Automatic identification of schizophrenia based on EEG signals using dynamic functional connectivity analysis and 3D convolutional neural network
Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To...
Gespeichert in:
| Veröffentlicht in: | Computers in biology and medicine Jg. 160; S. 107022 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Ltd
01.06.2023
Elsevier Limited |
| Schlagworte: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8–12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects.
•The time-frequency domain functional connectivity calculated by continuous wavelet transform (CWT) and cross mutual information (CMI) is firstly used in schizophrenia identification and the frequency resolution is selected in 1 Hz in this experiment.•Sliding window technique is proposed to extend the functional connectivity to time-varying functional connectivity for exploring dynamic properties of resting-state function connectivity in EEG.•To reduce the computational cost, graph theory measures of complex brain network analysis are used to select brain rhythms and find alpha band (8–12 Hz) is the significance frequency band for schizophrenia (ScZ) identification work.•The 3D-CNN models are applied to classify the ScZ subjects and health control subjects and achieved a result of 97.74 ± 1.15% in accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity.•Furthermore, we analysed the CMI values in the whole connectivity and found not only the default mode network (DMN) region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side has significant difference between the ScZ and healthy control (HC) subjects. |
|---|---|
| AbstractList | AbstractSchizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8–12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects. Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8-12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects. Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8–12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects. •The time-frequency domain functional connectivity calculated by continuous wavelet transform (CWT) and cross mutual information (CMI) is firstly used in schizophrenia identification and the frequency resolution is selected in 1 Hz in this experiment.•Sliding window technique is proposed to extend the functional connectivity to time-varying functional connectivity for exploring dynamic properties of resting-state function connectivity in EEG.•To reduce the computational cost, graph theory measures of complex brain network analysis are used to select brain rhythms and find alpha band (8–12 Hz) is the significance frequency band for schizophrenia (ScZ) identification work.•The 3D-CNN models are applied to classify the ScZ subjects and health control subjects and achieved a result of 97.74 ± 1.15% in accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity.•Furthermore, we analysed the CMI values in the whole connectivity and found not only the default mode network (DMN) region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side has significant difference between the ScZ and healthy control (HC) subjects. Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8–12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects. Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8-12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects.Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8-12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects. |
| ArticleNumber | 107022 |
| Author | Wen, Peng Shen, Mingkan Song, Bo Li, Yan |
| Author_xml | – sequence: 1 givenname: Mingkan orcidid: 0000-0002-6770-4366 surname: Shen fullname: Shen, Mingkan email: Mingkan.Shen@usq.edu.au organization: School of Engineering, University of Southern Queensland, Toowoomba, Australia – sequence: 2 givenname: Peng surname: Wen fullname: Wen, Peng organization: School of Engineering, University of Southern Queensland, Toowoomba, Australia – sequence: 3 givenname: Bo surname: Song fullname: Song, Bo organization: School of Engineering, University of Southern Queensland, Toowoomba, Australia – sequence: 4 givenname: Yan surname: Li fullname: Li, Yan organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37187135$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNktFu0zAUhi00xLrBKyBL3HCTYjt2k9xMbKMMpElcANeWax9v7hK72ElReAveGGftQKqE1CvH9ne-JOc_Z-jEBw8IYUrmlNDFu_Vch26zcqEDM2eElfm4Iow9QzNaV01BRMlP0IwQSgpeM3GKzlJaE0I4KckLdFpWGaOlmKHfl0MfOtU7jZ0B3zvrdN4Fj4PFSd-7X2FzH8E7hVcqgcH5Zrm8wcndedUmPCTn77AZveqywg5eT8WqxTp4D3mzdf2IVT4Zk0v5weDyw3S5De2wRz0M8XHpf4b48BI9t9kMr_brOfr-cfnt-lNx--Xm8_XlbaEF5X1RKbYQtiFGARegG1ob1UAjbK0qDrRZmEoJToQg3ArOjV3oRV2DtpURVtBVeY7e7rybGH4MkHrZuaShbZWHMCTJasoFE6JqMvrmAF2HIU7_P1Gi4UzwiXq9p4ZVzkVuoutUHOVTszNwsQN0DClFsFK7_rHZfVSulZTIKV25lv_SlVO6cpduFtQHgqd3HFF6tSuF3NKtgyiTduA1GBdzTNIEd4zk4kCiW-fzwLQPMEL62xQqE5NEfp3mbxo_VubJqyuSBe__LzjuG_4AWqbycQ |
| CitedBy_id | crossref_primary_10_1088_1741_2552_adba8c crossref_primary_10_3389_fnhum_2024_1347082 crossref_primary_10_1016_j_compbiomed_2024_108862 crossref_primary_10_1007_s10489_024_05669_7 crossref_primary_10_1016_j_asoc_2025_113253 crossref_primary_10_7717_peerj_17078 crossref_primary_10_1016_j_compbiomed_2025_111041 crossref_primary_10_1016_j_engappai_2025_111294 crossref_primary_10_3389_fnhum_2025_1530291 crossref_primary_10_1109_TIM_2025_3552448 crossref_primary_10_1016_j_bspc_2024_106202 crossref_primary_10_1016_j_bspc_2023_105815 crossref_primary_10_3390_app14125048 crossref_primary_10_1007_s41939_024_00612_2 crossref_primary_10_1016_j_bspc_2025_107717 crossref_primary_10_1016_j_heliyon_2024_e31827 crossref_primary_10_1016_j_chaos_2025_116401 crossref_primary_10_1007_s11831_023_10047_6 |
| Cites_doi | 10.1016/j.physa.2018.05.009 10.1073/pnas.98.2.676 10.3389/fnins.2021.651439 10.5298/1081-5937-38.1.9 10.1016/S0920-9964(01)00163-3 10.1093/schbul/sbp034 10.3389/fnbeh.2018.00319 10.1093/schbul/sby077 10.1038/s41598-019-46111-0 10.1016/j.schres.2018.04.043 10.1109/JBHI.2019.2941222 10.1097/RMR.0000000000000214 10.1155/2022/1992596 10.1016/j.eswa.2021.116230 10.3390/jcm9123934 10.1007/s10527-013-9357-2 10.1016/j.neuroimage.2007.11.014 10.1109/TNSRE.2021.3105669 10.1088/1741-2552/ab0ab5 10.1016/j.bspc.2022.104242 10.1016/j.neuroimage.2009.02.006 10.1089/brain.2016.0468 10.3389/fneur.2019.00721 10.1016/j.neuroimage.2009.10.003 10.1109/TNSRE.2021.3075737 10.1007/s10747-005-0042-z 10.1016/j.schres.2008.04.008 10.1016/j.schres.2019.10.056 10.1016/j.neucom.2019.04.058 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. 2023. Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. – notice: 2023. Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2023.107022 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database ProQuest Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 107022 |
| ExternalDocumentID | 37187135 10_1016_j_compbiomed_2023_107022 S0010482523004870 1_s2_0_S0010482523004870 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR 9DU AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c514t-7a265f90dae45ec918da9e95f8a74e196d7a5405504f544df6c688ecf7d5f51b3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001007627800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Sep 28 03:07:13 EDT 2025 Sat Nov 29 14:26:14 EST 2025 Wed Feb 19 02:23:42 EST 2025 Sat Nov 29 07:34:56 EST 2025 Tue Nov 18 22:14:43 EST 2025 Fri Feb 23 02:35:17 EST 2024 Tue Feb 25 20:12:01 EST 2025 Tue Oct 14 19:33:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Default mode network ScZ Cross mutual information EEG 3D convolutional neural network |
| Language | English |
| License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-7a265f90dae45ec918da9e95f8a74e196d7a5405504f544df6c688ecf7d5f51b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6770-4366 |
| PMID | 37187135 |
| PQID | 2815942549 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2814525579 proquest_journals_2815942549 pubmed_primary_37187135 crossref_citationtrail_10_1016_j_compbiomed_2023_107022 crossref_primary_10_1016_j_compbiomed_2023_107022 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107022 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523004870 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107022 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Panischev (bib25) 2013; 47 Craik, He, Contreras-Vidal (bib7) 2019; 16 Borisov (bib30) 2005; 31 Zhang (bib16) 2020; 215 Sun (bib36) 2019; 45 Chen, Song, Li (bib13) 2019; 356 Seitzman (bib33) 2019; 28 Rubinov, Sporns (bib31) 2010; 52 Chang (bib28) 2021; 29 Van Mierlo (bib10) 2019; 10 Aslan, Akın (bib37) 2020 Siuly (bib21) 2023 Gomez-Pilar (bib5) 2018; 201 Raichle (bib15) 2001; 98 Kaiser (bib34) 2010; 38 Pacific, W. and S.A.W. Hasan, Magnitude and Impact. Fan (bib17) 2018; 12 Sairamya, Subathra, George (bib22) 2022; 192 Krukow (bib2) 2019; 9 Shoeibi (bib19) 2021 Koessler (bib35) 2009; 46 Rossell, Batty (bib3) 2008; 102 Yu (bib11) 2018; 506 Kim, Lee, Lee (bib24) 2020; 9 Shenton (bib1) 2001; 49 de Miras (bib23) 2023; 79 Gorbachevskaya, Borisov (bib29) 2002 Naira, Alberto (bib27) 2020 Brown, Thompson (bib8) 2010 Phang (bib18) 2019; 24 Kaushal (bib32) 2017; 7 Simonsen (bib4) 2011; 37 Zhao (bib26) 2021; 15 Ho (bib9) 2008; 40 Shen (bib14) 2023; 79 Khan (bib12) 2021; 29 Siuly (bib20) 2022; 2022 Borisov (10.1016/j.compbiomed.2023.107022_bib30) 2005; 31 Sairamya (10.1016/j.compbiomed.2023.107022_bib22) 2022; 192 Fan (10.1016/j.compbiomed.2023.107022_bib17) 2018; 12 Naira (10.1016/j.compbiomed.2023.107022_bib27) 2020 Kaiser (10.1016/j.compbiomed.2023.107022_bib34) 2010; 38 de Miras (10.1016/j.compbiomed.2023.107022_bib23) 2023; 79 Panischev (10.1016/j.compbiomed.2023.107022_bib25) 2013; 47 10.1016/j.compbiomed.2023.107022_bib6 Seitzman (10.1016/j.compbiomed.2023.107022_bib33) 2019; 28 Chen (10.1016/j.compbiomed.2023.107022_bib13) 2019; 356 Rossell (10.1016/j.compbiomed.2023.107022_bib3) 2008; 102 Zhang (10.1016/j.compbiomed.2023.107022_bib16) 2020; 215 Phang (10.1016/j.compbiomed.2023.107022_bib18) 2019; 24 Koessler (10.1016/j.compbiomed.2023.107022_bib35) 2009; 46 Raichle (10.1016/j.compbiomed.2023.107022_bib15) 2001; 98 Kaushal (10.1016/j.compbiomed.2023.107022_bib32) 2017; 7 Siuly (10.1016/j.compbiomed.2023.107022_bib20) 2022; 2022 Craik (10.1016/j.compbiomed.2023.107022_bib7) 2019; 16 Sun (10.1016/j.compbiomed.2023.107022_bib36) 2019; 45 Shen (10.1016/j.compbiomed.2023.107022_bib14) 2023; 79 Van Mierlo (10.1016/j.compbiomed.2023.107022_bib10) 2019; 10 Shoeibi (10.1016/j.compbiomed.2023.107022_bib19) 2021 Gomez-Pilar (10.1016/j.compbiomed.2023.107022_bib5) 2018; 201 Gorbachevskaya (10.1016/j.compbiomed.2023.107022_bib29) 2002 Aslan (10.1016/j.compbiomed.2023.107022_bib37) 2020 Simonsen (10.1016/j.compbiomed.2023.107022_bib4) 2011; 37 Chang (10.1016/j.compbiomed.2023.107022_bib28) 2021; 29 Kim (10.1016/j.compbiomed.2023.107022_bib24) 2020; 9 Ho (10.1016/j.compbiomed.2023.107022_bib9) 2008; 40 Yu (10.1016/j.compbiomed.2023.107022_bib11) 2018; 506 Brown (10.1016/j.compbiomed.2023.107022_bib8) 2010 Zhao (10.1016/j.compbiomed.2023.107022_bib26) 2021; 15 Shenton (10.1016/j.compbiomed.2023.107022_bib1) 2001; 49 Siuly (10.1016/j.compbiomed.2023.107022_bib21) 2023 Rubinov (10.1016/j.compbiomed.2023.107022_bib31) 2010; 52 Krukow (10.1016/j.compbiomed.2023.107022_bib2) 2019; 9 Khan (10.1016/j.compbiomed.2023.107022_bib12) 2021; 29 |
| References_xml | – volume: 49 start-page: 1 year: 2001 end-page: 52 ident: bib1 article-title: A review of MRI findings in schizophrenia publication-title: Schizophrenia Res. – volume: 10 start-page: 721 year: 2019 ident: bib10 article-title: Network perspectives on epilepsy using EEG/MEG source connectivity publication-title: Front. Neurol. – volume: 79 year: 2023 ident: bib14 article-title: Detection of alcoholic EEG signals based on whole brain connectivity and convolution neural networks publication-title: Biomed. Signal Process Control – volume: 12 start-page: 319 year: 2018 ident: bib17 article-title: Resting-state default mode network related functional connectivity is associated with sustained attention deficits in schizophrenia and obsessive-compulsive disorder publication-title: Front. Behav. Neurosci. – volume: 192 year: 2022 ident: bib22 article-title: Automatic identification of schizophrenia using EEG signals based on discrete wavelet transform and RLNDiP technique with ANN publication-title: Expert Syst. Appl. – volume: 46 start-page: 64 year: 2009 end-page: 72 ident: bib35 article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system publication-title: Neuroimage – volume: 29 start-page: 1784 year: 2021 end-page: 1794 ident: bib28 article-title: Classification of first-episode schizophrenia, chronic schizophrenia and healthy control based on brain network of mismatch negativity by graph neural network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 38 start-page: 9 year: 2010 end-page: 12 ident: bib34 article-title: Cortical cartography publication-title: Biofeedback – volume: 37 start-page: 73 year: 2011 end-page: 83 ident: bib4 article-title: Neurocognitive dysfunction in bipolar and schizophrenia spectrum disorders depends on history of psychosis rather than diagnostic group publication-title: Schizophr. Bull. – reference: Pacific, W. and S.A.W. Hasan, Magnitude and Impact. – volume: 29 start-page: 796 year: 2021 end-page: 808 ident: bib12 article-title: Effective connectivity in default mode network for alcoholism diagnosis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 40 start-page: 174 year: 2008 end-page: 186 ident: bib9 article-title: Time–frequency discriminant analysis of MEG signals publication-title: Neuroimage – start-page: 58 year: 2021 ident: bib19 article-title: Automatic diagnosis of schizophrenia in EEG signals using CNN-LSTM models publication-title: Front. Neuroinf. – volume: 98 start-page: 676 year: 2001 end-page: 682 ident: bib15 article-title: A default mode of brain function publication-title: Proc. Natl. Acad. Sci. USA – volume: 201 start-page: 120 year: 2018 end-page: 129 ident: bib5 article-title: Altered predictive capability of the brain network EEG model in schizophrenia during cognition publication-title: Schizophrenia Res. – volume: 24 start-page: 1333 year: 2019 end-page: 1343 ident: bib18 article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns publication-title: IEEE J. Biomed. Health Inf. – volume: 2022 start-page: 1 year: 2022 end-page: 13 ident: bib20 article-title: SchizoGoogLeNet: the googlenet-based deep feature extraction design for automatic detection of schizophrenia publication-title: Comput. Intell. Neurosci. – year: 2020 ident: bib37 article-title: Automatic Detection of Schizophrenia by Applying Deep Learning over Spectrogram Images of EEG Signals – volume: 7 start-page: 413 year: 2017 end-page: 423 ident: bib32 article-title: Large-scale network analysis of whole-brain resting-state functional connectivity in spinal cord injury: a comparative study publication-title: Brain Connect. – volume: 506 start-page: 1093 year: 2018 end-page: 1103 ident: bib11 article-title: Functional brain connectivity in Alzheimer's disease: an EEG study based on permutation disalignment index publication-title: Phys. Stat. Mech. Appl. – volume: 15 year: 2021 ident: bib26 article-title: Classification of schizophrenia by combination of brain effective and functional connectivity publication-title: Front. Neurosci. – volume: 45 start-page: 659 year: 2019 end-page: 669 ident: bib36 article-title: Dynamic reorganization of functional connectivity reveals abnormal temporal efficiency in schizophrenia publication-title: Schizophr. Bull. – start-page: 1 year: 2023 end-page: 14 ident: bib21 article-title: Exploring deep residual network based features for automatic schizophrenia detection from EEG publication-title: Phys. Eng. Sci. Med. – volume: 9 start-page: 3934 year: 2020 ident: bib24 article-title: EEG source network for the diagnosis of schizophrenia and the identification of subtypes based on symptom severity—a machine learning approach publication-title: J. Clin. Med. – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: bib31 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage – year: 2002 ident: bib29 article-title: EEG Data of Healthy Adolescents and Adolescents with Symptoms of Schizophrenia – volume: 356 start-page: 83 year: 2019 end-page: 96 ident: bib13 article-title: A deep learning framework for identifying children with ADHD using an EEG-based brain network publication-title: Neurocomputing – volume: 47 start-page: 153 year: 2013 end-page: 156 ident: bib25 article-title: Use of cross-correlation analysis of EEG signals for detecting risk level for development of schizophrenia publication-title: Biomed. Eng. – volume: 79 year: 2023 ident: bib23 article-title: Schizophrenia classification using machine learning on resting state EEG signal publication-title: Biomed. Signal Process Control – volume: 28 start-page: 189 year: 2019 ident: bib33 article-title: The state of resting state networks publication-title: Top. Magn. Reson. Imag.: TMRI – start-page: 181 year: 2010 end-page: 214 ident: bib8 article-title: Functional Brain Imaging in Schizophrenia: Selected Results and Methods – volume: 102 start-page: 63 year: 2008 end-page: 68 ident: bib3 article-title: Elucidating semantic disorganisation from a word comprehension task: do patients with schizophrenia and bipolar disorder show differential processing of nouns, verbs and adjectives? publication-title: Schizophrenia Res. – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: bib2 article-title: Abnormalities in hubs location and nodes centrality predict cognitive slowing and increased performance variability in first-episode schizophrenia patients publication-title: Sci. Rep. – volume: 16 year: 2019 ident: bib7 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J. Neural. Eng. – volume: 215 start-page: 140 year: 2020 end-page: 147 ident: bib16 article-title: Abnormal default-mode network homogeneity and its correlations with neurocognitive deficits in drug-naive first-episode adolescent-onset schizophrenia publication-title: Schizophrenia Res. – volume: 31 start-page: 255 year: 2005 end-page: 261 ident: bib30 article-title: Analysis of EEG structural synchrony in adolescents with schizophrenic disorders publication-title: Hum. Physiol. – year: 2020 ident: bib27 article-title: Classification of People Who Suffer Schizophrenia and Healthy People by EEG Signals Using Deep Learning – volume: 506 start-page: 1093 year: 2018 ident: 10.1016/j.compbiomed.2023.107022_bib11 article-title: Functional brain connectivity in Alzheimer's disease: an EEG study based on permutation disalignment index publication-title: Phys. Stat. Mech. Appl. doi: 10.1016/j.physa.2018.05.009 – year: 2020 ident: 10.1016/j.compbiomed.2023.107022_bib37 – volume: 98 start-page: 676 issue: 2 year: 2001 ident: 10.1016/j.compbiomed.2023.107022_bib15 article-title: A default mode of brain function publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.98.2.676 – volume: 15 year: 2021 ident: 10.1016/j.compbiomed.2023.107022_bib26 article-title: Classification of schizophrenia by combination of brain effective and functional connectivity publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.651439 – volume: 38 start-page: 9 issue: 1 year: 2010 ident: 10.1016/j.compbiomed.2023.107022_bib34 article-title: Cortical cartography publication-title: Biofeedback doi: 10.5298/1081-5937-38.1.9 – start-page: 58 year: 2021 ident: 10.1016/j.compbiomed.2023.107022_bib19 article-title: Automatic diagnosis of schizophrenia in EEG signals using CNN-LSTM models publication-title: Front. Neuroinf. – volume: 49 start-page: 1 issue: 1–2 year: 2001 ident: 10.1016/j.compbiomed.2023.107022_bib1 article-title: A review of MRI findings in schizophrenia publication-title: Schizophrenia Res. doi: 10.1016/S0920-9964(01)00163-3 – volume: 37 start-page: 73 issue: 1 year: 2011 ident: 10.1016/j.compbiomed.2023.107022_bib4 article-title: Neurocognitive dysfunction in bipolar and schizophrenia spectrum disorders depends on history of psychosis rather than diagnostic group publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbp034 – volume: 12 start-page: 319 year: 2018 ident: 10.1016/j.compbiomed.2023.107022_bib17 article-title: Resting-state default mode network related functional connectivity is associated with sustained attention deficits in schizophrenia and obsessive-compulsive disorder publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2018.00319 – volume: 45 start-page: 659 issue: 3 year: 2019 ident: 10.1016/j.compbiomed.2023.107022_bib36 article-title: Dynamic reorganization of functional connectivity reveals abnormal temporal efficiency in schizophrenia publication-title: Schizophr. Bull. doi: 10.1093/schbul/sby077 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2023.107022_bib2 article-title: Abnormalities in hubs location and nodes centrality predict cognitive slowing and increased performance variability in first-episode schizophrenia patients publication-title: Sci. Rep. doi: 10.1038/s41598-019-46111-0 – volume: 201 start-page: 120 year: 2018 ident: 10.1016/j.compbiomed.2023.107022_bib5 article-title: Altered predictive capability of the brain network EEG model in schizophrenia during cognition publication-title: Schizophrenia Res. doi: 10.1016/j.schres.2018.04.043 – volume: 24 start-page: 1333 issue: 5 year: 2019 ident: 10.1016/j.compbiomed.2023.107022_bib18 article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2019.2941222 – year: 2020 ident: 10.1016/j.compbiomed.2023.107022_bib27 – volume: 28 start-page: 189 issue: 4 year: 2019 ident: 10.1016/j.compbiomed.2023.107022_bib33 article-title: The state of resting state networks publication-title: Top. Magn. Reson. Imag.: TMRI doi: 10.1097/RMR.0000000000000214 – start-page: 181 year: 2010 ident: 10.1016/j.compbiomed.2023.107022_bib8 – ident: 10.1016/j.compbiomed.2023.107022_bib6 – volume: 2022 start-page: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107022_bib20 article-title: SchizoGoogLeNet: the googlenet-based deep feature extraction design for automatic detection of schizophrenia publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/1992596 – volume: 192 year: 2022 ident: 10.1016/j.compbiomed.2023.107022_bib22 article-title: Automatic identification of schizophrenia using EEG signals based on discrete wavelet transform and RLNDiP technique with ANN publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116230 – volume: 9 start-page: 3934 issue: 12 year: 2020 ident: 10.1016/j.compbiomed.2023.107022_bib24 article-title: EEG source network for the diagnosis of schizophrenia and the identification of subtypes based on symptom severity—a machine learning approach publication-title: J. Clin. Med. doi: 10.3390/jcm9123934 – volume: 47 start-page: 153 issue: 3 year: 2013 ident: 10.1016/j.compbiomed.2023.107022_bib25 article-title: Use of cross-correlation analysis of EEG signals for detecting risk level for development of schizophrenia publication-title: Biomed. Eng. doi: 10.1007/s10527-013-9357-2 – volume: 40 start-page: 174 issue: 1 year: 2008 ident: 10.1016/j.compbiomed.2023.107022_bib9 article-title: Time–frequency discriminant analysis of MEG signals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.11.014 – volume: 29 start-page: 1784 year: 2021 ident: 10.1016/j.compbiomed.2023.107022_bib28 article-title: Classification of first-episode schizophrenia, chronic schizophrenia and healthy control based on brain network of mismatch negativity by graph neural network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3105669 – start-page: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107022_bib21 article-title: Exploring deep residual network based features for automatic schizophrenia detection from EEG publication-title: Phys. Eng. Sci. Med. – volume: 16 issue: 3 year: 2019 ident: 10.1016/j.compbiomed.2023.107022_bib7 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J. Neural. Eng. doi: 10.1088/1741-2552/ab0ab5 – volume: 79 year: 2023 ident: 10.1016/j.compbiomed.2023.107022_bib14 article-title: Detection of alcoholic EEG signals based on whole brain connectivity and convolution neural networks publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2022.104242 – volume: 46 start-page: 64 issue: 1 year: 2009 ident: 10.1016/j.compbiomed.2023.107022_bib35 article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.02.006 – volume: 7 start-page: 413 issue: 7 year: 2017 ident: 10.1016/j.compbiomed.2023.107022_bib32 article-title: Large-scale network analysis of whole-brain resting-state functional connectivity in spinal cord injury: a comparative study publication-title: Brain Connect. doi: 10.1089/brain.2016.0468 – volume: 10 start-page: 721 year: 2019 ident: 10.1016/j.compbiomed.2023.107022_bib10 article-title: Network perspectives on epilepsy using EEG/MEG source connectivity publication-title: Front. Neurol. doi: 10.3389/fneur.2019.00721 – volume: 52 start-page: 1059 issue: 3 year: 2010 ident: 10.1016/j.compbiomed.2023.107022_bib31 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 29 start-page: 796 year: 2021 ident: 10.1016/j.compbiomed.2023.107022_bib12 article-title: Effective connectivity in default mode network for alcoholism diagnosis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3075737 – year: 2002 ident: 10.1016/j.compbiomed.2023.107022_bib29 – volume: 31 start-page: 255 issue: 3 year: 2005 ident: 10.1016/j.compbiomed.2023.107022_bib30 article-title: Analysis of EEG structural synchrony in adolescents with schizophrenic disorders publication-title: Hum. Physiol. doi: 10.1007/s10747-005-0042-z – volume: 102 start-page: 63 issue: 1–3 year: 2008 ident: 10.1016/j.compbiomed.2023.107022_bib3 article-title: Elucidating semantic disorganisation from a word comprehension task: do patients with schizophrenia and bipolar disorder show differential processing of nouns, verbs and adjectives? publication-title: Schizophrenia Res. doi: 10.1016/j.schres.2008.04.008 – volume: 79 year: 2023 ident: 10.1016/j.compbiomed.2023.107022_bib23 article-title: Schizophrenia classification using machine learning on resting state EEG signal publication-title: Biomed. Signal Process Control – volume: 215 start-page: 140 year: 2020 ident: 10.1016/j.compbiomed.2023.107022_bib16 article-title: Abnormal default-mode network homogeneity and its correlations with neurocognitive deficits in drug-naive first-episode adolescent-onset schizophrenia publication-title: Schizophrenia Res. doi: 10.1016/j.schres.2019.10.056 – volume: 356 start-page: 83 year: 2019 ident: 10.1016/j.compbiomed.2023.107022_bib13 article-title: A deep learning framework for identifying children with ADHD using an EEG-based brain network publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.058 |
| SSID | ssj0004030 |
| Score | 2.4435415 |
| Snippet | Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social... AbstractSchizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 107022 |
| SubjectTerms | 3D convolutional neural network Accuracy Alcoholism Algorithms Artificial neural networks Brain - diagnostic imaging Brain mapping Brain research Classification Connectivity analysis Cross mutual information Datasets Deep learning Default mode network Discriminant analysis EEG Electroencephalography Electroencephalography - methods Emotions Functional magnetic resonance imaging Humans Identification Internal Medicine Machine learning Medical research Mental disorders Neural networks Neural Networks, Computer Other Performance evaluation Schizophrenia Schizophrenia - diagnostic imaging ScZ Signal processing Support vector machines Temporal lobe Wavelet transforms |
| Title | Automatic identification of schizophrenia based on EEG signals using dynamic functional connectivity analysis and 3D convolutional neural network |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523004870 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523004870 https://dx.doi.org/10.1016/j.compbiomed.2023.107022 https://www.ncbi.nlm.nih.gov/pubmed/37187135 https://www.proquest.com/docview/2815942549 https://www.proquest.com/docview/2814525579 |
| Volume | 160 |
| WOSCitedRecordID | wos001007627800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: P5Z dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database ProQuest customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: K7- dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7RV dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAvfA_KRmUkXgOJY9eJeJjG1oGEVqrxoYoXy_UHGkLNWNr9H_zH3NlOygNDlXhx29jXpL3z3dn-3R0hL4QGs2LlKBNW8wwTcmX1vHKZ9UVuS-8xXjcUm5CTSTWb1dO04dYmWGWnE4Oito3BPfJXrALDy3E5c3DxM8OqUXi6mkpobJEdzJLAAnRvuo6LzMsYggK6hsNSKCF5Ir4LIdsxxP0llhCHyzJn7DrzdJ37GczQyd3__QH3yJ3kgNLDKDH3yQ23eEBunaYj9ofk1-Fq2YQ8rvTcJihR4B5tPG3_hOhRtICWQs94_JYiEAREmSKQ_hu1sdA9RbMZdxupQUiNicUqqE65UOCNpeUxdl6lSQBDMclmeAkQ9Ufk88n409G7LNVtyAy4X8tMajYSvs6tdlw4UxeV1bWrha-05A6mvJUaHUWRcy84t35kRlXljJdWeFHMy12yvWgW7gmwiwlrCoOVRHMOC4G59nKe65K70JgBkR27lElJzbG2xg_Vode-qzWjFTJaRUYPSNFTXsTEHhvQ1J1EqC5wFVStAuuzAa38G61rk85oVaFapnL1MaRMAmllmAwN1OmAvO4pk1sU3Z0N77vfiaPqb7WWxQF53neDYsHTIr1wzSqMwTNvIWHM4yjy_R9VgkeDtR2f_vvL98htfJKIrNsn28vLlXtGbpqr5Xl7OSRb8uwLtjMZ2mpIdt6MJ9Mz-PReZtCesg_DMKOhnYqvvwHp11GJ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLZKQcCFfQkUMBIcB2ax4xkhhCqa0ipthESRejOOl6oVzJROUtSfwR_hN_Ke7ZlwoCiXHrhkoniZyPO9xePvvUfIC67ArBgxTLhRLMGEXEk1LW1iXJaawjmM1_XFJsRkUu7vVx9XyK8uFgZplZ1O9IraNBrfkb_OSzC8DLcz746_J1g1Ck9XuxIaARZje_YDtmzt2-0NeL4v83xztPd-K4lVBRINzsEsESofclelRlnGra6y0qjKVtyVSjALgDRCoRvDU-Y4Y8YN9bAsrXbCcMezaQHzXiKXWVEKlKuxSBZxmGkRQl5AtzHYekXmUOCTIUU8hNS_wpLl8LNI8_w8c3ieu-vN3ubN_23BbpEb0cGm60EibpMVW98hV3cjheAu-bk-nzU-Ty09NJEq5dFJG0fbPymIFC28odAyGn2gSHQBUaUYKHBAzVmtvsEU6BaEt6lUI2VIh2IcVMVcL_DF0GIDG0-jkENXTCLqL56Cf498vpAFuU9W66a2DwEeOTc601gpNWWw0ZkqJ6apKpj1H3pARAcPqWPSdqwd8lV27LwjuQCWRGDJAKwByfqRxyFxyRJjqg6BsgvMBVMiwbouMVb8baxto05sZSbbXKbyk08JBdKRY7I3MBcD8qYfGd2-4M4ted-1Dv6yv9UC-wPyvG8GxYmnYaq2zdz3wTN9LqDPgyBi_UIV4LFh7cpH_578Gbm2tbe7I3e2J-PH5Dr-q8AiXCOrs5O5fUKu6NPZYXvy1OsJSr5ctJz9BjScp70 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKQRUX3o9AASPBcek-7HhXCKGKJFAVokiAVHFxHT9Qq7JbuklRfwZ_h1_HjO1NOFCUSw9cslHs8Ubeea6_mSHkGVdgVozoJ9wolmBBrqSaljYxLktN4Rzm6_pmE2I8Lvf2qska-dXlwiCsstOJXlGbRuM78q28BMPLMJzZchEWMRmMXh9_T7CDFJ60du00Aovs2rMfEL61r3YG8Kyf5_lo-OnNuyR2GEg0OAqzRKi8z12VGmUZt7rKSqMqW3FXKsEsMKcRCl0anjLHGTOur_tlabUThjueTQtY9xK5LCDGRDjhhH9Z5mSmRUh_AT3HIAyLKKKALUO4eEivf4Hty-Fnkeb5eabxPNfXm8DR9f95826Qa9HxpttBUm6SNVvfIhsfIrTgNvm5PZ81vn4tPTARQuW5ljaOtn9CEylafkNhZDh8SxEAAyJMMYHgKzVntfoGS6C7EN6yUo1QIh2adFAVa8DAF0OLAQ6eRuGHqVhc1F88NP8O-XwhG3KXrNdNbe8Dq-Tc6ExjB9WUQQA0VU5MU1Uw6z90j4iOVaSOxdyxp8iR7FB7h3LJZBKZTAYm65FsQXkcCpqsQFN13Ci7hF0wMRKs7gq04m-0to26spWZbHOZyo--VBRISo5F4MCM9MjLBWV0B4Obt-J9NztRkItbLeWgR54uhkGh4imZqm0z93PwrJ8LmHMviNtiowrw5LCn5YN_L_6EbIB4yfc7492H5Cr-qQAu3CTrs5O5fUSu6NPZQXvy2KsMSvYvWsx-A5V0sOE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+schizophrenia+based+on+EEG+signals+using+dynamic+functional+connectivity+analysis+and+3D+convolutional+neural+network&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Shen%2C+Mingkan&rft.au=Wen%2C+Peng&rft.au=Song%2C+Bo&rft.au=Li%2C+Yan&rft.date=2023-06-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=160&rft.spage=107022&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107022&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif |