Automatic identification of schizophrenia based on EEG signals using dynamic functional connectivity analysis and 3D convolutional neural network

Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine Jg. 160; S. 107022
Hauptverfasser: Shen, Mingkan, Wen, Peng, Song, Bo, Li, Yan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.06.2023
Elsevier Limited
Schlagworte:
ISSN:0010-4825, 1879-0534, 1879-0534
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8–12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects. •The time-frequency domain functional connectivity calculated by continuous wavelet transform (CWT) and cross mutual information (CMI) is firstly used in schizophrenia identification and the frequency resolution is selected in 1 Hz in this experiment.•Sliding window technique is proposed to extend the functional connectivity to time-varying functional connectivity for exploring dynamic properties of resting-state function connectivity in EEG.•To reduce the computational cost, graph theory measures of complex brain network analysis are used to select brain rhythms and find alpha band (8–12 Hz) is the significance frequency band for schizophrenia (ScZ) identification work.•The 3D-CNN models are applied to classify the ScZ subjects and health control subjects and achieved a result of 97.74 ± 1.15% in accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity.•Furthermore, we analysed the CMI values in the whole connectivity and found not only the default mode network (DMN) region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side has significant difference between the ScZ and healthy control (HC) subjects.
AbstractList AbstractSchizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8–12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects.
Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8-12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects.
Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8–12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects. •The time-frequency domain functional connectivity calculated by continuous wavelet transform (CWT) and cross mutual information (CMI) is firstly used in schizophrenia identification and the frequency resolution is selected in 1 Hz in this experiment.•Sliding window technique is proposed to extend the functional connectivity to time-varying functional connectivity for exploring dynamic properties of resting-state function connectivity in EEG.•To reduce the computational cost, graph theory measures of complex brain network analysis are used to select brain rhythms and find alpha band (8–12 Hz) is the significance frequency band for schizophrenia (ScZ) identification work.•The 3D-CNN models are applied to classify the ScZ subjects and health control subjects and achieved a result of 97.74 ± 1.15% in accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity.•Furthermore, we analysed the CMI values in the whole connectivity and found not only the default mode network (DMN) region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side has significant difference between the ScZ and healthy control (HC) subjects.
Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8–12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects.
Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8-12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects.Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8-12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects.
ArticleNumber 107022
Author Wen, Peng
Shen, Mingkan
Song, Bo
Li, Yan
Author_xml – sequence: 1
  givenname: Mingkan
  orcidid: 0000-0002-6770-4366
  surname: Shen
  fullname: Shen, Mingkan
  email: Mingkan.Shen@usq.edu.au
  organization: School of Engineering, University of Southern Queensland, Toowoomba, Australia
– sequence: 2
  givenname: Peng
  surname: Wen
  fullname: Wen, Peng
  organization: School of Engineering, University of Southern Queensland, Toowoomba, Australia
– sequence: 3
  givenname: Bo
  surname: Song
  fullname: Song, Bo
  organization: School of Engineering, University of Southern Queensland, Toowoomba, Australia
– sequence: 4
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37187135$$D View this record in MEDLINE/PubMed
BookMark eNqNktFu0zAUhi00xLrBKyBL3HCTYjt2k9xMbKMMpElcANeWax9v7hK72ElReAveGGftQKqE1CvH9ne-JOc_Z-jEBw8IYUrmlNDFu_Vch26zcqEDM2eElfm4Iow9QzNaV01BRMlP0IwQSgpeM3GKzlJaE0I4KckLdFpWGaOlmKHfl0MfOtU7jZ0B3zvrdN4Fj4PFSd-7X2FzH8E7hVcqgcH5Zrm8wcndedUmPCTn77AZveqywg5eT8WqxTp4D3mzdf2IVT4Zk0v5weDyw3S5De2wRz0M8XHpf4b48BI9t9kMr_brOfr-cfnt-lNx--Xm8_XlbaEF5X1RKbYQtiFGARegG1ob1UAjbK0qDrRZmEoJToQg3ArOjV3oRV2DtpURVtBVeY7e7rybGH4MkHrZuaShbZWHMCTJasoFE6JqMvrmAF2HIU7_P1Gi4UzwiXq9p4ZVzkVuoutUHOVTszNwsQN0DClFsFK7_rHZfVSulZTIKV25lv_SlVO6cpduFtQHgqd3HFF6tSuF3NKtgyiTduA1GBdzTNIEd4zk4kCiW-fzwLQPMEL62xQqE5NEfp3mbxo_VubJqyuSBe__LzjuG_4AWqbycQ
CitedBy_id crossref_primary_10_1088_1741_2552_adba8c
crossref_primary_10_3389_fnhum_2024_1347082
crossref_primary_10_1016_j_compbiomed_2024_108862
crossref_primary_10_1007_s10489_024_05669_7
crossref_primary_10_1016_j_asoc_2025_113253
crossref_primary_10_7717_peerj_17078
crossref_primary_10_1016_j_compbiomed_2025_111041
crossref_primary_10_1016_j_engappai_2025_111294
crossref_primary_10_3389_fnhum_2025_1530291
crossref_primary_10_1109_TIM_2025_3552448
crossref_primary_10_1016_j_bspc_2024_106202
crossref_primary_10_1016_j_bspc_2023_105815
crossref_primary_10_3390_app14125048
crossref_primary_10_1007_s41939_024_00612_2
crossref_primary_10_1016_j_bspc_2025_107717
crossref_primary_10_1016_j_heliyon_2024_e31827
crossref_primary_10_1016_j_chaos_2025_116401
crossref_primary_10_1007_s11831_023_10047_6
Cites_doi 10.1016/j.physa.2018.05.009
10.1073/pnas.98.2.676
10.3389/fnins.2021.651439
10.5298/1081-5937-38.1.9
10.1016/S0920-9964(01)00163-3
10.1093/schbul/sbp034
10.3389/fnbeh.2018.00319
10.1093/schbul/sby077
10.1038/s41598-019-46111-0
10.1016/j.schres.2018.04.043
10.1109/JBHI.2019.2941222
10.1097/RMR.0000000000000214
10.1155/2022/1992596
10.1016/j.eswa.2021.116230
10.3390/jcm9123934
10.1007/s10527-013-9357-2
10.1016/j.neuroimage.2007.11.014
10.1109/TNSRE.2021.3105669
10.1088/1741-2552/ab0ab5
10.1016/j.bspc.2022.104242
10.1016/j.neuroimage.2009.02.006
10.1089/brain.2016.0468
10.3389/fneur.2019.00721
10.1016/j.neuroimage.2009.10.003
10.1109/TNSRE.2021.3075737
10.1007/s10747-005-0042-z
10.1016/j.schres.2008.04.008
10.1016/j.schres.2019.10.056
10.1016/j.neucom.2019.04.058
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
2023. Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
– notice: 2023. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.107022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database ProQuest
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database ProQuest
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Research Library Prep

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 107022
ExternalDocumentID 37187135
10_1016_j_compbiomed_2023_107022
S0010482523004870
1_s2_0_S0010482523004870
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
9DU
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c514t-7a265f90dae45ec918da9e95f8a74e196d7a5405504f544df6c688ecf7d5f51b3
IEDL.DBID M7P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001007627800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 03:07:13 EDT 2025
Sat Nov 29 14:26:14 EST 2025
Wed Feb 19 02:23:42 EST 2025
Sat Nov 29 07:34:56 EST 2025
Tue Nov 18 22:14:43 EST 2025
Fri Feb 23 02:35:17 EST 2024
Tue Feb 25 20:12:01 EST 2025
Tue Oct 14 19:33:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Default mode network
ScZ
Cross mutual information
EEG
3D convolutional neural network
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-7a265f90dae45ec918da9e95f8a74e196d7a5405504f544df6c688ecf7d5f51b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6770-4366
PMID 37187135
PQID 2815942549
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2814525579
proquest_journals_2815942549
pubmed_primary_37187135
crossref_citationtrail_10_1016_j_compbiomed_2023_107022
crossref_primary_10_1016_j_compbiomed_2023_107022
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107022
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523004870
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107022
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Panischev (bib25) 2013; 47
Craik, He, Contreras-Vidal (bib7) 2019; 16
Borisov (bib30) 2005; 31
Zhang (bib16) 2020; 215
Sun (bib36) 2019; 45
Chen, Song, Li (bib13) 2019; 356
Seitzman (bib33) 2019; 28
Rubinov, Sporns (bib31) 2010; 52
Chang (bib28) 2021; 29
Van Mierlo (bib10) 2019; 10
Aslan, Akın (bib37) 2020
Siuly (bib21) 2023
Gomez-Pilar (bib5) 2018; 201
Raichle (bib15) 2001; 98
Kaiser (bib34) 2010; 38
Pacific, W. and S.A.W. Hasan, Magnitude and Impact.
Fan (bib17) 2018; 12
Sairamya, Subathra, George (bib22) 2022; 192
Krukow (bib2) 2019; 9
Shoeibi (bib19) 2021
Koessler (bib35) 2009; 46
Rossell, Batty (bib3) 2008; 102
Yu (bib11) 2018; 506
Kim, Lee, Lee (bib24) 2020; 9
Shenton (bib1) 2001; 49
de Miras (bib23) 2023; 79
Gorbachevskaya, Borisov (bib29) 2002
Naira, Alberto (bib27) 2020
Brown, Thompson (bib8) 2010
Phang (bib18) 2019; 24
Kaushal (bib32) 2017; 7
Simonsen (bib4) 2011; 37
Zhao (bib26) 2021; 15
Ho (bib9) 2008; 40
Shen (bib14) 2023; 79
Khan (bib12) 2021; 29
Siuly (bib20) 2022; 2022
Borisov (10.1016/j.compbiomed.2023.107022_bib30) 2005; 31
Sairamya (10.1016/j.compbiomed.2023.107022_bib22) 2022; 192
Fan (10.1016/j.compbiomed.2023.107022_bib17) 2018; 12
Naira (10.1016/j.compbiomed.2023.107022_bib27) 2020
Kaiser (10.1016/j.compbiomed.2023.107022_bib34) 2010; 38
de Miras (10.1016/j.compbiomed.2023.107022_bib23) 2023; 79
Panischev (10.1016/j.compbiomed.2023.107022_bib25) 2013; 47
10.1016/j.compbiomed.2023.107022_bib6
Seitzman (10.1016/j.compbiomed.2023.107022_bib33) 2019; 28
Chen (10.1016/j.compbiomed.2023.107022_bib13) 2019; 356
Rossell (10.1016/j.compbiomed.2023.107022_bib3) 2008; 102
Zhang (10.1016/j.compbiomed.2023.107022_bib16) 2020; 215
Phang (10.1016/j.compbiomed.2023.107022_bib18) 2019; 24
Koessler (10.1016/j.compbiomed.2023.107022_bib35) 2009; 46
Raichle (10.1016/j.compbiomed.2023.107022_bib15) 2001; 98
Kaushal (10.1016/j.compbiomed.2023.107022_bib32) 2017; 7
Siuly (10.1016/j.compbiomed.2023.107022_bib20) 2022; 2022
Craik (10.1016/j.compbiomed.2023.107022_bib7) 2019; 16
Sun (10.1016/j.compbiomed.2023.107022_bib36) 2019; 45
Shen (10.1016/j.compbiomed.2023.107022_bib14) 2023; 79
Van Mierlo (10.1016/j.compbiomed.2023.107022_bib10) 2019; 10
Shoeibi (10.1016/j.compbiomed.2023.107022_bib19) 2021
Gomez-Pilar (10.1016/j.compbiomed.2023.107022_bib5) 2018; 201
Gorbachevskaya (10.1016/j.compbiomed.2023.107022_bib29) 2002
Aslan (10.1016/j.compbiomed.2023.107022_bib37) 2020
Simonsen (10.1016/j.compbiomed.2023.107022_bib4) 2011; 37
Chang (10.1016/j.compbiomed.2023.107022_bib28) 2021; 29
Kim (10.1016/j.compbiomed.2023.107022_bib24) 2020; 9
Ho (10.1016/j.compbiomed.2023.107022_bib9) 2008; 40
Yu (10.1016/j.compbiomed.2023.107022_bib11) 2018; 506
Brown (10.1016/j.compbiomed.2023.107022_bib8) 2010
Zhao (10.1016/j.compbiomed.2023.107022_bib26) 2021; 15
Shenton (10.1016/j.compbiomed.2023.107022_bib1) 2001; 49
Siuly (10.1016/j.compbiomed.2023.107022_bib21) 2023
Rubinov (10.1016/j.compbiomed.2023.107022_bib31) 2010; 52
Krukow (10.1016/j.compbiomed.2023.107022_bib2) 2019; 9
Khan (10.1016/j.compbiomed.2023.107022_bib12) 2021; 29
References_xml – volume: 49
  start-page: 1
  year: 2001
  end-page: 52
  ident: bib1
  article-title: A review of MRI findings in schizophrenia
  publication-title: Schizophrenia Res.
