ECG_SegNet: An ECG delineation model based on the encoder-decoder structure

With the increasing usage of wearable electrocardiogram (ECG) monitoring devices, it is necessary to develop models and algorithms that can analyze the large amounts of ECG data obtained in real-time. Accurate ECG delineation is key to assisting cardiologists in diagnosing cardiac diseases. The main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine Jg. 145; S. 105445
Hauptverfasser: Liang, Xiaohong, Li, Liping, Liu, Yuanyuan, Chen, Dan, Wang, Xinpei, Hu, Shunbo, Wang, Jikuo, Zhang, Huan, Sun, Chengfa, Liu, Changchun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.06.2022
Elsevier Limited
Schlagworte:
ISSN:0010-4825, 1879-0534, 1879-0534
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the increasing usage of wearable electrocardiogram (ECG) monitoring devices, it is necessary to develop models and algorithms that can analyze the large amounts of ECG data obtained in real-time. Accurate ECG delineation is key to assisting cardiologists in diagnosing cardiac diseases. The main objective of this study is to design a delineation model based on the encoder-decoder structure to detect different heartbeat waveforms, including P-waves, QRS complexes, T-waves, and No waves (NW), as well as the onset and offset of these waveforms. First, the introduction of a standard dilated convolution module (SDCM) into the encoder path enabled the model to extract more useful ECG signal-informative features. Subsequently, bidirectional long short-term memory (BiLSTM) was added to the encoding structure to obtain numerous temporal features. Moreover, the feature sets of the ECG signals at each level in the encoder path were connected to the decoder part for multi-scale decoding to mitigate the information loss caused by the pooling operation in the encoding process. Finally, the proposed model was trained and tested on both QT and LU databases, and it achieved accurate results compared to other state-of-the-art methods. Regarding the QT database, the average accuracy of ECG waveform classification was 96.90%, and an average classification accuracy of 95.40% was obtained on the LU database. In addition, average F1 values of 99.58% and 97.05% were achieved in the ECG delineation task of the QT and LU databases, respectively. The results show that the proposed ECG_SegNet model has good flexibility and reliability when applied to ECG delineation, and it is a reliable method for analyzing ECG signals in real-time. •A model ECG_SegNet based on the encoder-decoder structure is proposed for ECG delineation.•The SDCM and the BiLSTM into the encoder part can extract additional contributing features to ECG delineation.•The ECG_SegNet can effectively restore the original ECG signal coarse-to-fine information by using multi-scale decoding.•The proposed model achieves better performance than other state-of-the-art methods.
AbstractList With the increasing usage of wearable electrocardiogram (ECG) monitoring devices, it is necessary to develop models and algorithms that can analyze the large amounts of ECG data obtained in real-time. Accurate ECG delineation is key to assisting cardiologists in diagnosing cardiac diseases. The main objective of this study is to design a delineation model based on the encoder-decoder structure to detect different heartbeat waveforms, including P-waves, QRS complexes, T-waves, and No waves (NW), as well as the onset and offset of these waveforms. First, the introduction of a standard dilated convolution module (SDCM) into the encoder path enabled the model to extract more useful ECG signal-informative features. Subsequently, bidirectional long short-term memory (BiLSTM) was added to the encoding structure to obtain numerous temporal features. Moreover, the feature sets of the ECG signals at each level in the encoder path were connected to the decoder part for multi-scale decoding to mitigate the information loss caused by the pooling operation in the encoding process. Finally, the proposed model was trained and tested on both QT and LU databases, and it achieved accurate results compared to other state-of-the-art methods. Regarding the QT database, the average accuracy of ECG waveform classification was 96.90%, and an average classification accuracy of 95.40% was obtained on the LU database. In addition, average F1 values of 99.58% and 97.05% were achieved in the ECG delineation task of the QT and LU databases, respectively. The results show that the proposed ECG_SegNet model has good flexibility and reliability when applied to ECG delineation, and it is a reliable method for analyzing ECG signals in real-time.
With the increasing usage of wearable electrocardiogram (ECG) monitoring devices, it is necessary to develop models and algorithms that can analyze the large amounts of ECG data obtained in real-time. Accurate ECG delineation is key to assisting cardiologists in diagnosing cardiac diseases. The main objective of this study is to design a delineation model based on the encoder-decoder structure to detect different heartbeat waveforms, including P-waves, QRS complexes, T-waves, and No waves (NW), as well as the onset and offset of these waveforms. First, the introduction of a standard dilated convolution module (SDCM) into the encoder path enabled the model to extract more useful ECG signal-informative features. Subsequently, bidirectional long short-term memory (BiLSTM) was added to the encoding structure to obtain numerous temporal features. Moreover, the feature sets of the ECG signals at each level in the encoder path were connected to the decoder part for multi-scale decoding to mitigate the information loss caused by the pooling operation in the encoding process. Finally, the proposed model was trained and tested on both QT and LU databases, and it achieved accurate results compared to other state-of-the-art methods. Regarding the QT database, the average accuracy of ECG waveform classification was 96.90%, and an average classification accuracy of 95.40% was obtained on the LU database. In addition, average F1 values of 99.58% and 97.05% were achieved in the ECG delineation task of the QT and LU databases, respectively. The results show that the proposed ECG_SegNet model has good flexibility and reliability when applied to ECG delineation, and it is a reliable method for analyzing ECG signals in real-time.With the increasing usage of wearable electrocardiogram (ECG) monitoring devices, it is necessary to develop models and algorithms that can analyze the large amounts of ECG data obtained in real-time. Accurate ECG delineation is key to assisting cardiologists in diagnosing cardiac diseases. The main objective of this study is to design a delineation model based on the encoder-decoder structure to detect different heartbeat waveforms, including P-waves, QRS complexes, T-waves, and No waves (NW), as well as the onset and offset of these waveforms. First, the introduction of a standard dilated convolution module (SDCM) into the encoder path enabled the model to extract more useful ECG signal-informative features. Subsequently, bidirectional long short-term memory (BiLSTM) was added to the encoding structure to obtain numerous temporal features. Moreover, the feature sets of the ECG signals at each level in the encoder path were connected to the decoder part for multi-scale decoding to mitigate the information loss caused by the pooling operation in the encoding process. Finally, the proposed model was trained and tested on both QT and LU databases, and it achieved accurate results compared to other state-of-the-art methods. Regarding the QT database, the average accuracy of ECG waveform classification was 96.90%, and an average classification accuracy of 95.40% was obtained on the LU database. In addition, average F1 values of 99.58% and 97.05% were achieved in the ECG delineation task of the QT and LU databases, respectively. The results show that the proposed ECG_SegNet model has good flexibility and reliability when applied to ECG delineation, and it is a reliable method for analyzing ECG signals in real-time.
With the increasing usage of wearable electrocardiogram (ECG) monitoring devices, it is necessary to develop models and algorithms that can analyze the large amounts of ECG data obtained in real-time. Accurate ECG delineation is key to assisting cardiologists in diagnosing cardiac diseases. The main objective of this study is to design a delineation model based on the encoder-decoder structure to detect different heartbeat waveforms, including P-waves, QRS complexes, T-waves, and No waves (NW), as well as the onset and offset of these waveforms. First, the introduction of a standard dilated convolution module (SDCM) into the encoder path enabled the model to extract more useful ECG signal-informative features. Subsequently, bidirectional long short-term memory (BiLSTM) was added to the encoding structure to obtain numerous temporal features. Moreover, the feature sets of the ECG signals at each level in the encoder path were connected to the decoder part for multi-scale decoding to mitigate the information loss caused by the pooling operation in the encoding process. Finally, the proposed model was trained and tested on both QT and LU databases, and it achieved accurate results compared to other state-of-the-art methods. Regarding the QT database, the average accuracy of ECG waveform classification was 96.90%, and an average classification accuracy of 95.40% was obtained on the LU database. In addition, average F1 values of 99.58% and 97.05% were achieved in the ECG delineation task of the QT and LU databases, respectively. The results show that the proposed ECG_SegNet model has good flexibility and reliability when applied to ECG delineation, and it is a reliable method for analyzing ECG signals in real-time. •A model ECG_SegNet based on the encoder-decoder structure is proposed for ECG delineation.•The SDCM and the BiLSTM into the encoder part can extract additional contributing features to ECG delineation.•The ECG_SegNet can effectively restore the original ECG signal coarse-to-fine information by using multi-scale decoding.•The proposed model achieves better performance than other state-of-the-art methods.
AbstractWith the increasing usage of wearable electrocardiogram (ECG) monitoring devices, it is necessary to develop models and algorithms that can analyze the large amounts of ECG data obtained in real-time. Accurate ECG delineation is key to assisting cardiologists in diagnosing cardiac diseases. The main objective of this study is to design a delineation model based on the encoder-decoder structure to detect different heartbeat waveforms, including P-waves, QRS complexes, T-waves, and No waves (NW), as well as the onset and offset of these waveforms. First, the introduction of a standard dilated convolution module (SDCM) into the encoder path enabled the model to extract more useful ECG signal-informative features. Subsequently, bidirectional long short-term memory (BiLSTM) was added to the encoding structure to obtain numerous temporal features. Moreover, the feature sets of the ECG signals at each level in the encoder path were connected to the decoder part for multi-scale decoding to mitigate the information loss caused by the pooling operation in the encoding process. Finally, the proposed model was trained and tested on both QT and LU databases, and it achieved accurate results compared to other state-of-the-art methods. Regarding the QT database, the average accuracy of ECG waveform classification was 96.90%, and an average classification accuracy of 95.40% was obtained on the LU database. In addition, average F1 values of 99.58% and 97.05% were achieved in the ECG delineation task of the QT and LU databases, respectively. The results show that the proposed ECG_SegNet model has good flexibility and reliability when applied to ECG delineation, and it is a reliable method for analyzing ECG signals in real-time.
ArticleNumber 105445
Author Hu, Shunbo
Wang, Xinpei
Wang, Jikuo
Zhang, Huan
Sun, Chengfa
Li, Liping
Chen, Dan
Liu, Changchun
Liu, Yuanyuan
Liang, Xiaohong
Author_xml – sequence: 1
  givenname: Xiaohong
  surname: Liang
  fullname: Liang, Xiaohong
  organization: School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
– sequence: 2
  givenname: Liping
  surname: Li
  fullname: Li, Liping
  organization: College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
– sequence: 3
  givenname: Yuanyuan
  surname: Liu
  fullname: Liu, Yuanyuan
  email: liuyy@sdu.edu.cn
  organization: School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
– sequence: 4
  givenname: Dan
  surname: Chen
  fullname: Chen, Dan
  organization: Department of Cardiology Electrocardiogram Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
– sequence: 5
  givenname: Xinpei
  surname: Wang
  fullname: Wang, Xinpei
  organization: School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
– sequence: 6
  givenname: Shunbo
  orcidid: 0000-0002-1442-0976
  surname: Hu
  fullname: Hu, Shunbo
  organization: School of Information Science and Engineering, Linyi University, Linyi, Shandong, 276005, China
– sequence: 7
  givenname: Jikuo
  surname: Wang
  fullname: Wang, Jikuo
  organization: School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
– sequence: 8
  givenname: Huan
  surname: Zhang
  fullname: Zhang, Huan
  organization: School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
– sequence: 9
  givenname: Chengfa
  surname: Sun
  fullname: Sun, Chengfa
