Enhanced depression detection from speech using Quantum Whale Optimization Algorithm for feature selection

There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers in biology and medicine Ročník 150; s. 106122
Hlavní autoři: Kaur, Baljeet, Rathi, Swati, Agrawal, R.K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.11.2022
Elsevier Limited
Témata:
ISSN:0010-4825, 1879-0534, 1879-0534
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods. •Non-invasive low-complexity two-phase speech-based depression detection system.•Proposed two-phase approach involving QWOA gives high performance.•Spectral temporal and spectro-temporal features investigated extensively.•Selected speech features by the method are relevant and statistically significant.
AbstractList AbstractThere is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods.
There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods. •Non-invasive low-complexity two-phase speech-based depression detection system.•Proposed two-phase approach involving QWOA gives high performance.•Spectral temporal and spectro-temporal features investigated extensively.•Selected speech features by the method are relevant and statistically significant.
There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods.There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods.
There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods.
ArticleNumber 106122
Author Rathi, Swati
Kaur, Baljeet
Agrawal, R.K.
Author_xml – sequence: 1
  givenname: Baljeet
  orcidid: 0000-0003-2821-2219
  surname: Kaur
  fullname: Kaur, Baljeet
  email: baljeetkaur26@hotmail.com
  organization: Hansraj College, University of Delhi, India
– sequence: 2
  givenname: Swati
  orcidid: 0000-0003-4385-0120
  surname: Rathi
  fullname: Rathi, Swati
  email: swatirathi362@gmail.com
  organization: School of Computer and Systems Sciences, Jawaharlal Nehru University, Delhi, India
– sequence: 3
  givenname: R.K.
  orcidid: 0000-0003-3122-5096
  surname: Agrawal
  fullname: Agrawal, R.K.
  email: rkajnu@gmail.com
  organization: School of Computer and Systems Sciences, Jawaharlal Nehru University, Delhi, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36182759$$D View this record in MEDLINE/PubMed
BookMark eNqVkltrFTEUhYNU7Gn1L8iAL77McecytxexlnqBQhEVH0Mm2enJcWYyJjNC_fVmOvUIBaE-ZRO-vVistU_I0eAHJCSjsKVAy1f7rfb92Drfo9kyYCx9l5SxR2RD66rJoeDiiGwAKOSiZsUxOYlxDwACODwhx7ykNauKZkP2F8NODRpNZnAMGKPzQxon1NMy2eD7LI6IepfN0Q3X2adZDdPcZ992qsPsapxc736pW_isu_bBTbs-sz5kFtU0B8widqvYU_LYqi7is7v3lHx9d_Hl_EN-efX-4_nZZa4LKqZcs4pyFIIXBoxQtBVG1UbXZdlUvC0tZQ2IxtZKgGG2pdoobFhpLS2EwcLwU_Jy1R2D_zFjnGTvosauUwP6OUpWMRBM8LpI6It76N7PYUjuFqppBC-bJlHP76i5TYHLMbhehRv5J8UE1Cugg48xoD0gFORSmNzLv4XJpTC5FpZWX99b1W66jXMKynUPEXi7CmCK9KfDIKN2uDTqQspdGu_-w8VBRHducFp13_EG4yEUKiOTID8vh7XcFWMANYcqCbz5t8DDPPwGvZ3juA
CitedBy_id crossref_primary_10_1007_s00034_023_02571_4
crossref_primary_10_1007_s10586_024_04716_9
crossref_primary_10_1109_ACCESS_2023_3272556
crossref_primary_10_1007_s00500_024_09664_5
crossref_primary_10_1007_s10489_022_04446_8
crossref_primary_10_1049_cit2_12317
crossref_primary_10_3233_JIFS_224474
crossref_primary_10_1016_j_artmed_2023_102605
crossref_primary_10_1007_s11831_023_09928_7
crossref_primary_10_1007_s11128_025_04787_6
crossref_primary_10_3390_a18030154
crossref_primary_10_3389_fpubh_2025_1561332
crossref_primary_10_3390_app132212410
crossref_primary_10_32604_cmc_2024_055080
crossref_primary_10_1109_TAFFC_2025_3552835
crossref_primary_10_1007_s00500_025_10540_z
crossref_primary_10_1016_j_jksuci_2023_101554
crossref_primary_10_1038_s41598_024_60278_1
Cites_doi 10.1038/scientificamerican0792-66
10.1207/s15327752jpa6703_13
10.1016/j.jad.2017.08.038
10.1037/0033-2909.99.2.143
10.1016/j.enconman.2008.06.009
10.1016/j.compbiomed.2022.105690
10.1017/S1351324916000383
10.1121/1.1490365
10.1016/S0022-3956(00)00017-0
10.1109/TAFFC.2018.2870398
10.1159/000265931
10.1016/j.advengsoft.2013.12.007
10.1016/j.swevo.2011.02.002
10.1016/j.csl.2018.08.004
10.1109/TIT.1967.1053964
10.1016/j.compbiomed.2021.104499
10.1016/j.jneuroling.2006.04.001
10.1186/s13636-014-0038-1
10.1046/j.1525-1497.2001.016009606.x
10.1016/0021-9924(84)90013-3
10.1016/j.imavis.2014.06.001
10.1109/TBME.2004.827544
10.1016/j.compbiomed.2019.103381
10.1121/1.396114
10.1093/biomet/13.1.25
10.1016/j.eswa.2021.116076
10.1109/TASL.2013.2245653
10.1109/TASSP.1980.1163420
10.1109/10.846676
10.1023/A:1022627411411
10.1109/TBME.2010.2091640
10.1136/jnnp.23.1.56
10.1109/ICNN.1995.488968
10.1016/j.compbiomed.2022.105420
10.1016/j.applthermaleng.2012.03.022
10.1001/archpsyc.1961.01710180071008
10.1109/89.848224
10.1109/JBHI.2017.2676878
10.1016/j.asoc.2020.106092
10.1016/j.advengsoft.2016.01.008
10.1016/j.neucom.2022.01.012
10.1109/TEVC.2002.804320
10.1142/S0219720005001004
10.1037/0022-006X.61.3.434
10.1080/00221309.1992.9921178
10.3390/app10238701
10.1016/S0004-3702(97)00043-X
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Nov 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Nov 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2022.106122
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
ProQuest Biological Science
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE

Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 106122
ExternalDocumentID 36182759
10_1016_j_compbiomed_2022_106122
S0010482522008307
1_s2_0_S0010482522008307
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
9DU
AAYXX
AFFHD
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c514t-c2713e4435d0d4a1b4da8dc866973b6f129049f8a40d2fb1cdae926ff154de5d3
IEDL.DBID K7-
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864036200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 00:58:59 EDT 2025
Sat Nov 29 14:35:18 EST 2025
Mon Jul 21 05:54:58 EDT 2025
Tue Nov 18 21:08:22 EST 2025
Sat Nov 29 07:30:47 EST 2025
Fri Feb 23 02:39:20 EST 2024
Tue Feb 25 20:12:01 EST 2025
Tue Oct 14 19:33:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Depression
Speech
Feature extraction
Feature selection
Quantum-based Whale Optimization Algorithm
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-c2713e4435d0d4a1b4da8dc866973b6f129049f8a40d2fb1cdae926ff154de5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3122-5096
0000-0003-2821-2219
0000-0003-4385-0120
PMID 36182759
PQID 2729943699
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2720424385
proquest_journals_2729943699
pubmed_primary_36182759
crossref_primary_10_1016_j_compbiomed_2022_106122
crossref_citationtrail_10_1016_j_compbiomed_2022_106122
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_106122
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522008307
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_106122
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Nasir, Jati, Shivakumar, Nallan Chakravarthula, Georgiou (bib28) 2016
Alku, Bäckström, Vilkman (bib56) 2002; 112
Pampouchidou, Simantiraki, Fazlollahi, Pediaditis, Manousos, Roniotis, Giannakakis, Meriaudeau, Simos, Marias, Yang, Tsiknakis (bib13) 2016
Ostwald (bib67) 1961; 5
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, IEEE, n.d.: pp. 1942–1948.
