A computational scheme for the optimal strategy in an incomplete market
We examine the optimal portfolio selection problem of a single agent who receives an unhedgeable endowment. The agent wishes to optimize his/her log-utility derived from his/her terminal wealth. We do not solve this problem analytically but construct a recursive computational algorithm which approxi...
Uloženo v:
| Vydáno v: | Journal of economic dynamics & control Ročník 31; číslo 11; s. 3591 - 3613 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.11.2007
North-Holland Publ. Co Elsevier Elsevier Sequoia S.A |
| Edice: | Journal of Economic Dynamics and Control |
| Témata: | |
| ISSN: | 0165-1889, 1879-1743 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We examine the optimal portfolio selection problem of a single agent who receives an unhedgeable endowment. The agent wishes to optimize his/her log-utility derived from his/her terminal wealth. We do not solve this problem analytically but construct a recursive computational algorithm which approximates the optimal one. We present an ‘intelligent’ initial portfolio which requires, numerically, about
25
%
fewer corrective steps in the algorithm than a random initial portfolio, and outperforms the portfolio which ignores the unhedgeable risk of the endowment. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0165-1889 1879-1743 |
| DOI: | 10.1016/j.jedc.2006.12.006 |