  organization: School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
– sequence: 10
  givenname: Changchun
  surname: Liu
  fullname: Liu, Changchun
  organization: School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35366468$$D View this record in MEDLINE/PubMed
BookMark eNqVkk9v1DAQxS1URLeFr4AiceGSZfwnjsMBUValVFRwaHu2EnsCXpJ4aztI_fZ4u2UrVUIqp9GMfvM0fs9H5GDyExJSUFhSoPLdemn8uOmcH9EuGTCWx5UQ1TOyoKpuSqi4OCALAAqlUKw6JEcxrgFAAIcX5JBXXEoh1YJ8PV2d6Uv88Q3T--JkKnJbWBzchG1yfipGn7uiayPaIrfpJxY4mTwMpcW7WsQUZpPmgC_J874dIr66r8fk-vPp1epLefH97Hx1clGaiopUql6h7KQ1tRHW2K6SteEtExSErRCU6UUDUlHWI-0l9I2CTvCad0CbmknLj8nbne4m-JsZY9KjiwaHoZ3Qz1Gz_LQ66zU0o28eoWs_hylflynJoaG1kJl6fU_NXXZUb4Ib23Cr_9qUAbUDTPAxBuz3CAW9TUSv9UMiepuI3iWSVz88WjUu3XmbQuuGpwh82glgtvS3w6CjcTkDtC6gSdp69x9X7EVMztiZdviFtxj3plAdmQZ9uf0524_DGADjNcsCH_8t8LQb_gARWNWb
CitedBy_id crossref_primary_10_1016_j_artmed_2024_102992
crossref_primary_10_1016_j_eswa_2025_127955
crossref_primary_10_1016_j_compbiomed_2025_110200
crossref_primary_10_3389_fcvm_2024_1341786
crossref_primary_10_1016_j_bspc_2025_107523
crossref_primary_10_3390_s24144645
crossref_primary_10_1016_j_compbiomed_2023_107903
crossref_primary_10_1016_j_engappai_2025_111894
crossref_primary_10_1007_s13246_023_01235_6
crossref_primary_10_1088_1361_6579_ad02da
crossref_primary_10_1016_j_compbiomed_2025_110927
crossref_primary_10_1016_j_bspc_2025_108608
crossref_primary_10_1109_TIM_2023_3338710
crossref_primary_10_3390_a18040236
crossref_primary_10_1016_j_compbiomed_2022_106110
crossref_primary_10_1109_ACCESS_2024_3417344
crossref_primary_10_1109_TBME_2024_3363077
crossref_primary_10_3390_s24216939
crossref_primary_10_1016_j_compbiomed_2024_109062
crossref_primary_10_1038_s41598_023_40965_1
crossref_primary_10_3390_s23042278
crossref_primary_10_1016_j_bspc_2023_105499
crossref_primary_10_1080_17434440_2022_2115887
crossref_primary_10_1109_TCE_2024_3423468
crossref_primary_10_1002_adfm_202509372
crossref_primary_10_1016_j_neunet_2025_108081
crossref_primary_10_1016_j_ijmedinf_2025_105803
crossref_primary_10_1007_s41870_024_02242_w
crossref_primary_10_1088_1361_6579_ad7ad4
crossref_primary_10_1007_s11042_022_13821_z
crossref_primary_10_1109_ACCESS_2023_3288700
Cites_doi 10.1109/ACCESS.2021.3092631
10.1109/TPAMI.2016.2644615
10.1016/j.patrec.2019.08.029
10.1007/s00034-013-9691-3
10.1109/72.279181
10.1109/ACCESS.2019.2915943
10.1109/78.650093
10.1016/j.jelectrocard.2018.02.007
10.1109/51.932724
10.1088/1361-6579/aae304
10.1016/j.eswa.2020.113911
10.1016/j.medengphy.2006.01.008
10.1109/ACCESS.2020.2997473
10.1016/j.bspc.2020.102162
10.1016/j.neunet.2005.06.042
10.18201/ijisae.2021167932
10.1109/TITB.2011.2163943
10.1016/j.imu.2020.100507
10.1109/JBHI.2017.2671443
10.1109/TGRS.2021.3106915
10.1109/ACCESS.2020.3029211
10.1016/j.future.2020.02.068
10.1088/1361-6579/abf7db
10.1152/ajpheart.2000.278.6.H2039
10.1109/ACCESS.2019.2955738
10.1016/j.measurement.2014.01.011
10.1162/neco.1997.9.8.1735
10.1016/S0893-6080(03)00138-2
10.1016/j.medengphy.2011.12.011
10.1016/j.engstruct.2021.113619
10.1016/j.knosys.2021.107508
10.1155/2010/926305
10.1006/cbmr.1994.1006
10.1016/j.procs.2020.04.056
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2022.105445
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
ProQuest Nursing and Allied Health Premium
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Research Library Prep


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 105445
ExternalDocumentID 35366468
10_1016_j_compbiomed_2022_105445
S0010482522002372
1_s2_0_S0010482522002372
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
9DU
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-8f8e6b6dc7c4dcdb567c3a24104d5e08cf4906812fe1f60f980b4373b019726d3
IEDL.DBID K7-
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000807517500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4825
1879-0534
IngestDate Sun Nov 09 11:22:43 EST 2025
Sat Nov 29 14:31:31 EST 2025
Wed Feb 19 02:26:16 EST 2025
Sat Nov 29 07:31:28 EST 2025
Tue Nov 18 22:31:38 EST 2025
Fri Feb 23 02:39:54 EST 2024
Tue Feb 25 20:03:26 EST 2025
Tue Oct 14 19:33:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords ECG delineation
Bidirectional long short-term memory (BiLSTM)
Electrocardiogram (ECG)
Encoder-decoder structure
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-8f8e6b6dc7c4dcdb567c3a24104d5e08cf4906812fe1f60f980b4373b019726d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1442-0976
PMID 35366468
PQID 2663091746
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2646724191
proquest_journals_2663091746
pubmed_primary_35366468
crossref_primary_10_1016_j_compbiomed_2022_105445
crossref_citationtrail_10_1016_j_compbiomed_2022_105445
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105445
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522002372
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105445
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Madeiro, Cortez, Marques (bib8) 2012; 34
Nemati, Malhotra, Clifford (bib57) 2010; 2010
Wilson, Martinez (bib45) 2003; 16
Bote, Recas, Rincon (bib28) 2018; 22
Liu, Yang, Li (bib36) 2014
Kingma, Ba (bib55) 2014; 1412.6980
Boichat, Khaled, Rincon (bib64) 2009
Illanes-Martriquez, Zhang (bib9) 2008
Kalyakulina, Yusipov, Moskalenko (bib26) 2020; 8
Graves, Jaitly (bib38) 2014
ECAR (bib56) 1987
Rangayyan (bib65) 2015
Ge, Jiang, Tong (bib32) 2021; 233
Abrishami, Han, Zhou, Campbell, Czosek (bib12) 2018
Du, Shen, Liu (bib47) 2021
Londhe, Atulkar (bib22) 2021; 63
Li, Wang, Chen (bib6) 2014; 33
Martinez, Almeida, Olmos (bib3) 2004; 51
Mitrokhin, Kuzmin, Mitrokhina (bib20) 2017
Nurmaini, Tondas, Darmawahyuni (bib13) 2021; 22
Pan, Tompkins (bib2) 1985; 32
Rincon, Recas, Khaled (bib63) 2011; 15
Moody, Mark (bib24) 2001; 20
Yu, Koltun (bib31) 2016
Peimankar, Puthusserypady (bib14) 2021; 165
Graves, Mohamed, Hinton (bib37) 2013
Ronneberger, Fischer, Brox (bib18) 2015
Cai, Hu (bib19) 2020; 8
Sodmann, Vollmer (bib15) 2020
Camps, Rodriguez, Minchole (bib60) 2018
He, Zhang, Zhang (bib44) 2019
Li, Zheng, Tai (bib4) 1995; 42
Arafat, Hasan (bib7) 2009
Yuen, Dong, Lu (bib42) 2019; 7
Hu, Liu, Wang (bib62) 2014; 51
Lguna, Jane, Caminal (bib29) 1994; 27
Chen, Shen (bib49) 2018
Isensee, Petersen, Klein (bib61) 2018
Bengio (bib39) 2002; 5
Sodmann, Vollmer, Nath (bib11) 2018; 39
Zhang, Yu, Ye (bib50) 2018
Badrinarayanan, Kendall, SegNet (bib25) 2017; 39
Keskar, Mudigere, Nocedal (bib68) 2016
Laguna, Mark, Goldberg (bib27) 1997
Hochreiter, Schmidhuber (bib40) 1997; 9
Madeiro, Cortez, Oliveira (bib5) 2007; 29
Sanchez-Martinez, Camara, Piella (bib10) 2019
Mahata, Das, Bandyopadhyay (bib35) 2019; 28
Kanani, Padole (bib51) 2020; 171
Jimenez-Perez, Alcaine, Camara (bib16) 2019
Yue, Ding, Zhao (bib54) 2022; 252
Ai, Mao, Luo (bib30) 2022; 60
Fotiadou, van Sloun, van Laar (bib33) 2021; 42
Smith, Kindermans, Ying (bib48) 2017
Graves, Schmidhuber (bib53) 2005; 18
Richman, Moorman (bib58) 2000; 278
Liang, Xu, Bao (bib43) 2019; 128
Liu, Sun, Chen (bib52) 2019; 7
Nurmaini, Darmawahyuni, Rachmatullah (bib59) 2021; 9
Schuster, Paliwal (bib41) 1997; 45
Jimenez-Perez, Alcaine, Camara (bib67) 2020
Shenasa (bib1) 2018; 51
Wang, Li, Li (bib21) 2020; 109
Clevert, Unterthiner, Hochreiter (bib34) 2015
Ehirli, Turan (bib23) 2021; 9
Hu (10.1016/j.compbiomed.2022.105445_bib62) 2014; 51
Bote (10.1016/j.compbiomed.2022.105445_bib28) 2018; 22
Graves (10.1016/j.compbiomed.2022.105445_bib53) 2005; 18
Keskar (10.1016/j.compbiomed.2022.105445_bib68) 2016
Liu (10.1016/j.compbiomed.2022.105445_bib36) 2014
Lguna (10.1016/j.compbiomed.2022.105445_bib29) 1994; 27
Nemati (10.1016/j.compbiomed.2022.105445_bib57) 2010; 2010
Li (10.1016/j.compbiomed.2022.105445_bib6) 2014; 33
Yu (10.1016/j.compbiomed.2022.105445_bib31) 2016
Wilson (10.1016/j.compbiomed.2022.105445_bib45) 2003; 16
Martinez (10.1016/j.compbiomed.2022.105445_bib3) 2004; 51
Abrishami (10.1016/j.compbiomed.2022.105445_bib12) 2018
Londhe (10.1016/j.compbiomed.2022.105445_bib22) 2021; 63
Jimenez-Perez (10.1016/j.compbiomed.2022.105445_bib67) 2020
Kalyakulina (10.1016/j.compbiomed.2022.105445_bib26) 2020; 8
Schuster (10.1016/j.compbiomed.2022.105445_bib41) 1997; 45
Kanani (10.1016/j.compbiomed.2022.105445_bib51) 2020; 171
Smith (10.1016/j.compbiomed.2022.105445_bib48) 2017
Ai (10.1016/j.compbiomed.2022.105445_bib30) 2022; 60
Ronneberger (10.1016/j.compbiomed.2022.105445_bib18) 2015
Liu (10.1016/j.compbiomed.2022.105445_bib52) 2019; 7
Li (10.1016/j.compbiomed.2022.105445_bib4) 1995; 42
Nurmaini (10.1016/j.compbiomed.2022.105445_bib13) 2021; 22
Sodmann (10.1016/j.compbiomed.2022.105445_bib15) 2020
Fotiadou (10.1016/j.compbiomed.2022.105445_bib33) 2021; 42
Chen (10.1016/j.compbiomed.2022.105445_bib49) 2018
Badrinarayanan (10.1016/j.compbiomed.2022.105445_bib25) 2017; 39
Nurmaini (10.1016/j.compbiomed.2022.105445_bib59) 2021; 9
Zhang (10.1016/j.compbiomed.2022.105445_bib50) 2018
Sanchez-Martinez (10.1016/j.compbiomed.2022.105445_bib10) 2019
Jimenez-Perez (10.1016/j.compbiomed.2022.105445_bib16) 2019
Graves (10.1016/j.compbiomed.2022.105445_bib37) 2013
ECAR (10.1016/j.compbiomed.2022.105445_bib56) 1987
He (10.1016/j.compbiomed.2022.105445_bib44) 2019
Laguna (10.1016/j.compbiomed.2022.105445_bib27) 1997
Clevert (10.1016/j.compbiomed.2022.105445_bib34) 2015
Shenasa (10.1016/j.compbiomed.2022.105445_bib1) 2018; 51
Yue (10.1016/j.compbiomed.2022.105445_bib54) 2022; 252
Richman (10.1016/j.compbiomed.2022.105445_bib58) 2000; 278
Isensee (10.1016/j.compbiomed.2022.105445_bib61) 2018
Rincon (10.1016/j.compbiomed.2022.105445_bib63) 2011; 15
Wang (10.1016/j.compbiomed.2022.105445_bib21) 2020; 109
Mahata (10.1016/j.compbiomed.2022.105445_bib35) 2019; 28
Rangayyan (10.1016/j.compbiomed.2022.105445_bib65) 2015
Illanes-Martriquez (10.1016/j.compbiomed.2022.105445_bib9) 2008
Mitrokhin (10.1016/j.compbiomed.2022.105445_bib20) 2017
Peimankar (10.1016/j.compbiomed.2022.105445_bib14) 2021; 165
Moody (10.1016/j.compbiomed.2022.105445_bib24) 2001; 20
Liang (10.1016/j.compbiomed.2022.105445_bib43) 2019; 128
Ge (10.1016/j.compbiomed.2022.105445_bib32) 2021; 233
Yuen (10.1016/j.compbiomed.2022.105445_bib42) 2019; 7
Kingma (10.1016/j.compbiomed.2022.105445_bib55) 2014; 1412.6980
Sodmann (10.1016/j.compbiomed.2022.105445_bib11) 2018; 39
Arafat (10.1016/j.compbiomed.2022.105445_bib7) 2009
Pan (10.1016/j.compbiomed.2022.105445_bib2) 1985; 32
Bengio (10.1016/j.compbiomed.2022.105445_bib39) 2002; 5
Graves (10.1016/j.compbiomed.2022.105445_bib38) 2014
Boichat (10.1016/j.compbiomed.2022.105445_bib64) 2009
Ehirli (10.1016/j.compbiomed.2022.105445_bib23) 2021; 9
Madeiro (10.1016/j.compbiomed.2022.105445_bib5) 2007; 29
Madeiro (10.1016/j.compbiomed.2022.105445_bib8) 2012; 34
Hochreiter (10.1016/j.compbiomed.2022.105445_bib40) 1997; 9
Camps (10.1016/j.compbiomed.2022.105445_bib60) 2018
Du (10.1016/j.compbiomed.2022.105445_bib47) 2021
Cai (10.1016/j.compbiomed.2022.105445_bib19) 2020; 8
References_xml – volume: 5
  start-page: 157
  year: 2002
  end-page: 166
  ident: bib39
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Network.
– volume: 252
  year: 2022
  ident: bib54
  article-title: Mechanics-Guided optimization of an LSTM network for real-time modeling of temperature-induced deflection of a cable-stayed bridge
  publication-title: Eng. Struct.
– volume: 63
  year: 2021
  ident: bib22
  article-title: Semantic segmentation of ECG waves using hybrid channel-mix convolutional and bidirectional LSTM
  publication-title: Biomed. Signal Process Control
– volume: 278
  start-page: H2039
  year: 2000
  end-page: H2049
  ident: bib58
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 51
  start-page: 428
  year: 2018
  end-page: 429
  ident: bib1
  article-title: Learning and teaching electrocardiography in the 21st century: a neglected art
  publication-title: J. Electrocardiol.
– volume: 7
  start-page: 60572
  year: 2019
  end-page: 60583
  ident: bib52
  article-title: Multi-Scale residual hierarchical dense networks for single image super-resolution
  publication-title: IEEE Access
– start-page: 47
  year: 2018
  end-page: 51
  ident: bib50
  article-title: ECG signal classification with deep learning for heart disease identification
– volume: 15
  start-page: 854
  year: 2011
  end-page: 863
  ident: bib63
  article-title: Development and evaluation of multilead wavelet-based ECG delineation algorithms for embedded wireless sensor nodes
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– start-page: 873
  year: 2021
  end-page: 879
  ident: bib47
  article-title: Dual batch size training: An efficient MGD adaptive batch size method
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: bib41
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
– year: 1987
  ident: bib56
  publication-title: Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithms
– volume: 18
  start-page: 602
  year: 2005
  end-page: 610
  ident: bib53
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Network.
– volume: 8
  start-page: 186181
  year: 2020
  end-page: 186190
  ident: bib26
  article-title: LUDB: a new open-access validation tool for electrocardiogram delineation algorithms
  publication-title: IEEE Access
– volume: 60
  year: 2022
  ident: bib30
  article-title: SAR target classification using the multikernel-size feature fusion-based convolutional neural network
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 109
  start-page: 56
  year: 2020
  end-page: 66
  ident: bib21
  article-title: A knowledge-based deep learning method for ECG signal delineation
  publication-title: Fut. Gen. Comput. Syst. Int. J. Esci.
– start-page: 256
  year: 2009
  end-page: 261
  ident: bib64
  article-title: Wavelet-based ECG delineation on a wearable embedded sensor platform
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib18
  publication-title: U-Net: Convolutional networks for biomedical image segmentation
– start-page: 6645
  year: 2013
  end-page: 6649
  ident: bib37
  article-title: Speech recognition with deep recurrent neural networks
– start-page: 71
  year: 2018
  end-page: 77
  ident: bib12
  article-title: Supervised ECG interval segmentation using LSTM neural network
– volume: 22
  start-page: 429
  year: 2018
  end-page: 441
  ident: bib28
  article-title: A modular low-complexity ECG delineation algorithm for real-time embedded systems
  publication-title: IEEE J. Biomed. Health Informat.
– volume: 29
  start-page: 26
  year: 2007
  end-page: 37
  ident: bib5
  article-title: A new approach to QRS segmentation based on wavelet bases and adaptive threshold technique
  publication-title: Med. Eng. Phys.
– volume: 8
  start-page: 97082
  year: 2020
  end-page: 97089
  ident: bib19
  article-title: QRS complex detection using novel deep learning neural networks
  publication-title: IEEE Access
– volume: 42
  year: 2021
  ident: bib33
  article-title: A dilated inception CNN-LSTM network for fetal heart rate estimation
  publication-title: Physiol. Meas.
– start-page: 1764
  year: 2014
  end-page: 1772
  ident: bib38
  article-title: Towards end-to-end speech recognition with recurrent neural networks
– volume: 7
  start-page: 169359
  year: 2019
  end-page: 169370
  ident: bib42
  article-title: Inter-Patient CNN-LSTM for QRS complex detection in noisy ECG signals
  publication-title: IEEE Access
– start-page: 558
  year: 2019
  end-page: 567
  ident: bib44
  publication-title: Bag of tricks for image classification with convolutional neural networks.
– start-page: 1
  year: 2020
  end-page: 4
  ident: bib15
  article-title: ECG segmentation using a neural network as the basis for detection of cardiac pathologies
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib60
  article-title: Deep learning based QRS multilead delineator in electrocardiogram signals
– volume: 28
  start-page: 447
  year: 2019
  end-page: 453
  ident: bib35
  article-title: MTIL2017: machine translation using recurrent neural network on statistical machine translation
  publication-title: J. Intell. Syst.
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 10
  ident: bib57
  article-title: Data fusion for improved respiration rate estimation
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 1412.6980
  year: 2014
  ident: bib55
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint arXiv
– volume: 42
  start-page: 21
  year: 1995
  end-page: 28
  ident: bib4
  article-title: Detection of ECG characteristic points using wavelet transforms
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– year: 2016
  ident: bib68
  article-title: On large-batch training for deep learning: Generalization gap and sharp minima
  publication-title: arXiv preprint arXiv:1609.04836
– volume: 9
  start-page: 12
  year: 2021
  end-page: 21
  ident: bib23
  article-title: A novel method for segmentation of QRS complex on ECG signals and classification of cardiovascular diseases via a hybrid model based on machine learning
  publication-title: Int. J. Intell. Syst. Appl. Eng.
– volume: 27
  start-page: 45
  year: 1994
  end-page: 60
  ident: bib29
  article-title: Automatic detection of wave boundaries in multilead ECG signals-Validation with the CSE database
  publication-title: Comput. Biomed. Res.
– volume: 51
  start-page: 570
  year: 2004
  end-page: 581
  ident: bib3
  article-title: A wavelet-based ECG delineator: evaluation on standard databases
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– start-page: 673
  year: 1997
  end-page: 676
  ident: bib27
  article-title: A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bib25
  article-title: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 34
  start-page: 1236
  year: 2012
  end-page: 1246
  ident: bib8
  article-title: An innovative approach of QRS segmentation based on first-derivative, hilbert and wavelet transforms
  publication-title: Med. Eng. Phys.
– year: 2017
  ident: bib48
  article-title: Don’t decay the learning rate, increase the batch size
  publication-title: arXiv preprint arXiv:1711.00489
– start-page: 1
  year: 2019
  end-page: 4
  ident: bib16
  article-title: U-Net architecture for the automatic detection and delineation of the electrocardiogram
– year: 2020
  ident: bib67
  article-title: ECG-DelNet: Delineation of ambulatory electrocardiograms with mixed quality labeling using neural networks
  publication-title: arXiv preprint arXiv:2005.05236
– year: 2016
  ident: bib31
  article-title: Multi-scale context aggregation by dilated convolutions
– year: 2019
  ident: bib10
  article-title: Machine learning for clinical decision-making: challenges and opportunities
– volume: 128
  start-page: 197
  year: 2019
  end-page: 203
  ident: bib43
  article-title: Barzilai-Borwein-based adaptive learning rate for deep learning
  publication-title: Pattern Recogn. Lett.
– volume: 32
  start-page: 230
  year: 1985
  end-page: 236
  ident: bib2
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: bib24
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 51
  start-page: 53
  year: 2014
  end-page: 62
  ident: bib62
  article-title: Automatic detection of onset and offset of QRS complexes independent of isoelectric segments
  publication-title: Measurement
– year: 2018
  ident: bib61
  article-title: nnU-Net: Self-adapting framework for U-Net-Based medical image segmentation
  publication-title: arXiv preprint arXiv:1809.10486
– start-page: 340
  year: 2018
  end-page: 344
  ident: bib49
  article-title: The effect of kernel size of CNNs for lung nodule classification
– volume: 39
  year: 2018
  ident: bib11
  article-title: A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms
  publication-title: Physiol. Meas.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib40
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 16
  start-page: 1429
  year: 2003
  end-page: 1451
  ident: bib45
  article-title: The general inefficiency of batch training for gradient descent learning
  publication-title: Neural Network.
– volume: 9
  start-page: 92600
  year: 2021
  end-page: 92613
  ident: bib59
  article-title: Beat-to-Beat electrocardiogram waveform classification based on a stacked convolutional and bidirectional long short-term memory
  publication-title: IEEE Access
– volume: 22
  start-page: 100507
  year: 2021
  end-page: 100511
  ident: bib13
  article-title: Electrocardiogram signal classification for automated delineation using bidirectional long short-term memory
  publication-title: Informat. Med. Unlocked
– year: 2015
  ident: bib34
  article-title: Fast and accurate deep network learning by Exponential Linear Units (ELUs)
  publication-title: arXiv preprint arXiv:1511.07289
– start-page: 857
  year: 2008
  end-page: 860
  ident: bib9
  article-title: An algorithm for robust detection of QRS onset and offset in ECG signals
– year: 2015
  ident: bib65
  article-title: Biomedical signal analysis
– volume: 33
  start-page: 1261
  year: 2014
  end-page: 1276
  ident: bib6
  article-title: Denoising and R-peak detection of electrocardiogram signal based on EMD and improved approximate envelope
  publication-title: Circ. Syst. Signal Process.
– volume: 233
  year: 2021
  ident: bib32
  article-title: Multi-label correlation guided feature fusion network for abnormal ECG diagnosis
  publication-title: Knowl. Base Syst.
– volume: 165
  start-page: 113911
  year: 2021
  ident: bib14
  article-title: DENS-ECG: A deep learning approach for ECG signal delineation
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2017
  end-page: 3
  ident: bib20
  publication-title: Deep learning approach for QRS wave detection in ECG monitoring.
– start-page: 1491
  year: 2014
  end-page: 1500
  ident: bib36
  article-title: A recursive recurrent neural network for statistical machine translation
– volume: 171
  start-page: 524
  year: 2020
  end-page: 531
  ident: bib51
  article-title: ECG heartbeat arrhythmia classification using time-series augmented signals and deep learning approach
  publication-title: Procedia Comput. Sci.
– start-page: 461
  year: 2009
  end-page: 464
  ident: bib7
  article-title: Automatic detection of ECG wave boundaries using empirical mode decomposition
– volume: 9
  start-page: 92600
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105445_bib59
  article-title: Beat-to-Beat electrocardiogram waveform classification based on a stacked convolutional and bidirectional long short-term memory
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3092631
– year: 2016
  ident: 10.1016/j.compbiomed.2022.105445_bib31
  article-title: Multi-scale context aggregation by dilated convolutions
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105445_bib25
  article-title: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 128
  start-page: 197
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105445_bib43
  article-title: Barzilai-Borwein-based adaptive learning rate for deep learning
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.08.029
– volume: 28
  start-page: 447
  issue: 3
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105445_bib35
  article-title: MTIL2017: machine translation using recurrent neural network on statistical machine translation
  publication-title: J. Intell. Syst.
– volume: 33
  start-page: 1261
  issue: 4
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105445_bib6
  article-title: Denoising and R-peak detection of electrocardiogram signal based on EMD and improved approximate envelope
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-013-9691-3
– start-page: 857
  year: 2008
  ident: 10.1016/j.compbiomed.2022.105445_bib9
– volume: 5
  start-page: 157
  issue: 2
  year: 2002
  ident: 10.1016/j.compbiomed.2022.105445_bib39
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/72.279181
– volume: 7
  start-page: 60572
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105445_bib52
  article-title: Multi-Scale residual hierarchical dense networks for single image super-resolution
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915943
– start-page: 1491
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105445_bib36
– start-page: 6645
  year: 2013
  ident: 10.1016/j.compbiomed.2022.105445_bib37
  article-title: Speech recognition with deep recurrent neural networks
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  ident: 10.1016/j.compbiomed.2022.105445_bib41
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– volume: 51
  start-page: 428
  issue: 3
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105445_bib1
  article-title: Learning and teaching electrocardiography in the 21st century: a neglected art
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2018.02.007
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105445_bib60
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.compbiomed.2022.105445_bib24
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– volume: 39
  issue: 10
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105445_bib11
  article-title: A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aae304
– year: 2017
  ident: 10.1016/j.compbiomed.2022.105445_bib48
  article-title: Don’t decay the learning rate, increase the batch size
  publication-title: arXiv preprint arXiv:1711.00489
– start-page: 673
  year: 1997
  ident: 10.1016/j.compbiomed.2022.105445_bib27
  article-title: A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG
– year: 2015
  ident: 10.1016/j.compbiomed.2022.105445_bib65
– start-page: 71
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105445_bib12
  article-title: Supervised ECG interval segmentation using LSTM neural network
– volume: 165
  start-page: 113911
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105445_bib14
  article-title: DENS-ECG: A deep learning approach for ECG signal delineation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113911
– year: 2020
  ident: 10.1016/j.compbiomed.2022.105445_bib67
  article-title: ECG-DelNet: Delineation of ambulatory electrocardiograms with mixed quality labeling using neural networks
  publication-title: arXiv preprint arXiv:2005.05236
– volume: 29
  start-page: 26
  issue: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2022.105445_bib5
  article-title: A new approach to QRS segmentation based on wavelet bases and adaptive threshold technique
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2006.01.008
– volume: 8
  start-page: 97082
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105445_bib19
  article-title: QRS complex detection using novel deep learning neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997473
– year: 2016
  ident: 10.1016/j.compbiomed.2022.105445_bib68
  article-title: On large-batch training for deep learning: Generalization gap and sharp minima
  publication-title: arXiv preprint arXiv:1609.04836
– volume: 63
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105445_bib22
  article-title: Semantic segmentation of ECG waves using hybrid channel-mix convolutional and bidirectional LSTM
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2020.102162
– start-page: 461
  year: 2009
  ident: 10.1016/j.compbiomed.2022.105445_bib7
  article-title: Automatic detection of ECG wave boundaries using empirical mode decomposition
– volume: 18
  start-page: 602
  issue: 5–6
  year: 2005
  ident: 10.1016/j.compbiomed.2022.105445_bib53
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2005.06.042
– start-page: 1764
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105445_bib38
  article-title: Towards end-to-end speech recognition with recurrent neural networks
– volume: 32
  start-page: 230
  issue: 3
  year: 1985
  ident: 10.1016/j.compbiomed.2022.105445_bib2
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 42
  start-page: 21
  issue: 1
  year: 1995
  ident: 10.1016/j.compbiomed.2022.105445_bib4
  article-title: Detection of ECG characteristic points using wavelet transforms
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105445_bib20
– volume: 9
  start-page: 12
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105445_bib23
  article-title: A novel method for segmentation of QRS complex on ECG signals and classification of cardiovascular diseases via a hybrid model based on machine learning
  publication-title: Int. J. Intell. Syst. Appl. Eng.
  doi: 10.18201/ijisae.2021167932
– year: 1987
  ident: 10.1016/j.compbiomed.2022.105445_bib56
– volume: 15
  start-page: 854
  issue: 6
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105445_bib63
  article-title: Development and evaluation of multilead wavelet-based ECG delineation algorithms for embedded wireless sensor nodes
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2163943
– start-page: 340
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105445_bib49
  article-title: The effect of kernel size of CNNs for lung nodule classification
– volume: 22
  start-page: 100507
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105445_bib13
  article-title: Electrocardiogram signal classification for automated delineation using bidirectional long short-term memory
  publication-title: Informat. Med. Unlocked
  doi: 10.1016/j.imu.2020.100507
– volume: 22
  start-page: 429
  issue: 2
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105445_bib28
  article-title: A modular low-complexity ECG delineation algorithm for real-time embedded systems
  publication-title: IEEE J. Biomed. Health Informat.
  doi: 10.1109/JBHI.2017.2671443
– volume: 60
  year: 2022
  ident: 10.1016/j.compbiomed.2022.105445_bib30
  article-title: SAR target classification using the multikernel-size feature fusion-based convolutional neural network
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2021.3106915
– volume: 8
  start-page: 186181
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105445_bib26
  article-title: LUDB: a new open-access validation tool for electrocardiogram delineation algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029211
– year: 2019
  ident: 10.1016/j.compbiomed.2022.105445_bib10
– volume: 109
  start-page: 56
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105445_bib21
  article-title: A knowledge-based deep learning method for ECG signal delineation
  publication-title: Fut. Gen. Comput. Syst. Int. J. Esci.
  doi: 10.1016/j.future.2020.02.068
– volume: 42
  issue: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105445_bib33
  article-title: A dilated inception CNN-LSTM network for fetal heart rate estimation
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/abf7db
– volume: 278
  start-page: H2039
  issue: 6
  year: 2000
  ident: 10.1016/j.compbiomed.2022.105445_bib58
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 7
  start-page: 169359
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105445_bib42
  article-title: Inter-Patient CNN-LSTM for QRS complex detection in noisy ECG signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955738
– start-page: 234
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105445_bib18
– start-page: 873
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105445_bib47
– start-page: 558
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105445_bib44
– volume: 51
  start-page: 53
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105445_bib62
  article-title: Automatic detection of onset and offset of QRS complexes independent of isoelectric segments
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.01.011
– volume: 51
  start-page: 570
  issue: 4
  year: 2004
  ident: 10.1016/j.compbiomed.2022.105445_bib3
  article-title: A wavelet-based ECG delineator: evaluation on standard databases
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.compbiomed.2022.105445_bib40
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– year: 2018
  ident: 10.1016/j.compbiomed.2022.105445_bib61
  article-title: nnU-Net: Self-adapting framework for U-Net-Based medical image segmentation
  publication-title: arXiv preprint arXiv:1809.10486
– volume: 16
  start-page: 1429
  issue: 10
  year: 2003
  ident: 10.1016/j.compbiomed.2022.105445_bib45
  article-title: The general inefficiency of batch training for gradient descent learning
  publication-title: Neural Network.
  doi: 10.1016/S0893-6080(03)00138-2
– volume: 34
  start-page: 1236
  issue: 9
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105445_bib8
  article-title: An innovative approach of QRS segmentation based on first-derivative, hilbert and wavelet transforms
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.12.011
– volume: 252
  year: 2022
  ident: 10.1016/j.compbiomed.2022.105445_bib54
  article-title: Mechanics-Guided optimization of an LSTM network for real-time modeling of temperature-induced deflection of a cable-stayed bridge
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.113619
– start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105445_bib16
  article-title: U-Net architecture for the automatic detection and delineation of the electrocardiogram
– volume: 233
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105445_bib32
  article-title: Multi-label correlation guided feature fusion network for abnormal ECG diagnosis
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2021.107508
– volume: 2010
  start-page: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2022.105445_bib57
  article-title: Data fusion for improved respiration rate estimation
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/2010/926305
– start-page: 256
  year: 2009
  ident: 10.1016/j.compbiomed.2022.105445_bib64
– volume: 1412.6980
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105445_bib55
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint arXiv
– start-page: 47
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105445_bib50
  article-title: ECG signal classification with deep learning for heart disease identification
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105445_bib15
  article-title: ECG segmentation using a neural network as the basis for detection of cardiac pathologies
– volume: 27
  start-page: 45
  issue: 1
  year: 1994
  ident: 10.1016/j.compbiomed.2022.105445_bib29
  article-title: Automatic detection of wave boundaries in multilead ECG signals-Validation with the CSE database
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1994.1006
– year: 2015
  ident: 10.1016/j.compbiomed.2022.105445_bib34
  article-title: Fast and accurate deep network learning by Exponential Linear Units (ELUs)
  publication-title: arXiv preprint arXiv:1511.07289
– volume: 171
  start-page: 524
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105445_bib51
  article-title: ECG heartbeat arrhythmia classification using time-series augmented signals and deep learning approach
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.04.056
SSID ssj0004030
Score 2.4997926
Snippet With the increasing usage of wearable electrocardiogram (ECG) monitoring devices, it is necessary to develop models and algorithms that can analyze the large...
AbstractWith the increasing usage of wearable electrocardiogram (ECG) monitoring devices, it is necessary to develop models and algorithms that can analyze the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105445
SubjectTerms Algorithms
Arrhythmias, Cardiac
Bidirectional long short-term memory (BiLSTM)
Cardiology
Classification
Coders
Coronary artery disease
Decoding
Deep learning
Delineation
ECG delineation
EKG
Electrocardiogram (ECG)
Electrocardiography
Electrocardiography - methods
Encoder-decoder structure
Encoders-Decoders
Feature extraction
Heart diseases
Humans
Internal Medicine
Long short-term memory
Noise
Other
P waves
Real time
Reproducibility of Results
Semantics
Signal processing
Signal Processing, Computer-Assisted
Temporal variations
Waveforms
Wavelet transforms
Title ECG_SegNet: An ECG delineation model based on the encoder-decoder structure
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522002372
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522002372
https://dx.doi.org/10.1016/j.compbiomed.2022.105445
https://www.ncbi.nlm.nih.gov/pubmed/35366468
https://www.proquest.com/docview/2663091746
https://www.proquest.com/docview/2646724191
Volume 145
WOSCitedRecordID wos000807517500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database (ProQuest)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: P5Z
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: K7-
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8MQ2hHjhawwKozISr9ESO4kdeEBj6pi0rVQbTBUvVmI7CITS0XT8fu5iJ30ZqBIvF0XOJbHvcnfOfQG8qaQTEqVjVEtyM9o0jyqbycgp3AKRJ67oekZencnpVM3nxSz8cGtDWGUvEztBbReG_pEfoCIRqNtkmr-__hVR1yjyroYWGluwk3CeEJ-fymidFxkLn4KCsibFrVCI5PHxXRSy7VPccZfIOTW8TSmp6Xb19Dfzs1NDxw__dwKP4EEwQNmh55jHcMc1T-DeeXCx78Lp5OijvnTfpm71lh02DE-ZpaR1b1yyrnUOI-VnGZ6i_cioFqZ1y8i67sh8TdqbpXsKX44nn49OotBxITJoOK0iVSuXV7k10qTW2CrLpRElKvk4tZmLlanTIqaKZbVL6jyuCxVXVBupiql7WW7FHmw3i8Y9BxZLp9KyxElbXFZVqaKsCiFQtvLS2DwZgewXWptQjpy6YvzUfdzZD70mkSYSaU-iESQD5rUvybEBTtHTUvcppygkNeqNDXDlbbiuDV97qxPdch3ry67YEfIZp8gXIfkI3g2YwaDxhsqGz93vGUkPj1pz0QheD8MoEsjPUzZucUPXoPZDohW4yM88sw4LJTKR47B68e-bv4T79CY-Jm4ftpFv3Cu4a36vvrfLMWzJiyuCc9lBNYadD5Pp7GLcfX8Iz_kngnKGcJZ9_QN_djOG
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgqAXyrsLBYwExwhvnLUdEKqq0tJqtyukFrQ3k9gOAqFsu9m26p_iNzITJ9lLQXvpgVNkJZOH_Xm-cTwPgNe58kKhdowKRduMLpFR7gYq8hqXQLQTl9Y1I7-O1HisJ5P08wr8bmNhyK2y1Ym1onZTS__I3yKRCOQ2lcitk9OIqkbR7mpbQiPAYugvL3DJVn04-Ijj-yaO93aPd_ajpqpAZNE4mEe60F7m0lllE2ddPpDKigyJjCdu4Lm2RZJyyspV-H4heZFqnlP-n5xThS7pBN73BtxEPa7IhUxN1CIOk4sQ8oK6LcGlV-M5FPzJyEU8hNTjqjSOqcBuQkFUV9Ph38zdmvb21v-3DrsHdxsDm22HGXEfVnz5AG4fNi4ED2G4u_PJHPnvYz9_x7ZLhk3mKCg_GM-sLg3EiNwdwybax4xyfTo_i5yvjyzk3D2b-Ufw5Vo-5TGsltPSbwDjyusky7CTHQ6jznWa5akQyB1xZp3s90C1A2tsk26dqn78Mq1f3U-zgIQhSJgAiR70O8mTkHJkCZm0xY5pQ2qRBAzy4hKy6ipZXzXarDJ9U8WGm6M6mRPiOibPHqHiHrzvJBuDLRhiSz53swWu6R61QG0PXnWnUeXRPlZW-ukZXYPsjoOWYic_CZOj6ygxEBJP66f_vvlLuLN_fDgyo4Px8Bms0VsF_79NWEUM-edwy57Pf1SzF_UMZ_DtumfIHy5piJc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvB8LBYwEx6jeOIltEEJV24Vqy2qlAqp6MYntVEUoWzZbEH-NX8dMnGQvBe2lB05RlEzi2DPzzcTzAHhRSC8kaseolLTN6JIsKlwqI6_QBaKdON30jPx8ICcTdXSkp2vwu8uFobDKTic2itrNLP0j30IgEYhtMsm2yjYsYro7env2PaIOUrTT2rXTCCwy9r9-ovtWv9nfxbV-GcejvY8776O2w0Bk0VBYRKpUPisyZ6VNnHVFmkkrcgQ1nrjUc2XLRHOq0FX6YZnxUiteUC2gglO3rswJfO4VuIqD0uT4TdPjZU4mFyH9BfVcgm5YG0UUYssoXDyk16OHGsfUbDehhKqLofFvpm8DgaOb__Pk3YIbreHNtoOk3IY1X92BjQ9taMFdGO_tvDOH_mTiF6_YdsXwlDlK1g9GNWtaBjECfcfwFO1mRjVAnZ9HzjdHFmrxns_9Pfh0KZ9yH9arWeUfAuPSqyTPccIdLqkqlM4LLQRiSpxblw0HILtFNrYtw07dQL6ZLt7uq1myhyH2MIE9BjDsKc9CKZIVaHTHR6ZLtUVwMIiXK9DKi2h93Wq52gxNHRtuDpsiT8jjMUX8CBkP4HVP2RpywUBb8b2bHROb_lVLDh7A8_4yqkLa38orPzunexD1cdE0TvKDICj9RIlUZHhZPfr3w5_BBgqGOdifjB_DdRpUCAvchHVkIf8Ertkfi9N6_rQRdgZfLltA_gCS4JGK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG_SegNet%3A+An+ECG+delineation+model+based+on+the+encoder-decoder+structure&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Liang%2C+Xiaohong&rft.au=Li%2C+Liping&rft.au=Liu%2C+Yuanyuan&rft.au=Chen%2C+Dan&rft.date=2022-06-01&rft.issn=0010-4825&rft.volume=145&rft.spage=105445&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105445&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2022_105445
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon