyIP8VvZGwn2QtFe-mBW6Rk8vJ45hv7mxmAZzikCU-KNORUq5DJQoYFYypUMqZllJW6KN1ID7PRKB-P-Yc1-N3lwlhaZWcTnaHWM2XXyF9SRIGcJSnnb-bfQ9s1yu6udi00vFocmF8_MWSrX--_w_F9TunuztHbvbDtKhAqBAdNqCjGZYYhTNCRZjIumJa5Vnma8gxfurQLM4yXuWSRpmURKy0Np2lZItjQZqATvO8luIx2PLMUsmycLfMwo8SnvKBtYxh6tcwhzyezFHGfUo9RKaUvbCxG6Xnu8Dy469ze7o3_7YfdhOstwCbbfkbcgjVT3Yarhy2F4A6c7FQTx3ogPQm4wsPGUdIqYtNtSD03Rk2IzQk4Jh8XqHyLKfkyQV9K3qOJnba5q2T79Bi_uJlMCUJ_UhpXJJXUrrUQnr8Lny_kS-_BejWrzH0gZhArmRqECDFnMZW2SE_BMlt_MSoGRRpA1o27UG01dtsU5FR0tLsTsdQYYTVGeI0JIO4l574iyQoyvFMt0WXcoo8Q6DZXkM3-Jmvq1tjVIhY1FZH45Go9odpTy6lB3xHAq16yxXMep6343K1Or0X_qKVSB_C0P40W0W5zycrMFu4au5-f5IMANv3c6X9UkmI8nQ34g3_f_Als7B0dDsVwf3TwEK7Zt_L5p1uw3pwtzCO4on403-qzx84AEPh60RPoD4RfmWI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvB-BAkaCY2jiOMlaCKGKdkXVsiwCRNWLcWynS9XNLk0WxF_j1zG2k-yFor30wC2SM04czzP-ZgbgGW5pwpMiCznVKmSykGHBmAqVjGkZ5aUuSrfTB_loNDg85OM1-N3lwlhYZacTnaLWM2X_kW9R9AI5SzLOt8oWFjHeGb6efw9tByl70tq10_Assm9-_cTwrX61t4N7_ZzS4e6nN2_DtsNAqNBRaEJFMUYzDF0GHWkm44JpOdBqkGU8xwWU9icN4-VAskjTsoiVlobTrCzR8dAm1QnOewku5xhj2sBvnB4tczKjxKe_oJ5jGIa1KCKPLbNwcZ9ejxEqpS9sXEbpeabxPNfXmcDh9f_5492Aa63jTba9pNyENVPdgo13LbTgNpzsVhOHhiA9OLjCy8ZB1Spi03BIPTdGTYjNFTgmHxbIlIsp-TJBG0veo-qdtjmtZPv0GFfcTKYEQwJSGlc8ldSu5RCO34HPF7LSu7BezSpzH4hJYyUzg65DzFlMpS3eU7Dc1mWMirTIAsg7HhCqrdJum4Wcig6OdyKW3CMs9wjPPQHEPeXcVypZgYZ3bCa6TFy0HQLN6Qq0-d9oTd0qwVrEoqYiEh9dDSgUAWqxNmhTAnjZU7Z-nvffVnzuZsfjon_UksEDeNoPo6a0x1-yMrOFu8ee8yeDNIB7Xo76D5VkGGfnKX_w78mfwAbKjTjYG-0_hKv2pXxa6iasN2cL8wiuqB_Nt_rssdMFBL5etPz8AR_JolU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+depression+detection+from+speech+using+Quantum+Whale+Optimization+Algorithm+for+feature+selection&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Kaur%2C+Baljeet&rft.au=Rathi%2C+Swati&rft.au=Agrawal%2C+R+K&rft.date=2022-11-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=150&rft.spage=106122&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.106122&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482522X00097%2Fcov150h.gif |