Low, Maddage, Lech, Sheeber, Allen (bib60) 2011; 58
Lemke, Wendorff, Mieth, Buhl, Linnemann (bib20) 2000; 34
Song, Shen, Valstar (bib89) 2018
Guyon, Elisseeff (bib73) 2003; 3
Duda, Hart, Stork (bib34) 1973
Davis, Mermelstein (bib59) 1980; 28
Drugman, Alwan (bib61) 2019
Williamson, Godoy, Cha, Schwarzentruber, Khorrami, Gwon, Kung, Dagli, Quatieri (bib83) 2016
Mariani, Duck, Guerra, Coelho, Rao (bib77) 2012; 42
Soni, Seal, Yazidi, Krejcar (bib23) 2022; 145
Vlasenko, Sagha, Cummins, Schuller (bib85) 2017
dos Santos Coelho, Mariani (bib79) 2008; 49
Ding, Peng (bib35) 2005; 3
Ma, Yang, Chen, Huang, Wang (bib87) 2016
Scherer, Stratou, Gratch, Morency (bib12) 2013
Sardari, Nakisa, Rastgoo, Eklund (bib88) 2022; 189
Valstar, Gratch, Schuller, Ringeval, Lalanne, Torres Torres, Scherer, Stratou, Cowie, Pantic (bib43) 2016
Ding, Zhang, Sun, Shi (bib76) 2022; 480
Agrawal, Kaur, Sharma (bib33) 2020; 89
(bib37) 1992; 267
Beck, Steer, Ball, Ranieri (bib4) 1996; 67
Bou-Ghazale, Hansen (bib65) 2000; 8
J. Gratch, R. Artstein, G. Lucas, G. Stratou, S. Scherer, A. Nazarian, R. Wood, J. Boberg, D. Devault, S. Marsella, D. Traum, S. Rizzo, L.-P. Morency, The Distress Analysis Interview Corpus of Human and Computer Interviews, n.d. http://www.biopac.com.
Henry, Strupp, Butler, Schacht, Binder (bib49) 1993; 61
Ozdas, Shiavi, Silverman, Silverman, Wilkes (bib7) 2004; 51
Toğaçar, Ergen (bib45) 2018
.
Hacki (bib57) 1989; 41
Gao, Wang (bib78) 2011; 217
Kroenke, Spitzer, Williams (bib5) 2001; 16
Cummins, Epps, Breakspear, Goecke (bib8) 2011
Dibeklioglu, Hammal, Cohn (bib29) 2018; 22
Kane, Gobl (bib70) 2013; 21
Niu, Chen, Chen, Yang (bib84) 2021
France, Shiavi, Silverman, Silverman, Wilkes (bib6) 2000; 47
Saxena, Krug, Chestnov (bib1) 2014
Lin, Chen, Shen, Zhang (bib48) 2020; 10
bib2
Sethu, Ambikairajah, Epps (bib19) 2008
Rabiner, Juang (bib64) 1993
Cover, Hart (bib81) 1967; 13
Calvo, Milne, Hussain, Christensen (bib21) 2017; 23
bib51
Yang, Jiang, He, Pei, Oveneke, Sahli (bib14) 2016
Darby, Simmons, Berger (bib66) 1984; 17
Scherer, Stratou, Lucas, Mahmoud, Boberg, Gratch, Rizzo, Morency (bib11) 2014; 32
Cummins, Vlasenko, Sagha, Schuller (bib15) 2017
Chiong, Budhi, Dhakal, Chiong (bib22) 2021; 135
Degottex, Erro (bib68) 2014
Derrac, García, Molina, Herrera (bib86) 2011; 1
Byun, Kim, Jang, Kim, Choi, Yu, Jeon (bib25) 2019; 112
bib54
Williamson, Quatieri, Helfer, Ciccarelli, Mehta (bib31) 2014
Chang, Hsieh, Lin, Fan, Wang (bib53) 2008; 9
Alghowinem, Goecke, Wagner, Epps, Parker, Breakspear (bib10) 2013
Rohanian, Hough, Purver (bib27) 2019
Pearson (bib36) 1920; 13
bib52
Alghowinem, Goecke, Wagner, Epps, Breakspear, Parker (bib9) 2013
Kane, Gobl (bib72) 2011
Degottex, Kane, Drugman, Raitio, Scherer (bib42) 2014
Hamilton (bib3) 1960; 23
Sethu, Ambikairajah, Epps (bib18) 2009
Nakamura, Pereira, Rodrigues, Costa, Papa, Yang (bib39) 2013
Williamson, Young, Nierenberg, Niemi, Helfer, Quatieri (bib17) 2019; 55
Han (bib80) 2002; 6
O'Shaughnessy (bib58) 1999
Mirjalili, Lewis (bib75) 2016; 95
Mundt, Snyder, Cannizzaro, Chappie, Geralts (bib55) 2007; 20
al Hanai, Ghassemi, Glass (bib46) 2018
Scherer, Hammal, Yang, Morency, Cohn (bib71) 2014
Fant, Liljencrants, Lin (bib69) 1985; 26
Huang, Epps, Joachim (bib47) 2020
Yang, Jiang, Sahli (bib26) 2021; 12
Cortes, Vapnik (bib82) 1995; 20
Taguchi, Tachikawa, Nemoto, Suzuki, Nagano, Tachibana, Nishimura, Arai (bib16) 2018; 225
Mirjalili, Mirjalili, Lewis (bib40) 2014; 69
Özdaş (bib50) 2001
Alghowinem, Goecke, Epps, Wagner, Cohn (bib32) 2016
Toğaçar, Ergen, Sertkaya, Programı, Meslek, Okulu, Üniversitesi, Mühendisliği, Fakültesi (bib44) 2019
Zhang, Wang, Wei, Guo, Wen, Luo (bib24) 2022; 147
Scherer (bib30) 1986; 99
Kohavi, John (bib74) 1997; 97
Nilsonne, Sundberg, Ternström, Askenfelt (bib63) 1988; 83
Breznitz (bib62) 1992; 119
Yang (10.1016/j.compbiomed.2022.106122_bib14) 2016
Dibeklioglu (10.1016/j.compbiomed.2022.106122_bib29) 2018; 22
Song (10.1016/j.compbiomed.2022.106122_bib89) 2018
Mirjalili (10.1016/j.compbiomed.2022.106122_bib40) 2014; 69
Ding (10.1016/j.compbiomed.2022.106122_bib76) 2022; 480
Lin (10.1016/j.compbiomed.2022.106122_bib48) 2020; 10
Drugman (10.1016/j.compbiomed.2022.106122_bib61) 2019
Han (10.1016/j.compbiomed.2022.106122_bib80) 2002; 6
Nasir (10.1016/j.compbiomed.2022.106122_bib28) 2016
Williamson (10.1016/j.compbiomed.2022.106122_bib31) 2014
Darby (10.1016/j.compbiomed.2022.106122_bib66) 1984; 17
Yang (10.1016/j.compbiomed.2022.106122_bib26) 2021; 12
Low (10.1016/j.compbiomed.2022.106122_bib60) 2011; 58
Calvo (10.1016/j.compbiomed.2022.106122_bib21) 2017; 23
Lemke (10.1016/j.compbiomed.2022.106122_bib20) 2000; 34
Gao (10.1016/j.compbiomed.2022.106122_bib78) 2011; 217
Alku (10.1016/j.compbiomed.2022.106122_bib56) 2002; 112
Cover (10.1016/j.compbiomed.2022.106122_bib81) 1967; 13
Alghowinem (10.1016/j.compbiomed.2022.106122_bib10) 2013
Huang (10.1016/j.compbiomed.2022.106122_bib47) 2020
Rabiner (10.1016/j.compbiomed.2022.106122_bib64) 1993
Chiong (10.1016/j.compbiomed.2022.106122_bib22) 2021; 135
Agrawal (10.1016/j.compbiomed.2022.106122_bib33) 2020; 89
10.1016/j.compbiomed.2022.106122_bib38
Scherer (10.1016/j.compbiomed.2022.106122_bib30) 1986; 99
Hacki (10.1016/j.compbiomed.2022.106122_bib57) 1989; 41
Ostwald (10.1016/j.compbiomed.2022.106122_bib67) 1961; 5
Taguchi (10.1016/j.compbiomed.2022.106122_bib16) 2018; 225
Toğaçar (10.1016/j.compbiomed.2022.106122_bib44) 2019
Özdaş (10.1016/j.compbiomed.2022.106122_bib50) 2001
Mirjalili (10.1016/j.compbiomed.2022.106122_bib75) 2016; 95
Breznitz (10.1016/j.compbiomed.2022.106122_bib62) 1992; 119
Rohanian (10.1016/j.compbiomed.2022.106122_bib27) 2019
Zhang (10.1016/j.compbiomed.2022.106122_bib24) 2022; 147
Scherer (10.1016/j.compbiomed.2022.106122_bib12) 2013
Bou-Ghazale (10.1016/j.compbiomed.2022.106122_bib65) 2000; 8
Saxena (10.1016/j.compbiomed.2022.106122_bib1) 2014
Pampouchidou (10.1016/j.compbiomed.2022.106122_bib13) 2016
Pearson (10.1016/j.compbiomed.2022.106122_bib36) 1920; 13
Sethu (10.1016/j.compbiomed.2022.106122_bib18) 2009
Williamson (10.1016/j.compbiomed.2022.106122_bib17) 2019; 55
Mundt (10.1016/j.compbiomed.2022.106122_bib55) 2007; 20
Kane (10.1016/j.compbiomed.2022.106122_bib70) 2013; 21
Kane (10.1016/j.compbiomed.2022.106122_bib72) 2011
Byun (10.1016/j.compbiomed.2022.106122_bib25) 2019; 112
Toğaçar (10.1016/j.compbiomed.2022.106122_bib45) 2018
Soni (10.1016/j.compbiomed.2022.106122_bib23) 2022; 145
dos Santos Coelho (10.1016/j.compbiomed.2022.106122_bib79) 2008; 49
Cummins (10.1016/j.compbiomed.2022.106122_bib8) 2011
Henry (10.1016/j.compbiomed.2022.106122_bib49) 1993; 61
Williamson (10.1016/j.compbiomed.2022.106122_bib83) 2016
Ozdas (10.1016/j.compbiomed.2022.106122_bib7) 2004; 51
Nakamura (10.1016/j.compbiomed.2022.106122_bib39) 2013
Guyon (10.1016/j.compbiomed.2022.106122_bib73) 2003; 3
(10.1016/j.compbiomed.2022.106122_bib37) 1992; 267
Chang (10.1016/j.compbiomed.2022.106122_bib53) 2008; 9
Ma (10.1016/j.compbiomed.2022.106122_bib87) 2016
Hamilton (10.1016/j.compbiomed.2022.106122_bib3) 1960; 23
O'Shaughnessy (10.1016/j.compbiomed.2022.106122_bib58) 1999
10.1016/j.compbiomed.2022.106122_bib41
Derrac (10.1016/j.compbiomed.2022.106122_bib86) 2011; 1
Scherer (10.1016/j.compbiomed.2022.106122_bib71) 2014
Niu (10.1016/j.compbiomed.2022.106122_bib84) 2021
Nilsonne (10.1016/j.compbiomed.2022.106122_bib63) 1988; 83
Duda (10.1016/j.compbiomed.2022.106122_bib34) 1973
Degottex (10.1016/j.compbiomed.2022.106122_bib68) 2014
Sethu (10.1016/j.compbiomed.2022.106122_bib19) 2008
Scherer (10.1016/j.compbiomed.2022.106122_bib11) 2014; 32
Kohavi (10.1016/j.compbiomed.2022.106122_bib74) 1997; 97
Alghowinem (10.1016/j.compbiomed.2022.106122_bib9) 2013
Kroenke (10.1016/j.compbiomed.2022.106122_bib5) 2001; 16
Degottex (10.1016/j.compbiomed.2022.106122_bib42) 2014
Mariani (10.1016/j.compbiomed.2022.106122_bib77) 2012; 42
al Hanai (10.1016/j.compbiomed.2022.106122_bib46) 2018
Valstar (10.1016/j.compbiomed.2022.106122_bib43) 2016
Davis (10.1016/j.compbiomed.2022.106122_bib59) 1980; 28
Fant (10.1016/j.compbiomed.2022.106122_bib69) 1985; 26
Vlasenko (10.1016/j.compbiomed.2022.106122_bib85) 2017
Sardari (10.1016/j.compbiomed.2022.106122_bib88) 2022; 189
Beck (10.1016/j.compbiomed.2022.106122_bib4) 1996; 67
Alghowinem (10.1016/j.compbiomed.2022.106122_bib32) 2016
Cummins (10.1016/j.compbiomed.2022.106122_bib15) 2017
Ding (10.1016/j.compbiomed.2022.106122_bib35) 2005; 3
Cortes (10.1016/j.compbiomed.2022.106122_bib82) 1995; 20
France (10.1016/j.compbiomed.2022.106122_bib6) 2000; 47
References_xml – start-page: 43
  year: 2016
  end-page: 50
  ident: bib28
  article-title: Multimodal and multiresolution depression detection from speech and facial landmark features
  publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib73
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 55
  start-page: 40
  year: 2019
  end-page: 56
  ident: bib17
  article-title: Tracking depression severity from audio and video based on speech articulatory coordination
  publication-title: Comput. Speech Lang
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib40
  article-title: Grey Wolf optimizer
  publication-title: Adv. Eng. Software
– year: 2019
  ident: bib61
  article-title: Joint Robust Voicing Detection and Pitch Estimation Based on Residual Harmonics
– volume: 23
  start-page: 649
  year: 2017
  end-page: 685
  ident: bib21
  article-title: Natural language processing in mental health applications using non-clinical texts
  publication-title: Nat. Lang. Eng.
– volume: 83
  start-page: 716
  year: 1988
  end-page: 728
  ident: bib63
  article-title: Measuring the rate of change of voice fundamental frequency in fluent speech during mental depression
  publication-title: J. Acoust. Soc. Am.
– start-page: 209
  year: 2017
  end-page: 214
  ident: bib15
  article-title: Enhancing Speech-Based Depression Detection through Gender Dependent Vowel-Level Formant Features
– start-page: 65
  year: 2014
  end-page: 72
  ident: bib31
  article-title: Vocal and facial biomarkers of depression based on motor incoordination and timing
  publication-title: Proceedings of the 4th International Workshop on Audio/Visual Emotion Challenge - AVEC ’14
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib82
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– start-page: 1943
  year: 2016
  ident: bib32
  article-title: Cross-cultural depression recognition from vocal biomarkers
  publication-title: Interspeech 2016, ISCA
– start-page: 112
  year: 2014
  end-page: 119
  ident: bib71
  article-title: Dyadic behavior analysis in depression severity assessment interviews
  publication-title: Proceedings of the 16th International Conference on Multimodal Interaction
– volume: 9
  start-page: 1871
  year: 2008
  end-page: 1874
  ident: bib53
  article-title: LIBLINEAR: a library for large linear classification cross-lingual dependency parsing view project min-max optimization view project liblinear: a library for large linear classification
  publication-title: Article in Journal of Machine Learning Research
– volume: 17
  start-page: 75
  year: 1984
  end-page: 85
  ident: bib66
  article-title: Speech and voice parameters of depression: a pilot study
  publication-title: J. Commun. Disord.
– start-page: 89
  year: 2016
  end-page: 96
  ident: bib14
  article-title: Decision tree based depression classification from audio video and language information
  publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge
– start-page: 1
  year: 2018
  end-page: 5
  ident: bib45
  article-title: Deep learning approach for classification of breast cancer
  publication-title: International Conference on Artificial Intelligence and Data Processing (IDAP)
– volume: 26
  start-page: 119
  year: 1985
  end-page: 156
  ident: bib69
  article-title: The LF-model revisited. Transformations and frequency domain analysis
  publication-title: STL-QPSR.
– volume: 112
  year: 2019
  ident: bib25
  article-title: Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol
  publication-title: Comput. Biol. Med.
– start-page: 27
  year: 2016
  end-page: 34
  ident: bib13
  article-title: Depression assessment by fusing high and low level features from audio, video and text
  publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge
– volume: 10
  start-page: 8701
  year: 2020
  ident: bib48
  article-title: Towards automatic depression detection: a BiLSTM/1D CNN-based model
  publication-title: Appl. Sci.
– year: 1973
  ident: bib34
  article-title: Pattern Classification
– volume: 67
  start-page: 588
  year: 1996
  end-page: 597
  ident: bib4
  article-title: Comparison of beck depression inventories-IA and-II in psychiatric outpatients
  publication-title: J. Pers. Assess.
– ident: bib51
  article-title: Black dog institute | science. Compassion. Action
– volume: 8
  start-page: 429
  year: 2000
  end-page: 442
  ident: bib65
  article-title: A comparative study of traditional and newly proposed features for recognition of speech under stress
  publication-title: IEEE Trans. Speech Audio Process.
– start-page: 1443
  year: 2019
  end-page: 1447
  ident: bib27
  article-title: Detecting depression with word-level multimodal fusion
  publication-title: Interspeech 2019, ISCA
– volume: 47
  start-page: 829
  year: 2000
  end-page: 837
  ident: bib6
  article-title: Acoustical properties of speech as indicators of depression and suicidal risk
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 38
  year: 2014
  ident: bib68
  article-title: A uniform phase representation for the harmonic model in speech synthesis applications
  publication-title: EURASIP J. Audio Speech Music Process.
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, IEEE, n.d.: pp. 1942–1948.
– volume: 23
  start-page: 56
  year: 1960
  end-page: 62
  ident: bib3
  article-title: A rating scale for depression
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 20
  start-page: 50
  year: 2007
  end-page: 64
  ident: bib55
  article-title: Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology
  publication-title: J. Neurolinguistics
– volume: 135
  year: 2021
  ident: bib22
  article-title: A textual-based featuring approach for depression detection using machine learning classifiers and social media texts
  publication-title: Comput. Biol. Med.
– start-page: 5017
  year: 2008
  end-page: 5020
  ident: bib19
  article-title: Empirical mode decomposition based weighted frequency feature for speech-based emotion classification
  publication-title: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE
– volume: 147
  year: 2022
  ident: bib24
  article-title: Minimal EEG channel selection for depression detection with connectivity features during sleep
  publication-title: Comput. Biol. Med.
– start-page: 4693
  year: 2009
  end-page: 4696
  ident: bib18
  article-title: Speaker dependency of spectral features and speech production cues for automatic emotion classification
  publication-title: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE
– volume: 41
  start-page: 43
  year: 1989
  end-page: 48
  ident: bib57
  article-title: Klassifizierung von Glottisdysfunktionen mit Hilfe der Elektroglottographie
  publication-title: Folia Phoniatrica Logop.
– volume: 13
  start-page: 25
  year: 1920
  end-page: 45
  ident: bib36
  article-title: Notes on the history of correlation
  publication-title: Biometrika
– ident: bib52
– year: 1999
  ident: bib58
  article-title: Speech Communications: Human and Machine
– start-page: 2997
  year: 2011
  end-page: 3000
  ident: bib8
  article-title: An investigation of depressed speech detection: features and normalization
  publication-title: Interspeech 2011, ISCA
– year: 2014
  ident: bib1
  article-title: World health organization. Department of mental health and substance abuse
  publication-title: Preventing Suicide : a Global Imperative, World Health Organization
– volume: 145
  year: 2022
  ident: bib23
  article-title: Graphical representation learning-based approach for automatic classification of electroencephalogram signals in depression
  publication-title: Comput. Biol. Med.
– start-page: 960
  year: 2014
  end-page: 964
  ident: bib42
  article-title: COVAREP: a collaborative voice analysis repository for speech technologies
  publication-title: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE
– volume: 12
  start-page: 239
  year: 2021
  end-page: 253
  ident: bib26
  article-title: Integrating deep and shallow models for multi-modal depression analysis—hybrid architectures
  publication-title: IEEE Trans Affect Comput
– volume: 51
  start-page: 1530
  year: 2004
  end-page: 1540
  ident: bib7
  article-title: Investigation of vocal jitter and glottal flow spectrum as possible cues for depression and near-term suicidal risk
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 58
  start-page: 574
  year: 2011
  end-page: 586
  ident: bib60
  article-title: Detection of clinical depression in adolescents' speech during family interactions
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2011
  ident: bib72
  article-title: Identifying regions of non-modal phonation using features of the wavelet transform
  publication-title: Identifying regions of non-modal phonation using features of the wavelet transform
– volume: 42
  start-page: 119
  year: 2012
  end-page: 128
  ident: bib77
  article-title: A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers
  publication-title: Appl. Therm. Eng.
– reference: J. Gratch, R. Artstein, G. Lucas, G. Stratou, S. Scherer, A. Nazarian, R. Wood, J. Boberg, D. Devault, S. Marsella, D. Traum, S. Rizzo, L.-P. Morency, The Distress Analysis Interview Corpus of Human and Computer Interviews, n.d. http://www.biopac.com.
– start-page: 11
  year: 2016
  end-page: 18
  ident: bib83
  article-title: Detecting depression using vocal, facial and semantic communication cues
  publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge
– start-page: 158
  year: 2018
  end-page: 165
  ident: bib89
  article-title: Human behaviour-based automatic depression analysis using hand-crafted statistics and deep learned spectral features
  publication-title: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)
– volume: 34
  start-page: 277
  year: 2000
  end-page: 283
  ident: bib20
  article-title: Spatiotemporal gait patterns during over ground locomotion in major depression compared with healthy controls
  publication-title: J. Psychiatr. Res.
– ident: bib2
  article-title: Apa - DSM - diagnostic and statistical manual of mental Disorders
– start-page: 225
  year: 2013
  end-page: 237
  ident: bib39
  article-title: Binary Bat algorithm for feature selection
  publication-title: Swarm Intelligence and Bio-Inspired Computation
– volume: 480
  start-page: 146
  year: 2022
  end-page: 156
  ident: bib76
  article-title: Multiple birth support vector machine based on dynamic quantum particle swarm optimization algorithm
  publication-title: Neurocomputing
– start-page: 3
  year: 2016
  end-page: 10
  ident: bib43
  article-title: AVEC
  publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge, ACM, New York, NY, USA
– year: 2019
  ident: bib44
  article-title: Zatürre Hastalığının Derin Öğrenme Modeli Ile Tespiti
– volume: 119
  start-page: 351
  year: 1992
  end-page: 363
  ident: bib62
  article-title: Verbal indicators of depression
  publication-title: J. Gen. Psychol.
– volume: 49
  start-page: 3080
  year: 2008
  end-page: 3085
  ident: bib79
  article-title: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects
  publication-title: Energy Convers. Manag.
– start-page: 35
  year: 2016
  end-page: 42
  ident: bib87
  article-title: DepAudioNet
  publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge
– volume: 22
  start-page: 525
  year: 2018
  end-page: 536
  ident: bib29
  article-title: Dynamic multimodal measurement of depression severity using deep autoencoding
  publication-title: IEEE J Biomed Health Inform
– start-page: 6549
  year: 2020
  end-page: 6553
  ident: bib47
  article-title: Exploiting vocal tract coordination using dilated CNNS for depression detection in naturalistic environments
  publication-title: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: bib37
  article-title: Genetic algorithms - john H. Holland
  publication-title: Sci. Am.
– volume: 61
  start-page: 434
  year: 1993
  end-page: 440
  ident: bib49
  article-title: Effects of training in time-limited dynamic psychotherapy: changes in therapist behavior
  publication-title: J. Consult. Clin. Psychol.
– volume: 32
  start-page: 648
  year: 2014
  end-page: 658
  ident: bib11
  article-title: Automatic audiovisual behavior descriptors for psychological disorder analysis
  publication-title: Image Vis Comput.
– volume: 99
  start-page: 143
  year: 1986
  end-page: 165
  ident: bib30
  article-title: Vocal affect expression: a review and a model for future research
  publication-title: Psychol. Bull.
– year: 1993
  ident: bib64
  article-title: Fundamentals of Speech Recognition
– volume: 28
  start-page: 357
  year: 1980
  end-page: 366
  ident: bib59
  article-title: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
  publication-title: IEEE Trans Acoust
– volume: 217
  start-page: 4754
  year: 2011
  end-page: 4770
  ident: bib78
  article-title: A hybrid quantum-inspired immune algorithm for multiobjective optimization
  publication-title: Appl. Math. Comput.
– start-page: 7547
  year: 2013
  end-page: 7551
  ident: bib9
  article-title: Detecting depression: a comparison between spontaneous and read speech
  publication-title: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE
– volume: 16
  start-page: 606
  year: 2001
  end-page: 613
  ident: bib5
  article-title: The PHQ-9
  publication-title: J. Gen. Intern. Med.
– volume: 89
  year: 2020
  ident: bib33
  article-title: Quantum based Whale Optimization Algorithm for wrapper feature selection
  publication-title: Appl. Soft Comput.
– volume: 112
  start-page: 701
  year: 2002
  end-page: 710
  ident: bib56
  article-title: Normalized amplitude quotient for parametrization of the glottal flow
  publication-title: J. Acoust. Soc. Am.
– ident: bib54
  article-title: Exploring biomarkers for depression - full text view - ClinicalTrials.gov
– start-page: 4235
  year: 2021
  end-page: 4239
  ident: bib84
  article-title: HCAG: a hierarchical context-aware graph attention model for depression detection
  publication-title: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 2534
  year: 2013
  end-page: 2538
  ident: bib10
  article-title: Characterising depressed speech for classification
  publication-title: Interspeech 2013, ISCA
– start-page: 847
  year: 2013
  end-page: 851
  ident: bib12
  article-title: Investigating voice quality as a speaker-independent indicator of depression and PTSD
  publication-title: Interspeech 2013, ISCA
– start-page: 3266
  year: 2017
  end-page: 3270
  ident: bib85
  article-title: Implementing gender-dependent vowel-level analysis for boosting speech-based depression recognition
  publication-title: Interspeech 2017, ISCA
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: bib75
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Software
– volume: 5
  start-page: 587
  year: 1961
  ident: bib67
  article-title: The sounds of emotional disturbance
  publication-title: Arch. Gen. Psychiatr.
– reference: .
– start-page: 1716
  year: 2018
  end-page: 1720
  ident: bib46
  article-title: Detecting depression with audio/text sequence modeling of interviews
  publication-title: Interspeech 2018, ISCA
– volume: 6
  start-page: 580
  year: 2002
  end-page: 593
  ident: bib80
  article-title: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 225
  start-page: 214
  year: 2018
  end-page: 220
  ident: bib16
  article-title: Major depressive disorder discrimination using vocal acoustic features
  publication-title: J. Affect. Disord.
– volume: 21
  start-page: 1170
  year: 2013
  end-page: 1179
  ident: bib70
  article-title: Wavelet maxima dispersion for breathy to tense voice discrimination
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: bib81
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theor.
– volume: 189
  year: 2022
  ident: bib88
  article-title: Audio based depression detection using Convolutional Autoencoder
  publication-title: Expert Syst. Appl.
– year: 2001
  ident: bib50
  article-title: Analysis of Paralinguistic Properties of Speech for Near-Term Suicidal Risk Assessment
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib86
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 3
  start-page: 185
  year: 2005
  end-page: 205
  ident: bib35
  article-title: Minimum redundancy feature selection from microarray gene expression data
  publication-title: J. Bioinf. Comput. Biol.
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: bib74
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– start-page: 11
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106122_bib83
  article-title: Detecting depression using vocal, facial and semantic communication cues
– volume: 267
  start-page: 66
  year: 1992
  ident: 10.1016/j.compbiomed.2022.106122_bib37
  article-title: Genetic algorithms - john H. Holland
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– volume: 67
  start-page: 588
  year: 1996
  ident: 10.1016/j.compbiomed.2022.106122_bib4
  article-title: Comparison of beck depression inventories-IA and-II in psychiatric outpatients
  publication-title: J. Pers. Assess.
  doi: 10.1207/s15327752jpa6703_13
– volume: 225
  start-page: 214
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106122_bib16
  article-title: Major depressive disorder discrimination using vocal acoustic features
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2017.08.038
– volume: 99
  start-page: 143
  year: 1986
  ident: 10.1016/j.compbiomed.2022.106122_bib30
  article-title: Vocal affect expression: a review and a model for future research
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.99.2.143
– year: 1999
  ident: 10.1016/j.compbiomed.2022.106122_bib58
– volume: 49
  start-page: 3080
  year: 2008
  ident: 10.1016/j.compbiomed.2022.106122_bib79
  article-title: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2008.06.009
– volume: 147
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106122_bib24
  article-title: Minimal EEG channel selection for depression detection with connectivity features during sleep
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105690
– start-page: 847
  year: 2013
  ident: 10.1016/j.compbiomed.2022.106122_bib12
  article-title: Investigating voice quality as a speaker-independent indicator of depression and PTSD
– volume: 23
  start-page: 649
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106122_bib21
  article-title: Natural language processing in mental health applications using non-clinical texts
  publication-title: Nat. Lang. Eng.
  doi: 10.1017/S1351324916000383
– volume: 112
  start-page: 701
  year: 2002
  ident: 10.1016/j.compbiomed.2022.106122_bib56
  article-title: Normalized amplitude quotient for parametrization of the glottal flow
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1490365
– volume: 34
  start-page: 277
  year: 2000
  ident: 10.1016/j.compbiomed.2022.106122_bib20
  article-title: Spatiotemporal gait patterns during over ground locomotion in major depression compared with healthy controls
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/S0022-3956(00)00017-0
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106122_bib45
  article-title: Deep learning approach for classification of breast cancer
– volume: 12
  start-page: 239
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106122_bib26
  article-title: Integrating deep and shallow models for multi-modal depression analysis—hybrid architectures
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2018.2870398
– volume: 41
  start-page: 43
  year: 1989
  ident: 10.1016/j.compbiomed.2022.106122_bib57
  article-title: Klassifizierung von Glottisdysfunktionen mit Hilfe der Elektroglottographie
  publication-title: Folia Phoniatrica Logop.
  doi: 10.1159/000265931
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106122_bib40
  article-title: Grey Wolf optimizer
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2022.106122_bib86
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– start-page: 1716
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106122_bib46
  article-title: Detecting depression with audio/text sequence modeling of interviews
– volume: 55
  start-page: 40
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106122_bib17
  article-title: Tracking depression severity from audio and video based on speech articulatory coordination
  publication-title: Comput. Speech Lang
  doi: 10.1016/j.csl.2018.08.004
– start-page: 5017
  year: 2008
  ident: 10.1016/j.compbiomed.2022.106122_bib19
  article-title: Empirical mode decomposition based weighted frequency feature for speech-based emotion classification
– volume: 13
  start-page: 21
  year: 1967
  ident: 10.1016/j.compbiomed.2022.106122_bib81
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theor.
  doi: 10.1109/TIT.1967.1053964
– volume: 135
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106122_bib22
  article-title: A textual-based featuring approach for depression detection using machine learning classifiers and social media texts
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104499
– volume: 20
  start-page: 50
  year: 2007
  ident: 10.1016/j.compbiomed.2022.106122_bib55
  article-title: Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology
  publication-title: J. Neurolinguistics
  doi: 10.1016/j.jneuroling.2006.04.001
– start-page: 38
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106122_bib68
  article-title: A uniform phase representation for the harmonic model in speech synthesis applications
  publication-title: EURASIP J. Audio Speech Music Process.
  doi: 10.1186/s13636-014-0038-1
– volume: 16
  start-page: 606
  year: 2001
  ident: 10.1016/j.compbiomed.2022.106122_bib5
  article-title: The PHQ-9
  publication-title: J. Gen. Intern. Med.
  doi: 10.1046/j.1525-1497.2001.016009606.x
– start-page: 27
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106122_bib13
  article-title: Depression assessment by fusing high and low level features from audio, video and text
– start-page: 2997
  year: 2011
  ident: 10.1016/j.compbiomed.2022.106122_bib8
  article-title: An investigation of depressed speech detection: features and normalization
– volume: 17
  start-page: 75
  year: 1984
  ident: 10.1016/j.compbiomed.2022.106122_bib66
  article-title: Speech and voice parameters of depression: a pilot study
  publication-title: J. Commun. Disord.
  doi: 10.1016/0021-9924(84)90013-3
– start-page: 89
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106122_bib14
  article-title: Decision tree based depression classification from audio video and language information
– start-page: 7547
  year: 2013
  ident: 10.1016/j.compbiomed.2022.106122_bib9
  article-title: Detecting depression: a comparison between spontaneous and read speech
– start-page: 960
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106122_bib42
  article-title: COVAREP: a collaborative voice analysis repository for speech technologies
– start-page: 3
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106122_bib43
  article-title: AVEC
– volume: 32
  start-page: 648
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106122_bib11
  article-title: Automatic audiovisual behavior descriptors for psychological disorder analysis
  publication-title: Image Vis Comput.
  doi: 10.1016/j.imavis.2014.06.001
– start-page: 65
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106122_bib31
  article-title: Vocal and facial biomarkers of depression based on motor incoordination and timing
– year: 1993
  ident: 10.1016/j.compbiomed.2022.106122_bib64
– start-page: 158
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106122_bib89
  article-title: Human behaviour-based automatic depression analysis using hand-crafted statistics and deep learned spectral features
– year: 2014
  ident: 10.1016/j.compbiomed.2022.106122_bib1
  article-title: World health organization. Department of mental health and substance abuse
  publication-title: Preventing Suicide : a Global Imperative, World Health Organization
– volume: 51
  start-page: 1530
  year: 2004
  ident: 10.1016/j.compbiomed.2022.106122_bib7
  article-title: Investigation of vocal jitter and glottal flow spectrum as possible cues for depression and near-term suicidal risk
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827544
– volume: 112
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106122_bib25
  article-title: Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103381
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.compbiomed.2022.106122_bib73
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 83
  start-page: 716
  year: 1988
  ident: 10.1016/j.compbiomed.2022.106122_bib63
  article-title: Measuring the rate of change of voice fundamental frequency in fluent speech during mental depression
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.396114
– year: 1973
  ident: 10.1016/j.compbiomed.2022.106122_bib34
– volume: 13
  start-page: 25
  year: 1920
  ident: 10.1016/j.compbiomed.2022.106122_bib36
  article-title: Notes on the history of correlation
  publication-title: Biometrika
  doi: 10.1093/biomet/13.1.25
– start-page: 225
  year: 2013
  ident: 10.1016/j.compbiomed.2022.106122_bib39
  article-title: Binary Bat algorithm for feature selection
– year: 2011
  ident: 10.1016/j.compbiomed.2022.106122_bib72
  article-title: Identifying regions of non-modal phonation using features of the wavelet transform
  publication-title: Identifying regions of non-modal phonation using features of the wavelet transform
– volume: 189
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106122_bib88
  article-title: Audio based depression detection using Convolutional Autoencoder
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116076
– start-page: 35
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106122_bib87
  article-title: DepAudioNet
– volume: 21
  start-page: 1170
  year: 2013
  ident: 10.1016/j.compbiomed.2022.106122_bib70
  article-title: Wavelet maxima dispersion for breathy to tense voice discrimination
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2013.2245653
– start-page: 3266
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106122_bib85
  article-title: Implementing gender-dependent vowel-level analysis for boosting speech-based depression recognition
– volume: 28
  start-page: 357
  year: 1980
  ident: 10.1016/j.compbiomed.2022.106122_bib59
  article-title: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
  publication-title: IEEE Trans Acoust
  doi: 10.1109/TASSP.1980.1163420
– volume: 47
  start-page: 829
  year: 2000
  ident: 10.1016/j.compbiomed.2022.106122_bib6
  article-title: Acoustical properties of speech as indicators of depression and suicidal risk
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.846676
– volume: 26
  start-page: 119
  year: 1985
  ident: 10.1016/j.compbiomed.2022.106122_bib69
  article-title: The LF-model revisited. Transformations and frequency domain analysis
  publication-title: STL-QPSR.
– year: 2019
  ident: 10.1016/j.compbiomed.2022.106122_bib44
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.compbiomed.2022.106122_bib82
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 217
  start-page: 4754
  year: 2011
  ident: 10.1016/j.compbiomed.2022.106122_bib78
  article-title: A hybrid quantum-inspired immune algorithm for multiobjective optimization
  publication-title: Appl. Math. Comput.
– start-page: 4693
  year: 2009
  ident: 10.1016/j.compbiomed.2022.106122_bib18
  article-title: Speaker dependency of spectral features and speech production cues for automatic emotion classification
– year: 2001
  ident: 10.1016/j.compbiomed.2022.106122_bib50
– volume: 58
  start-page: 574
  year: 2011
  ident: 10.1016/j.compbiomed.2022.106122_bib60
  article-title: Detection of clinical depression in adolescents' speech during family interactions
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2091640
– volume: 23
  start-page: 56
  year: 1960
  ident: 10.1016/j.compbiomed.2022.106122_bib3
  article-title: A rating scale for depression
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.23.1.56
– ident: 10.1016/j.compbiomed.2022.106122_bib38
  doi: 10.1109/ICNN.1995.488968
– start-page: 6549
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106122_bib47
  article-title: Exploiting vocal tract coordination using dilated CNNS for depression detection in naturalistic environments
– year: 2019
  ident: 10.1016/j.compbiomed.2022.106122_bib61
– start-page: 209
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106122_bib15
– volume: 145
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106122_bib23
  article-title: Graphical representation learning-based approach for automatic classification of electroencephalogram signals in depression
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105420
– start-page: 1943
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106122_bib32
  article-title: Cross-cultural depression recognition from vocal biomarkers
– volume: 42
  start-page: 119
  year: 2012
  ident: 10.1016/j.compbiomed.2022.106122_bib77
  article-title: A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.03.022
– volume: 5
  start-page: 587
  year: 1961
  ident: 10.1016/j.compbiomed.2022.106122_bib67
  article-title: The sounds of emotional disturbance
  publication-title: Arch. Gen. Psychiatr.
  doi: 10.1001/archpsyc.1961.01710180071008
– volume: 9
  start-page: 1871
  year: 2008
  ident: 10.1016/j.compbiomed.2022.106122_bib53
  article-title: LIBLINEAR: a library for large linear classification cross-lingual dependency parsing view project min-max optimization view project liblinear: a library for large linear classification
  publication-title: Article in Journal of Machine Learning Research
– volume: 8
  start-page: 429
  year: 2000
  ident: 10.1016/j.compbiomed.2022.106122_bib65
  article-title: A comparative study of traditional and newly proposed features for recognition of speech under stress
  publication-title: IEEE Trans. Speech Audio Process.
  doi: 10.1109/89.848224
– volume: 22
  start-page: 525
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106122_bib29
  article-title: Dynamic multimodal measurement of depression severity using deep autoencoding
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2676878
– volume: 89
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106122_bib33
  article-title: Quantum based Whale Optimization Algorithm for wrapper feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106092
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106122_bib75
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 480
  start-page: 146
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106122_bib76
  article-title: Multiple birth support vector machine based on dynamic quantum particle swarm optimization algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.012
– volume: 6
  start-page: 580
  year: 2002
  ident: 10.1016/j.compbiomed.2022.106122_bib80
  article-title: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2002.804320
– start-page: 4235
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106122_bib84
  article-title: HCAG: a hierarchical context-aware graph attention model for depression detection
– volume: 3
  start-page: 185
  year: 2005
  ident: 10.1016/j.compbiomed.2022.106122_bib35
  article-title: Minimum redundancy feature selection from microarray gene expression data
  publication-title: J. Bioinf. Comput. Biol.
  doi: 10.1142/S0219720005001004
– ident: 10.1016/j.compbiomed.2022.106122_bib41
– volume: 61
  start-page: 434
  year: 1993
  ident: 10.1016/j.compbiomed.2022.106122_bib49
  article-title: Effects of training in time-limited dynamic psychotherapy: changes in therapist behavior
  publication-title: J. Consult. Clin. Psychol.
  doi: 10.1037/0022-006X.61.3.434
– volume: 119
  start-page: 351
  year: 1992
  ident: 10.1016/j.compbiomed.2022.106122_bib62
  article-title: Verbal indicators of depression
  publication-title: J. Gen. Psychol.
  doi: 10.1080/00221309.1992.9921178
– start-page: 112
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106122_bib71
  article-title: Dyadic behavior analysis in depression severity assessment interviews
– start-page: 1443
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106122_bib27
  article-title: Detecting depression with word-level multimodal fusion
– start-page: 43
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106122_bib28
  article-title: Multimodal and multiresolution depression detection from speech and facial landmark features
– volume: 10
  start-page: 8701
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106122_bib48
  article-title: Towards automatic depression detection: a BiLSTM/1D CNN-based model
  publication-title: Appl. Sci.
  doi: 10.3390/app10238701
– volume: 97
  start-page: 273
  year: 1997
  ident: 10.1016/j.compbiomed.2022.106122_bib74
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– start-page: 2534
  year: 2013
  ident: 10.1016/j.compbiomed.2022.106122_bib10
  article-title: Characterising depressed speech for classification
SSID ssj0004030
Score 2.4308522
Snippet There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal...
AbstractThere is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106122
SubjectTerms Acoustics
Algorithms
Animals
Biomarkers
Computer applications
Datasets
Depression
Depression - diagnosis
Discriminant analysis
Evolutionary algorithms
Experiments
Feature extraction
Feature selection
Frequency
Genetic algorithms
Humans
Internal Medicine
Mental depression
Optimization
Optimization algorithms
Other
Quantum-based Whale Optimization Algorithm
Self evaluation
Speech
Statistical analysis
Statistical tests
Suicides & suicide attempts
Support vector machines
Temporal variations
Whales
Title Enhanced depression detection from speech using Quantum Whale Optimization Algorithm for feature selection
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522008307
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522008307
https://dx.doi.org/10.1016/j.compbiomed.2022.106122
https://www.ncbi.nlm.nih.gov/pubmed/36182759
https://www.proquest.com/docview/2729943699
https://www.proquest.com/docview/2720424385
Volume 150
WOSCitedRecordID wos000864036200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: P5Z
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: K7-
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAv45sFRmUkXgOx48SxeEADdUKCdWV8VbxYju2sTGtalpS_n7PjpC8MVeLlVCm5xuld78P-3R1CL0CkqUjLPBbU6JipUsUlYzrWitAq4ZUpKy_pj3wyKWYzMQ0bbk2AVfY20Rtqs9Ruj_wVhShQsDQX4s3qV-ymRrnT1TBCYwftEUqJ0_MPPN7URSZpV4ICtoZBKhSQPB2-y0G2uxJ3yBIpfelyI0qvc0_XhZ_eDR3f-d8XuIv2QwCKjzqNuYdu2Po-unUSjtgfoItxPfeoADyAZGv42HrIVo1dOQpuVtbqOXaY-XP8aQ3CWS_w9zn4GnwKJmgRajvx0eU5rKCdLzCExriyvokobvzoHbj-EH09Hn959z4OAxliDXFVG2sKKa1lEGGZxDBFSmZUYXSR54KDvCu3p8VEVSiWGFqVRBtlBc2rCuI0YzOTPkK79bK2BwjbjGiVW3ChRDBClWtiUzLu-hMmZVbmEeK9HKQO3crd0IxL2cPSLuRGgtJJUHYSjBAZOFddx44teEQvatlXpIINleBWtuDlf-O1TTAGjSSyoTKRn30vJFBD6jAnYFsj9HrgDPFOF8ds-dzDXs_k8KiNkkXo-XAZLIY7BlK1Xa79Pe68Oy2yCD3udHn4odIc8k2eiSf__vKn6LZbSVeTeYh226u1fYZu6t_tz-ZqhHb42TdHZ9zTYoT23o4n07OR_3sCPaGnjvIp0Gn24w8VlkK_
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigX3pRAASPBMZA43iQWQqiCVq26XUAUsTfj2E6XqptdmiyIP8VvZGwn2QtFe-mBW6Rk8vJ45hv7mxmAZzikCU-KNORUq5DJQoYFYypUMqZllJW6KN1ID7PRKB-P-Yc1-N3lwlhaZWcTnaHWM2XXyF9SRIGcJSnnb-bfQ9s1yu6udi00vFocmF8_MWSrX--_w_F9TunuztHbvbDtKhAqBAdNqCjGZYYhTNCRZjIumJa5Vnma8gxfurQLM4yXuWSRpmURKy0Np2lZItjQZqATvO8luIx2PLMUsmycLfMwo8SnvKBtYxh6tcwhzyezFHGfUo9RKaUvbCxG6Xnu8Dy469ze7o3_7YfdhOstwCbbfkbcgjVT3Yarhy2F4A6c7FQTx3ogPQm4wsPGUdIqYtNtSD03Rk2IzQk4Jh8XqHyLKfkyQV9K3qOJnba5q2T79Bi_uJlMCUJ_UhpXJJXUrrUQnr8Lny_kS-_BejWrzH0gZhArmRqECDFnMZW2SE_BMlt_MSoGRRpA1o27UG01dtsU5FR0tLsTsdQYYTVGeI0JIO4l574iyQoyvFMt0WXcoo8Q6DZXkM3-Jmvq1tjVIhY1FZH45Go9odpTy6lB3xHAq16yxXMep6343K1Or0X_qKVSB_C0P40W0W5zycrMFu4au5-f5IMANv3c6X9UkmI8nQ34g3_f_Als7B0dDsVwf3TwEK7Zt_L5p1uw3pwtzCO4on403-qzx84AEPh60RPoD4RfmWI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvB-BAkaCY2jiOMlaCKGKdkXVsiwCRNWLcWynS9XNLk0WxF_j1zG2k-yFor30wC2SM04czzP-ZgbgGW5pwpMiCznVKmSykGHBmAqVjGkZ5aUuSrfTB_loNDg85OM1-N3lwlhYZacTnaLWM2X_kW9R9AI5SzLOt8oWFjHeGb6efw9tByl70tq10_Assm9-_cTwrX61t4N7_ZzS4e6nN2_DtsNAqNBRaEJFMUYzDF0GHWkm44JpOdBqkGU8xwWU9icN4-VAskjTsoiVlobTrCzR8dAm1QnOewku5xhj2sBvnB4tczKjxKe_oJ5jGIa1KCKPLbNwcZ9ejxEqpS9sXEbpeabxPNfXmcDh9f_5492Aa63jTba9pNyENVPdgo13LbTgNpzsVhOHhiA9OLjCy8ZB1Spi03BIPTdGTYjNFTgmHxbIlIsp-TJBG0veo-qdtjmtZPv0GFfcTKYEQwJSGlc8ldSu5RCO34HPF7LSu7BezSpzH4hJYyUzg65DzFlMpS3eU7Dc1mWMirTIAsg7HhCqrdJum4Wcig6OdyKW3CMs9wjPPQHEPeXcVypZgYZ3bCa6TFy0HQLN6Qq0-d9oTd0qwVrEoqYiEh9dDSgUAWqxNmhTAnjZU7Z-nvffVnzuZsfjon_UksEDeNoPo6a0x1-yMrOFu8ee8yeDNIB7Xo76D5VkGGfnKX_w78mfwAbKjTjYG-0_hKv2pXxa6iasN2cL8wiuqB_Nt_rssdMFBL5etPz8AR_JolU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+depression+detection+from+speech+using+Quantum+Whale+Optimization+Algorithm+for+feature+selection&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Kaur%2C+Baljeet&rft.au=Rathi%2C+Swati&rft.au=Agrawal%2C+R+K&rft.date=2022-11-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=150&rft.spage=106122&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.106122&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482522X00097%2Fcov150h.gif