– volume: 10
  start-page: 721
  year: 2019
  ident: bib10
  article-title: Network perspectives on epilepsy using EEG/MEG source connectivity
  publication-title: Front. Neurol.
– volume: 79
  year: 2023
  ident: bib14
  article-title: Detection of alcoholic EEG signals based on whole brain connectivity and convolution neural networks
  publication-title: Biomed. Signal Process Control
– volume: 12
  start-page: 319
  year: 2018
  ident: bib17
  article-title: Resting-state default mode network related functional connectivity is associated with sustained attention deficits in schizophrenia and obsessive-compulsive disorder
  publication-title: Front. Behav. Neurosci.
– volume: 192
  year: 2022
  ident: bib22
  article-title: Automatic identification of schizophrenia using EEG signals based on discrete wavelet transform and RLNDiP technique with ANN
  publication-title: Expert Syst. Appl.
– volume: 46
  start-page: 64
  year: 2009
  end-page: 72
  ident: bib35
  article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system
  publication-title: Neuroimage
– volume: 29
  start-page: 1784
  year: 2021
  end-page: 1794
  ident: bib28
  article-title: Classification of first-episode schizophrenia, chronic schizophrenia and healthy control based on brain network of mismatch negativity by graph neural network
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 38
  start-page: 9
  year: 2010
  end-page: 12
  ident: bib34
  article-title: Cortical cartography
  publication-title: Biofeedback
– volume: 37
  start-page: 73
  year: 2011
  end-page: 83
  ident: bib4
  article-title: Neurocognitive dysfunction in bipolar and schizophrenia spectrum disorders depends on history of psychosis rather than diagnostic group
  publication-title: Schizophr. Bull.
– reference: Pacific, W. and S.A.W. Hasan, Magnitude and Impact.
– volume: 29
  start-page: 796
  year: 2021
  end-page: 808
  ident: bib12
  article-title: Effective connectivity in default mode network for alcoholism diagnosis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 40
  start-page: 174
  year: 2008
  end-page: 186
  ident: bib9
  article-title: Time–frequency discriminant analysis of MEG signals
  publication-title: Neuroimage
– start-page: 58
  year: 2021
  ident: bib19
  article-title: Automatic diagnosis of schizophrenia in EEG signals using CNN-LSTM models
  publication-title: Front. Neuroinf.
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  ident: bib15
  article-title: A default mode of brain function
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 201
  start-page: 120
  year: 2018
  end-page: 129
  ident: bib5
  article-title: Altered predictive capability of the brain network EEG model in schizophrenia during cognition
  publication-title: Schizophrenia Res.
– volume: 24
  start-page: 1333
  year: 2019
  end-page: 1343
  ident: bib18
  article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 13
  ident: bib20
  article-title: SchizoGoogLeNet: the googlenet-based deep feature extraction design for automatic detection of schizophrenia
  publication-title: Comput. Intell. Neurosci.
– year: 2020
  ident: bib37
  article-title: Automatic Detection of Schizophrenia by Applying Deep Learning over Spectrogram Images of EEG Signals
– volume: 7
  start-page: 413
  year: 2017
  end-page: 423
  ident: bib32
  article-title: Large-scale network analysis of whole-brain resting-state functional connectivity in spinal cord injury: a comparative study
  publication-title: Brain Connect.
– volume: 506
  start-page: 1093
  year: 2018
  end-page: 1103
  ident: bib11
  article-title: Functional brain connectivity in Alzheimer's disease: an EEG study based on permutation disalignment index
  publication-title: Phys. Stat. Mech. Appl.
– volume: 15
  year: 2021
  ident: bib26
  article-title: Classification of schizophrenia by combination of brain effective and functional connectivity
  publication-title: Front. Neurosci.
– volume: 45
  start-page: 659
  year: 2019
  end-page: 669
  ident: bib36
  article-title: Dynamic reorganization of functional connectivity reveals abnormal temporal efficiency in schizophrenia
  publication-title: Schizophr. Bull.
– start-page: 1
  year: 2023
  end-page: 14
  ident: bib21
  article-title: Exploring deep residual network based features for automatic schizophrenia detection from EEG
  publication-title: Phys. Eng. Sci. Med.
– volume: 9
  start-page: 3934
  year: 2020
  ident: bib24
  article-title: EEG source network for the diagnosis of schizophrenia and the identification of subtypes based on symptom severity—a machine learning approach
  publication-title: J. Clin. Med.
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: bib31
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
– year: 2002
  ident: bib29
  article-title: EEG Data of Healthy Adolescents and Adolescents with Symptoms of Schizophrenia
– volume: 356
  start-page: 83
  year: 2019
  end-page: 96
  ident: bib13
  article-title: A deep learning framework for identifying children with ADHD using an EEG-based brain network
  publication-title: Neurocomputing
– volume: 47
  start-page: 153
  year: 2013
  end-page: 156
  ident: bib25
  article-title: Use of cross-correlation analysis of EEG signals for detecting risk level for development of schizophrenia
  publication-title: Biomed. Eng.
– volume: 79
  year: 2023
  ident: bib23
  article-title: Schizophrenia classification using machine learning on resting state EEG signal
  publication-title: Biomed. Signal Process Control
– volume: 28
  start-page: 189
  year: 2019
  ident: bib33
  article-title: The state of resting state networks
  publication-title: Top. Magn. Reson. Imag.: TMRI
– start-page: 181
  year: 2010
  end-page: 214
  ident: bib8
  article-title: Functional Brain Imaging in Schizophrenia: Selected Results and Methods
– volume: 102
  start-page: 63
  year: 2008
  end-page: 68
  ident: bib3
  article-title: Elucidating semantic disorganisation from a word comprehension task: do patients with schizophrenia and bipolar disorder show differential processing of nouns, verbs and adjectives?
  publication-title: Schizophrenia Res.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib2
  article-title: Abnormalities in hubs location and nodes centrality predict cognitive slowing and increased performance variability in first-episode schizophrenia patients
  publication-title: Sci. Rep.
– volume: 16
  year: 2019
  ident: bib7
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J. Neural. Eng.
– volume: 215
  start-page: 140
  year: 2020
  end-page: 147
  ident: bib16
  article-title: Abnormal default-mode network homogeneity and its correlations with neurocognitive deficits in drug-naive first-episode adolescent-onset schizophrenia
  publication-title: Schizophrenia Res.
– volume: 31
  start-page: 255
  year: 2005
  end-page: 261
  ident: bib30
  article-title: Analysis of EEG structural synchrony in adolescents with schizophrenic disorders
  publication-title: Hum. Physiol.
– year: 2020
  ident: bib27
  article-title: Classification of People Who Suffer Schizophrenia and Healthy People by EEG Signals Using Deep Learning
– volume: 506
  start-page: 1093
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107022_bib11
  article-title: Functional brain connectivity in Alzheimer's disease: an EEG study based on permutation disalignment index
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2018.05.009
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107022_bib37
– volume: 98
  start-page: 676
  issue: 2
  year: 2001
  ident: 10.1016/j.compbiomed.2023.107022_bib15
  article-title: A default mode of brain function
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.98.2.676
– volume: 15
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107022_bib26
  article-title: Classification of schizophrenia by combination of brain effective and functional connectivity
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.651439
– volume: 38
  start-page: 9
  issue: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2023.107022_bib34
  article-title: Cortical cartography
  publication-title: Biofeedback
  doi: 10.5298/1081-5937-38.1.9
– start-page: 58
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107022_bib19
  article-title: Automatic diagnosis of schizophrenia in EEG signals using CNN-LSTM models
  publication-title: Front. Neuroinf.
– volume: 49
  start-page: 1
  issue: 1–2
  year: 2001
  ident: 10.1016/j.compbiomed.2023.107022_bib1
  article-title: A review of MRI findings in schizophrenia
  publication-title: Schizophrenia Res.
  doi: 10.1016/S0920-9964(01)00163-3
– volume: 37
  start-page: 73
  issue: 1
  year: 2011
  ident: 10.1016/j.compbiomed.2023.107022_bib4
  article-title: Neurocognitive dysfunction in bipolar and schizophrenia spectrum disorders depends on history of psychosis rather than diagnostic group
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbp034
– volume: 12
  start-page: 319
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107022_bib17
  article-title: Resting-state default mode network related functional connectivity is associated with sustained attention deficits in schizophrenia and obsessive-compulsive disorder
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2018.00319
– volume: 45
  start-page: 659
  issue: 3
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107022_bib36
  article-title: Dynamic reorganization of functional connectivity reveals abnormal temporal efficiency in schizophrenia
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sby077
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107022_bib2
  article-title: Abnormalities in hubs location and nodes centrality predict cognitive slowing and increased performance variability in first-episode schizophrenia patients
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-46111-0
– volume: 201
  start-page: 120
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107022_bib5
  article-title: Altered predictive capability of the brain network EEG model in schizophrenia during cognition
  publication-title: Schizophrenia Res.
  doi: 10.1016/j.schres.2018.04.043
– volume: 24
  start-page: 1333
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107022_bib18
  article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2019.2941222
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107022_bib27
– volume: 28
  start-page: 189
  issue: 4
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107022_bib33
  article-title: The state of resting state networks
  publication-title: Top. Magn. Reson. Imag.: TMRI
  doi: 10.1097/RMR.0000000000000214
– start-page: 181
  year: 2010
  ident: 10.1016/j.compbiomed.2023.107022_bib8
– ident: 10.1016/j.compbiomed.2023.107022_bib6
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107022_bib20
  article-title: SchizoGoogLeNet: the googlenet-based deep feature extraction design for automatic detection of schizophrenia
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/1992596
– volume: 192
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107022_bib22
  article-title: Automatic identification of schizophrenia using EEG signals based on discrete wavelet transform and RLNDiP technique with ANN
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116230
– volume: 9
  start-page: 3934
  issue: 12
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107022_bib24
  article-title: EEG source network for the diagnosis of schizophrenia and the identification of subtypes based on symptom severity—a machine learning approach
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9123934
– volume: 47
  start-page: 153
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2023.107022_bib25
  article-title: Use of cross-correlation analysis of EEG signals for detecting risk level for development of schizophrenia
  publication-title: Biomed. Eng.
  doi: 10.1007/s10527-013-9357-2
– volume: 40
  start-page: 174
  issue: 1
  year: 2008
  ident: 10.1016/j.compbiomed.2023.107022_bib9
  article-title: Time–frequency discriminant analysis of MEG signals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.014
– volume: 29
  start-page: 1784
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107022_bib28
  article-title: Classification of first-episode schizophrenia, chronic schizophrenia and healthy control based on brain network of mismatch negativity by graph neural network
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3105669
– start-page: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107022_bib21
  article-title: Exploring deep residual network based features for automatic schizophrenia detection from EEG
  publication-title: Phys. Eng. Sci. Med.
– volume: 16
  issue: 3
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107022_bib7
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2552/ab0ab5
– volume: 79
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107022_bib14
  article-title: Detection of alcoholic EEG signals based on whole brain connectivity and convolution neural networks
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2022.104242
– volume: 46
  start-page: 64
  issue: 1
  year: 2009
  ident: 10.1016/j.compbiomed.2023.107022_bib35
  article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.02.006
– volume: 7
  start-page: 413
  issue: 7
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107022_bib32
  article-title: Large-scale network analysis of whole-brain resting-state functional connectivity in spinal cord injury: a comparative study
  publication-title: Brain Connect.
  doi: 10.1089/brain.2016.0468
– volume: 10
  start-page: 721
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107022_bib10
  article-title: Network perspectives on epilepsy using EEG/MEG source connectivity
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2019.00721
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: 10.1016/j.compbiomed.2023.107022_bib31
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 29
  start-page: 796
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107022_bib12
  article-title: Effective connectivity in default mode network for alcoholism diagnosis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3075737
– year: 2002
  ident: 10.1016/j.compbiomed.2023.107022_bib29
– volume: 31
  start-page: 255
  issue: 3
  year: 2005
  ident: 10.1016/j.compbiomed.2023.107022_bib30
  article-title: Analysis of EEG structural synchrony in adolescents with schizophrenic disorders
  publication-title: Hum. Physiol.
  doi: 10.1007/s10747-005-0042-z
– volume: 102
  start-page: 63
  issue: 1–3
  year: 2008
  ident: 10.1016/j.compbiomed.2023.107022_bib3
  article-title: Elucidating semantic disorganisation from a word comprehension task: do patients with schizophrenia and bipolar disorder show differential processing of nouns, verbs and adjectives?
  publication-title: Schizophrenia Res.
  doi: 10.1016/j.schres.2008.04.008
– volume: 79
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107022_bib23
  article-title: Schizophrenia classification using machine learning on resting state EEG signal
  publication-title: Biomed. Signal Process Control
– volume: 215
  start-page: 140
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107022_bib16
  article-title: Abnormal default-mode network homogeneity and its correlations with neurocognitive deficits in drug-naive first-episode adolescent-onset schizophrenia
  publication-title: Schizophrenia Res.
  doi: 10.1016/j.schres.2019.10.056
– volume: 356
  start-page: 83
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107022_bib13
  article-title: A deep learning framework for identifying children with ADHD using an EEG-based brain network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.058
SSID ssj0004030
Score 2.4435415
Snippet Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social...
AbstractSchizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107022
SubjectTerms 3D convolutional neural network
Accuracy
Alcoholism
Algorithms
Artificial neural networks
Brain - diagnostic imaging
Brain mapping
Brain research
Classification
Connectivity analysis
Cross mutual information
Datasets
Deep learning
Default mode network
Discriminant analysis
EEG
Electroencephalography
Electroencephalography - methods
Emotions
Functional magnetic resonance imaging
Humans
Identification
Internal Medicine
Machine learning
Medical research
Mental disorders
Neural networks
Neural Networks, Computer
Other
Performance evaluation
Schizophrenia
Schizophrenia - diagnostic imaging
ScZ
Signal processing
Support vector machines
Temporal lobe
Wavelet transforms
Title Automatic identification of schizophrenia based on EEG signals using dynamic functional connectivity analysis and 3D convolutional neural network
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523004870
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523004870
https://dx.doi.org/10.1016/j.compbiomed.2023.107022
https://www.ncbi.nlm.nih.gov/pubmed/37187135
https://www.proquest.com/docview/2815942549
https://www.proquest.com/docview/2814525579
Volume 160
WOSCitedRecordID wos001007627800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: P5Z
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database ProQuest
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: K7-
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAvfA_KRmUkXgOJY9eJeJjG1oGEVqrxoYoXy_UHGkLNWNr9H_zH3NlOygNDlXhx29jXpL3z3dn-3R0hL4QGs2LlKBNW8wwTcmX1vHKZ9UVuS-8xXjcUm5CTSTWb1dO04dYmWGWnE4Oito3BPfJXrALDy3E5c3DxM8OqUXi6mkpobJEdzJLAAnRvuo6LzMsYggK6hsNSKCF5Ir4LIdsxxP0llhCHyzJn7DrzdJ37GczQyd3__QH3yJ3kgNLDKDH3yQ23eEBunaYj9ofk1-Fq2YQ8rvTcJihR4B5tPG3_hOhRtICWQs94_JYiEAREmSKQ_hu1sdA9RbMZdxupQUiNicUqqE65UOCNpeUxdl6lSQBDMclmeAkQ9Ufk88n409G7LNVtyAy4X8tMajYSvs6tdlw4UxeV1bWrha-05A6mvJUaHUWRcy84t35kRlXljJdWeFHMy12yvWgW7gmwiwlrCoOVRHMOC4G59nKe65K70JgBkR27lElJzbG2xg_Vode-qzWjFTJaRUYPSNFTXsTEHhvQ1J1EqC5wFVStAuuzAa38G61rk85oVaFapnL1MaRMAmllmAwN1OmAvO4pk1sU3Z0N77vfiaPqb7WWxQF53neDYsHTIr1wzSqMwTNvIWHM4yjy_R9VgkeDtR2f_vvL98htfJKIrNsn28vLlXtGbpqr5Xl7OSRb8uwLtjMZ2mpIdt6MJ9Mz-PReZtCesg_DMKOhnYqvvwHp11GJ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLZKQcCFfQkUMBIcB2ax4xkhhCqa0ipthESRejOOl6oVzJROUtSfwR_hN_Ke7ZlwoCiXHrhkoniZyPO9xePvvUfIC67ArBgxTLhRLMGEXEk1LW1iXJaawjmM1_XFJsRkUu7vVx9XyK8uFgZplZ1O9IraNBrfkb_OSzC8DLcz746_J1g1Ck9XuxIaARZje_YDtmzt2-0NeL4v83xztPd-K4lVBRINzsEsESofclelRlnGra6y0qjKVtyVSjALgDRCoRvDU-Y4Y8YN9bAsrXbCcMezaQHzXiKXWVEKlKuxSBZxmGkRQl5AtzHYekXmUOCTIUU8hNS_wpLl8LNI8_w8c3ieu-vN3ubN_23BbpEb0cGm60EibpMVW98hV3cjheAu-bk-nzU-Ty09NJEq5dFJG0fbPymIFC28odAyGn2gSHQBUaUYKHBAzVmtvsEU6BaEt6lUI2VIh2IcVMVcL_DF0GIDG0-jkENXTCLqL56Cf498vpAFuU9W66a2DwEeOTc601gpNWWw0ZkqJ6apKpj1H3pARAcPqWPSdqwd8lV27LwjuQCWRGDJAKwByfqRxyFxyRJjqg6BsgvMBVMiwbouMVb8baxto05sZSbbXKbyk08JBdKRY7I3MBcD8qYfGd2-4M4ted-1Dv6yv9UC-wPyvG8GxYmnYaq2zdz3wTN9LqDPgyBi_UIV4LFh7cpH_578Gbm2tbe7I3e2J-PH5Dr-q8AiXCOrs5O5fUKu6NPZYXvy1OsJSr5ctJz9BjScp70
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKQRUX3o9AASPBcek-7HhXCKGKJFAVokiAVHFxHT9Qq7JbuklRfwZ_h1_HjO1NOFCUSw9cslHs8Ubeea6_mSHkGVdgVozoJ9wolmBBrqSaljYxLktN4Rzm6_pmE2I8Lvf2qska-dXlwiCsstOJXlGbRuM78q28BMPLMJzZchEWMRmMXh9_T7CDFJ60du00Aovs2rMfEL61r3YG8Kyf5_lo-OnNuyR2GEg0OAqzRKi8z12VGmUZt7rKSqMqW3FXKsEsMKcRCl0anjLHGTOur_tlabUThjueTQtY9xK5LCDGRDjhhH9Z5mSmRUh_AT3HIAyLKKKALUO4eEivf4Hty-Fnkeb5eabxPNfXm8DR9f95826Qa9HxpttBUm6SNVvfIhsfIrTgNvm5PZ81vn4tPTARQuW5ljaOtn9CEylafkNhZDh8SxEAAyJMMYHgKzVntfoGS6C7EN6yUo1QIh2adFAVa8DAF0OLAQ6eRuGHqVhc1F88NP8O-XwhG3KXrNdNbe8Dq-Tc6ExjB9WUQQA0VU5MU1Uw6z90j4iOVaSOxdyxp8iR7FB7h3LJZBKZTAYm65FsQXkcCpqsQFN13Ci7hF0wMRKs7gq04m-0to26spWZbHOZyo--VBRISo5F4MCM9MjLBWV0B4Obt-J9NztRkItbLeWgR54uhkGh4imZqm0z93PwrJ8LmHMviNtiowrw5LCn5YN_L_6EbIB4yfc7492H5Cr-qQAu3CTrs5O5fUSu6NPZQXvy2KsMSvYvWsx-A5V0sOE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+schizophrenia+based+on+EEG+signals+using+dynamic+functional+connectivity+analysis+and+3D+convolutional+neural+network&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Shen%2C+Mingkan&rft.au=Wen%2C+Peng&rft.au=Song%2C+Bo&rft.au=Li%2C+Yan&rft.date=2023-06-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=160&rft.spage=107022&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107022&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif