PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images

Colorectal cancer has become one of the major causes of death throughout the world. Early detection of Polyp, an early symptom of colorectal cancer, can increase the survival rate to 90%. Segmentation of Polyp regions from colonoscopy images can facilitate the faster diagnosis. Due to varying sizes,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers in biology and medicine Ročník 128; s. 104119
Hlavní autoři: Mahmud, Tanvir, Paul, Bishmoy, Fattah, Shaikh Anowarul
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.01.2021
Elsevier Limited
Témata:
ISSN:0010-4825, 1879-0534, 1879-0534
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Colorectal cancer has become one of the major causes of death throughout the world. Early detection of Polyp, an early symptom of colorectal cancer, can increase the survival rate to 90%. Segmentation of Polyp regions from colonoscopy images can facilitate the faster diagnosis. Due to varying sizes, shapes, and textures of polyps with subtle visible differences with the background, automated segmentation of polyps still poses a major challenge towards traditional diagnostic methods. Conventional Unet architecture and some of its variants have gained much popularity for its automated segmentation though having several architectural limitations that result in sub-optimal performance. In this paper, an encoder-decoder based modified deep neural network architecture is proposed, named as PolypSegNet, to overcome several limitations of traditional architectures for very precise automated segmentation of polyp regions from colonoscopy images. For achieving more generalized representation at each scale of both the encoder and decoder module, several sequential depth dilated inception (DDI) blocks are integrated into each unit layer for aggregating features from different receptive areas utilizing depthwise dilated convolutions. Different scales of contextual information from all encoder unit layers pass through the proposed deep fusion skip module (DFSM) to generate skip interconnection with each decoder layer rather than separately connecting different levels of encoder and decoder. For more efficient reconstruction in the decoder module, multi-scale decoded feature maps generated at various levels of the decoder are jointly optimized in the proposed deep reconstruction module (DRM) instead of only considering the decoded feature map from final decoder layer. Extensive experimentations on four publicly available databases provide very satisfactory performance with mean five-fold cross-validation dice scores of 91.52% in CVC-ClinicDB database, 92.8% in CVC-ColonDB database, 88.72% in Kvasir-SEG database, and 84.79% in ETIS-Larib database. The proposed network provides very accurate segmented polyp regions that will expedite the diagnosis of polyps even in challenging conditions. [Display omitted] •A highly efficient, novel deep neural network architecture is proposed for very precise Polyp segmentation.•Some major architectural limitations of conventional Unet architecture are determined.•Three basic building blocks are proposed for achieving optimum performances with increased efficiency.•A modified Focal Tversky Loss (MFTL) function is introduced for reducing false positives with better generalization in challenging conditions.•New state-of-the-art performances are achieved on four publicly available datasets.
AbstractList Colorectal cancer has become one of the major causes of death throughout the world. Early detection of Polyp, an early symptom of colorectal cancer, can increase the survival rate to 90%. Segmentation of Polyp regions from colonoscopy images can facilitate the faster diagnosis. Due to varying sizes, shapes, and textures of polyps with subtle visible differences with the background, automated segmentation of polyps still poses a major challenge towards traditional diagnostic methods. Conventional Unet architecture and some of its variants have gained much popularity for its automated segmentation though having several architectural limitations that result in sub-optimal performance. In this paper, an encoder-decoder based modified deep neural network architecture is proposed, named as PolypSegNet, to overcome several limitations of traditional architectures for very precise automated segmentation of polyp regions from colonoscopy images. For achieving more generalized representation at each scale of both the encoder and decoder module, several sequential depth dilated inception (DDI) blocks are integrated into each unit layer for aggregating features from different receptive areas utilizing depthwise dilated convolutions. Different scales of contextual information from all encoder unit layers pass through the proposed deep fusion skip module (DFSM) to generate skip interconnection with each decoder layer rather than separately connecting different levels of encoder and decoder. For more efficient reconstruction in the decoder module, multi-scale decoded feature maps generated at various levels of the decoder are jointly optimized in the proposed deep reconstruction module (DRM) instead of only considering the decoded feature map from final decoder layer. Extensive experimentations on four publicly available databases provide very satisfactory performance with mean five-fold cross-validation dice scores of 91.52% in CVC-ClinicDB database, 92.8% in CVC-ColonDB database, 88.72% in Kvasir-SEG database, and 84.79% in ETIS-Larib database. The proposed network provides very accurate segmented polyp regions that will expedite the diagnosis of polyps even in challenging conditions.Colorectal cancer has become one of the major causes of death throughout the world. Early detection of Polyp, an early symptom of colorectal cancer, can increase the survival rate to 90%. Segmentation of Polyp regions from colonoscopy images can facilitate the faster diagnosis. Due to varying sizes, shapes, and textures of polyps with subtle visible differences with the background, automated segmentation of polyps still poses a major challenge towards traditional diagnostic methods. Conventional Unet architecture and some of its variants have gained much popularity for its automated segmentation though having several architectural limitations that result in sub-optimal performance. In this paper, an encoder-decoder based modified deep neural network architecture is proposed, named as PolypSegNet, to overcome several limitations of traditional architectures for very precise automated segmentation of polyp regions from colonoscopy images. For achieving more generalized representation at each scale of both the encoder and decoder module, several sequential depth dilated inception (DDI) blocks are integrated into each unit layer for aggregating features from different receptive areas utilizing depthwise dilated convolutions. Different scales of contextual information from all encoder unit layers pass through the proposed deep fusion skip module (DFSM) to generate skip interconnection with each decoder layer rather than separately connecting different levels of encoder and decoder. For more efficient reconstruction in the decoder module, multi-scale decoded feature maps generated at various levels of the decoder are jointly optimized in the proposed deep reconstruction module (DRM) instead of only considering the decoded feature map from final decoder layer. Extensive experimentations on four publicly available databases provide very satisfactory performance with mean five-fold cross-validation dice scores of 91.52% in CVC-ClinicDB database, 92.8% in CVC-ColonDB database, 88.72% in Kvasir-SEG database, and 84.79% in ETIS-Larib database. The proposed network provides very accurate segmented polyp regions that will expedite the diagnosis of polyps even in challenging conditions.
AbstractColorectal cancer has become one of the major causes of death throughout the world. Early detection of Polyp, an early symptom of colorectal cancer, can increase the survival rate to 90%. Segmentation of Polyp regions from colonoscopy images can facilitate the faster diagnosis. Due to varying sizes, shapes, and textures of polyps with subtle visible differences with the background, automated segmentation of polyps still poses a major challenge towards traditional diagnostic methods. Conventional Unet architecture and some of its variants have gained much popularity for its automated segmentation though having several architectural limitations that result in sub-optimal performance. In this paper, an encoder-decoder based modified deep neural network architecture is proposed, named as PolypSegNet, to overcome several limitations of traditional architectures for very precise automated segmentation of polyp regions from colonoscopy images. For achieving more generalized representation at each scale of both the encoder and decoder module, several sequential depth dilated inception (DDI) blocks are integrated into each unit layer for aggregating features from different receptive areas utilizing depthwise dilated convolutions. Different scales of contextual information from all encoder unit layers pass through the proposed deep fusion skip module (DFSM) to generate skip interconnection with each decoder layer rather than separately connecting different levels of encoder and decoder. For more efficient reconstruction in the decoder module, multi-scale decoded feature maps generated at various levels of the decoder are jointly optimized in the proposed deep reconstruction module (DRM) instead of only considering the decoded feature map from final decoder layer. Extensive experimentations on four publicly available databases provide very satisfactory performance with mean five-fold cross-validation dice scores of 91.52% in CVC-ClinicDB database, 92.8% in CVC-ColonDB database, 88.72% in Kvasir-SEG database, and 84.79% in ETIS-Larib database. The proposed network provides very accurate segmented polyp regions that will expedite the diagnosis of polyps even in challenging conditions.
Colorectal cancer has become one of the major causes of death throughout the world. Early detection of Polyp, an early symptom of colorectal cancer, can increase the survival rate to 90%. Segmentation of Polyp regions from colonoscopy images can facilitate the faster diagnosis. Due to varying sizes, shapes, and textures of polyps with subtle visible differences with the background, automated segmentation of polyps still poses a major challenge towards traditional diagnostic methods. Conventional Unet architecture and some of its variants have gained much popularity for its automated segmentation though having several architectural limitations that result in sub-optimal performance. In this paper, an encoder-decoder based modified deep neural network architecture is proposed, named as PolypSegNet, to overcome several limitations of traditional architectures for very precise automated segmentation of polyp regions from colonoscopy images. For achieving more generalized representation at each scale of both the encoder and decoder module, several sequential depth dilated inception (DDI) blocks are integrated into each unit layer for aggregating features from different receptive areas utilizing depthwise dilated convolutions. Different scales of contextual information from all encoder unit layers pass through the proposed deep fusion skip module (DFSM) to generate skip interconnection with each decoder layer rather than separately connecting different levels of encoder and decoder. For more efficient reconstruction in the decoder module, multi-scale decoded feature maps generated at various levels of the decoder are jointly optimized in the proposed deep reconstruction module (DRM) instead of only considering the decoded feature map from final decoder layer. Extensive experimentations on four publicly available databases provide very satisfactory performance with mean five-fold cross-validation dice scores of 91.52% in CVC-ClinicDB database, 92.8% in CVC-ColonDB database, 88.72% in Kvasir-SEG database, and 84.79% in ETIS-Larib database. The proposed network provides very accurate segmented polyp regions that will expedite the diagnosis of polyps even in challenging conditions. [Display omitted] •A highly efficient, novel deep neural network architecture is proposed for very precise Polyp segmentation.•Some major architectural limitations of conventional Unet architecture are determined.•Three basic building blocks are proposed for achieving optimum performances with increased efficiency.•A modified Focal Tversky Loss (MFTL) function is introduced for reducing false positives with better generalization in challenging conditions.•New state-of-the-art performances are achieved on four publicly available datasets.
Colorectal cancer has become one of the major causes of death throughout the world. Early detection of Polyp, an early symptom of colorectal cancer, can increase the survival rate to 90%. Segmentation of Polyp regions from colonoscopy images can facilitate the faster diagnosis. Due to varying sizes, shapes, and textures of polyps with subtle visible differences with the background, automated segmentation of polyps still poses a major challenge towards traditional diagnostic methods. Conventional Unet architecture and some of its variants have gained much popularity for its automated segmentation though having several architectural limitations that result in sub-optimal performance. In this paper, an encoder-decoder based modified deep neural network architecture is proposed, named as PolypSegNet, to overcome several limitations of traditional architectures for very precise automated segmentation of polyp regions from colonoscopy images. For achieving more generalized representation at each scale of both the encoder and decoder module, several sequential depth dilated inception (DDI) blocks are integrated into each unit layer for aggregating features from different receptive areas utilizing depthwise dilated convolutions. Different scales of contextual information from all encoder unit layers pass through the proposed deep fusion skip module (DFSM) to generate skip interconnection with each decoder layer rather than separately connecting different levels of encoder and decoder. For more efficient reconstruction in the decoder module, multi-scale decoded feature maps generated at various levels of the decoder are jointly optimized in the proposed deep reconstruction module (DRM) instead of only considering the decoded feature map from final decoder layer. Extensive experimentations on four publicly available databases provide very satisfactory performance with mean five-fold cross-validation dice scores of 91.52% in CVC-ClinicDB database, 92.8% in CVC-ColonDB database, 88.72% in Kvasir-SEG database, and 84.79% in ETIS-Larib database. The proposed network provides very accurate segmented polyp regions that will expedite the diagnosis of polyps even in challenging conditions.
ArticleNumber 104119
Author Fattah, Shaikh Anowarul
Mahmud, Tanvir
Paul, Bishmoy
Author_xml – sequence: 1
  givenname: Tanvir
  orcidid: 0000-0003-0529-2826
  surname: Mahmud
  fullname: Mahmud, Tanvir
  email: tanvirmahmud@eee.buet.ac.bd
– sequence: 2
  givenname: Bishmoy
  surname: Paul
  fullname: Paul, Bishmoy
  email: paul.bish98@gmail.com
– sequence: 3
  givenname: Shaikh Anowarul
  surname: Fattah
  fullname: Fattah, Shaikh Anowarul
  email: fattah@eee.buet.ac.bd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33254083$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9rFDEUxYNU7Lb6FSTgiy-zzb-ZyfpQrEWtUFSoPodMcmfNOjOZJhlhv70Zp1VYEPbpwuXcX27OuWfoZPADIIQpWVNCq4vd2vh-bJzvwa4ZYXNbULp5glZU1puClFycoBUhlBRCsvIUncW4I4QIwskzdMo5KwWRfIX6r77bj3ew_QzpDb7CvbeudWAxDMZbCIWFPxXrYH64BCZNAXDrc2NKvtcpS8cZgSNsexiSTs4PuA2-x8Z3fvDR-HGPXa-3EJ-jp63uIrx4qOfo-4f3365vitsvHz9dX90WpqQiFVVdN7JudV5XN1VZ0YZxarSWG9FobgEMl1ZWNaW8tVBWNaONaCy0vGyloA0_R68X7hj8_QQxqd5FA12nB_BTVExUFeGS1yxLXx1Id34KQ94uq2pWlTWTm6x6-aCamuy5GkP-UNirRyOz4HIRmOBjDNAq4xYvUtCuU5SoOTm1U_-SU3NyakkuA-QB4PGNI0bfLaOQLf3lIKhoXM4PrAs5MGW9OwZyeQAxnRuc0d1P2EP8awpVkSmi7ubbmk-L5YsSJZkBb_8POG6H37yJ5Mk
CitedBy_id crossref_primary_10_1007_s00521_025_11144_2
crossref_primary_10_1007_s11042_024_19703_w
crossref_primary_10_1016_j_media_2024_103307
crossref_primary_10_1371_journal_pone_0308237
crossref_primary_10_1016_j_compbiomed_2021_104815
crossref_primary_10_1007_s12559_022_10038_y
crossref_primary_10_1016_j_compmedimag_2022_102072
crossref_primary_10_1002_ima_22814
crossref_primary_10_1109_ACCESS_2021_3129480
crossref_primary_10_1016_j_jksuci_2023_101663
crossref_primary_10_1109_ACCESS_2024_3522022
crossref_primary_10_1016_j_jenvman_2023_118232
crossref_primary_10_1038_s41598_023_50681_5
crossref_primary_10_1038_s41598_024_62331_5
crossref_primary_10_1109_ACCESS_2024_3445428
crossref_primary_10_1007_s10278_024_01124_8
crossref_primary_10_1016_j_bspc_2023_104743
crossref_primary_10_1016_j_cviu_2024_104151
crossref_primary_10_1016_j_eswa_2022_118975
crossref_primary_10_1007_s12530_025_09716_7
crossref_primary_10_1016_j_eswa_2023_120434
crossref_primary_10_1109_LSP_2024_3378106
crossref_primary_10_1016_j_gie_2022_08_043
crossref_primary_10_1038_s41598_022_10429_z
crossref_primary_10_1109_JSEN_2025_3553904
crossref_primary_10_3390_jimaging8050121
crossref_primary_10_1007_s00371_022_02677_x
crossref_primary_10_3390_gastroent13030027
crossref_primary_10_1016_j_displa_2025_102993
crossref_primary_10_1007_s11633_023_1472_2
crossref_primary_10_1038_s41598_024_74123_y
crossref_primary_10_3390_bioengineering11100959
crossref_primary_10_1002_ima_22795
crossref_primary_10_1016_j_medengphy_2025_104396
crossref_primary_10_1016_j_compbiomed_2024_109617
crossref_primary_10_1109_JTEHM_2022_3198819
crossref_primary_10_1016_j_neucom_2024_128767
crossref_primary_10_1109_JBHI_2022_3173948
crossref_primary_10_1007_s10278_025_01389_7
crossref_primary_10_1002_ima_22836
crossref_primary_10_1093_jcde_qwac018
crossref_primary_10_1016_j_compbiomed_2023_107301
crossref_primary_10_1007_s10462_025_11173_2
crossref_primary_10_1109_TASE_2024_3430896
crossref_primary_10_3748_wjg_v28_i41_5931
crossref_primary_10_1016_j_bspc_2024_107055
crossref_primary_10_1109_ACCESS_2023_3244789
crossref_primary_10_1109_TBME_2022_3216269
crossref_primary_10_1007_s00530_022_00900_2
crossref_primary_10_1016_j_artmed_2024_102800
crossref_primary_10_1016_j_bspc_2025_108481
crossref_primary_10_1016_j_knosys_2024_112228
crossref_primary_10_1007_s11548_022_02696_y
crossref_primary_10_1016_j_bspc_2024_107257
crossref_primary_10_1016_j_compbiomed_2023_106945
crossref_primary_10_1016_j_compbiomed_2022_106205
crossref_primary_10_1007_s00371_022_02422_4
crossref_primary_10_1016_j_compbiomed_2022_105476
crossref_primary_10_1016_j_smhl_2025_100551
crossref_primary_10_1109_ACCESS_2022_3184773
crossref_primary_10_1109_TIM_2024_3379418
crossref_primary_10_1140_epjs_s11734_024_01298_w
crossref_primary_10_1016_j_engappai_2024_109292
Cites_doi 10.1016/j.compmedimag.2015.02.007
10.1109/ACCESS.2019.2954675
10.1109/ACCESS.2019.2900672
10.1109/TMI.2019.2959609
10.1056/NEJMoa1309086
10.1016/j.neunet.2019.08.025
10.1016/j.compbiomed.2018.07.002
10.1109/TMI.2004.826941
10.1053/j.gastro.2017.04.006
10.1016/S2468-1253(19)30411-X
10.1109/TMI.2009.2031323
10.1016/j.patcog.2012.03.002
10.1136/gutjnl-2019-319914
10.1109/TMI.2019.2950051
10.1118/1.2717411
10.1007/s11548-013-0926-3
10.1038/s41551-018-0301-3
10.3390/jimaging6070069
10.1109/JBHI.2017.2734329
10.1016/S0016-5107(00)70383-X
10.3390/jimaging3010001
10.1109/ACCESS.2019.2908386
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
2020. Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: 2020. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2020.104119
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database (ProQuest)
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Research Library Prep
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Architecture
EISSN 1879-0534
EndPage 104119
ExternalDocumentID 33254083
10_1016_j_compbiomed_2020_104119
S0010482520304509
1_s2_0_S0010482520304509
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
9DU
AAYXX
AFFHD
CITATION
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-677b87fa040ab6561b231caa894ba3deec38d867113fde56721b4bdef35f841b3
IEDL.DBID M7P
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604572200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4825
1879-0534
IngestDate Sun Nov 09 13:01:28 EST 2025
Tue Oct 07 06:24:18 EDT 2025
Thu Apr 03 06:59:11 EDT 2025
Tue Nov 18 22:41:21 EST 2025
Sat Nov 29 07:28:32 EST 2025
Tue Oct 01 07:16:36 EDT 2024
Tue Feb 25 20:03:27 EST 2025
Tue Oct 14 19:33:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Neural network
Colonoscopy
Polyp segmentation
Computer-aided diagnosis
Colorectal cancer
colorectal cancer
computer-aided diagnosis
colonoscopy
neural network
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-677b87fa040ab6561b231caa894ba3deec38d867113fde56721b4bdef35f841b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0529-2826
PMID 33254083
PQID 2472657289
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2466038372
proquest_journals_2472657289
pubmed_primary_33254083
crossref_citationtrail_10_1016_j_compbiomed_2020_104119
crossref_primary_10_1016_j_compbiomed_2020_104119
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_104119
elsevier_clinicalkeyesjournals_1_s2_0_S0010482520304509
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2020_104119
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Ronneberger, Fischer, Brox, U-net (bib23) 2015
Zhou, Siddiquee, Tajbakhsh, Liang (bib29) 2019; 39
Abraham, Khan (bib36) 2019
Guo, Matuszewski (bib22) 2019
Qadir, Solhusvik, Bergsland, Aabakken, Balasingham (bib21) 2019; 7
Long, Shelhamer, Darrell (bib40) 2015
Wang, Chen, Ji, Fan, Li (bib44) 2020
Chollet (bib32) 2017
Kaminski, Wieszczy, Rupinski, Wojciechowska, Didkowska, Kraszewska, Kobiela, Franczyk, Rupinska, Kocot (bib6) 2017; 153
He, Zhang, Ren, Sun (bib26) 2016
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib30) 2015
Ibtehaz, Rahman (bib25) 2020; 121
Wang, Xiao, Brown, Berzin, Tu, Xiong, Hu, Liu, Song, Zhang (bib10) 2018; 2
Silva, Histace, Romain, Dray, Granado (bib38) 2014; 9
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib33) 2016
Nogueira-Rodríguez, Domínguez-Carbajales, López-Fernández, Iglesias, Cubiella, Fdez-Riverola, Reboiro-Jato, Glez-Peña (bib17) 2020
Hashemi, Salehi, Erdogmus, Prabhu, Warfield, Gholipour (bib34) 2018
Corley, Jensen, Marks, Zhao, Lee, Doubeni, Zauber, de Boer, Fireman, Schottinger (bib4) 2014; 370
Bernal, Sánchez, Fernández-Esparrach, Gil, Rodríguez, Vilariño (bib35) 2015; 43
Wang, Liu, Berzin, Brown, Liu, Zhou, Lei, Li, Guo, Lei (bib18) 2020; 5
Yuan, Li, Meng (bib15) 2017; 22
Rutter, Johnson, Miglioretti, Mandelson, Inadomi, Buist (bib9) 2012; 23
Chaurasia, Culurciello (bib42) 2017
Jha, Riegler, Johansen, Halvorsen, Johansen (bib43) 2020
Al Ghamdi, Abdel-Mottaleb, Collado-Mesa (bib27) 2020; 39
Van Wijk, Van Ravesteijn, Vos, Van Vliet (bib16) 2010; 29
Hassan, Wallace, Sharma, Maselli, Craviotto, Spadaccini, Repici (bib8) 2020; 69
Mou, Chen, Cheng, Gu, Zhao, Liu (bib28) 2019; 39
Prasath (bib11) 2017; 3
Guo, Bernal, J Matuszewski (bib45) 2020; 6
Yao, Miller, Franaszek, Summers (bib12) 2004; 23
Bernal, Sánchez, Vilarino (bib39) 2012; 45
Kang, Gwak (bib20) 2019; 7
Wang, Chen, Wang, Zeng, Huang, Liu (bib24) 2019; 7
Jha, Smedsrud, Riegler, Johansen, De Lange, Halvorsen, Johansen (bib41) 2019
Yao, Summers (bib13) 2007; 34
Corley, Jensen, Marks, Zhao, Lee, Doubeni, Zauber, de Boer, Fireman, Schottinger (bib7) 2014; 370
Yu, Koltun (bib31) 2015
Lou, Yang, Xu, Huang, Shi (bib3) 2014; 25
Jha, Smedsrud, Riegler, Halvorsen, de Lange, Johansen, Johansen (bib37) 2020
Siegel, Miller, Goding Sauer, Fedewa, Butterly, Anderson, Cercek, Smith, Jemal (bib1) 2020; 70
Rex (bib5) 2000; 51
Siegel, Miller, Jemal (bib2) 2019; 69
Qadir, Shin, Solhusvik, Bergsland, Aabakken, Balasingham (bib19) 2019
Sanchez-Gonzalez, Garcia-Zapirain, Sierra-Sosa, Elmaghraby (bib14) 2018; 100
Guo (10.1016/j.compbiomed.2020.104119_bib22) 2019
Lou (10.1016/j.compbiomed.2020.104119_bib3) 2014; 25
Rex (10.1016/j.compbiomed.2020.104119_bib5) 2000; 51
Prasath (10.1016/j.compbiomed.2020.104119_bib11) 2017; 3
Ronneberger (10.1016/j.compbiomed.2020.104119_bib23) 2015
Bernal (10.1016/j.compbiomed.2020.104119_bib35) 2015; 43
Long (10.1016/j.compbiomed.2020.104119_bib40) 2015
Wang (10.1016/j.compbiomed.2020.104119_bib44) 2020
Chollet (10.1016/j.compbiomed.2020.104119_bib32) 2017
Nogueira-Rodríguez (10.1016/j.compbiomed.2020.104119_bib17) 2020
Szegedy (10.1016/j.compbiomed.2020.104119_bib30) 2015
Guo (10.1016/j.compbiomed.2020.104119_bib45) 2020; 6
Corley (10.1016/j.compbiomed.2020.104119_bib7) 2014; 370
Van Wijk (10.1016/j.compbiomed.2020.104119_bib16) 2010; 29
Hassan (10.1016/j.compbiomed.2020.104119_bib8) 2020; 69
Chaurasia (10.1016/j.compbiomed.2020.104119_bib42) 2017
Corley (10.1016/j.compbiomed.2020.104119_bib4) 2014; 370
Qadir (10.1016/j.compbiomed.2020.104119_bib19) 2019
Hashemi (10.1016/j.compbiomed.2020.104119_bib34) 2018
Yao (10.1016/j.compbiomed.2020.104119_bib13) 2007; 34
Abraham (10.1016/j.compbiomed.2020.104119_bib36) 2019
Jha (10.1016/j.compbiomed.2020.104119_bib37) 2020
Wang (10.1016/j.compbiomed.2020.104119_bib24) 2019; 7
Yao (10.1016/j.compbiomed.2020.104119_bib12) 2004; 23
Ibtehaz (10.1016/j.compbiomed.2020.104119_bib25) 2020; 121
Jha (10.1016/j.compbiomed.2020.104119_bib41) 2019
Al Ghamdi (10.1016/j.compbiomed.2020.104119_bib27) 2020; 39
Mou (10.1016/j.compbiomed.2020.104119_bib28) 2019; 39
Zhou (10.1016/j.compbiomed.2020.104119_bib29) 2019; 39
Wang (10.1016/j.compbiomed.2020.104119_bib18) 2020; 5
Yuan (10.1016/j.compbiomed.2020.104119_bib15) 2017; 22
Kang (10.1016/j.compbiomed.2020.104119_bib20) 2019; 7
Yu (10.1016/j.compbiomed.2020.104119_bib31) 2015
Qadir (10.1016/j.compbiomed.2020.104119_bib21) 2019; 7
Szegedy (10.1016/j.compbiomed.2020.104119_bib33) 2016
Wang (10.1016/j.compbiomed.2020.104119_bib10) 2018; 2
Sanchez-Gonzalez (10.1016/j.compbiomed.2020.104119_bib14) 2018; 100
He (10.1016/j.compbiomed.2020.104119_bib26) 2016
Kaminski (10.1016/j.compbiomed.2020.104119_bib6) 2017; 153
Siegel (10.1016/j.compbiomed.2020.104119_bib1) 2020; 70
Siegel (10.1016/j.compbiomed.2020.104119_bib2) 2019; 69
Rutter (10.1016/j.compbiomed.2020.104119_bib9) 2012; 23
Silva (10.1016/j.compbiomed.2020.104119_bib38) 2014; 9
Bernal (10.1016/j.compbiomed.2020.104119_bib39) 2012; 45
Jha (10.1016/j.compbiomed.2020.104119_bib43) 2020
References_xml – start-page: 1251
  year: 2017
  end-page: 1258
  ident: bib32
  article-title: Xception: deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 69
  start-page: 799
  year: 2020
  end-page: 800
  ident: bib8
  article-title: New artificial intelligence system: first validation study versus experienced endoscopists for colorectal polyp detection
  publication-title: Gut
– volume: 23
  start-page: 289
  year: 2012
  end-page: 296
  ident: bib9
  article-title: Adverse events after screening and follow-up colonoscopy
  publication-title: Canc. Causes Contr.
– volume: 2
  start-page: 741
  year: 2018
  end-page: 748
  ident: bib10
  article-title: Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy
  publication-title: Nature biomedical engineering
– volume: 29
  start-page: 688
  year: 2010
  end-page: 698
  ident: bib16
  article-title: Detection and segmentation of colonic polyps on implicit isosurfaces by second principal curvature flow
  publication-title: IEEE Trans. Med. Imag.
– volume: 6
  start-page: 69
  year: 2020
  ident: bib45
  article-title: Polyp segmentation with fully convolutional deep neural networks—extended evaluation study
  publication-title: Journal of Imaging
– volume: 39
  year: 2020
  ident: bib27
  article-title: DU-Net: convolutional network for the detection of arterial calcifications in mammograms
  publication-title: IEEE Trans. Med. Imag.
– volume: 153
  start-page: 98
  year: 2017
  end-page: 105
  ident: bib6
  article-title: Increased rate of adenoma detection associates with reduced risk of colorectal cancer and death
  publication-title: Gastroenterology
– volume: 25
  start-page: 182
  year: 2014
  end-page: 186
  ident: bib3
  article-title: A retrospective study on endoscopic missing diagnosis of colorectal polyp and its related factors
  publication-title: Turk. J. Gastroenterol.
– volume: 7
  start-page: 44676
  year: 2019
  end-page: 44685
  ident: bib24
  article-title: Nested dilation network (ndn) for multi-task medical image segmentation
  publication-title: IEEE Access
– volume: 370
  start-page: 1298
  year: 2014
  end-page: 1306
  ident: bib7
  article-title: Adenoma detection rate and risk of colorectal cancer and death
  publication-title: N. Engl. J. Med.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib26
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 5
  start-page: 343
  year: 2020
  end-page: 351
  ident: bib18
  article-title: Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (cade-db trial): a double-blind randomised study
  publication-title: The Lancet Gastroenterology & Hepatology
– volume: 121
  start-page: 74
  year: 2020
  end-page: 87
  ident: bib25
  article-title: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation
  publication-title: Neural Network.
– volume: 45
  start-page: 3166
  year: 2012
  end-page: 3182
  ident: bib39
  article-title: Towards automatic polyp detection with a polyp appearance model
  publication-title: Pattern Recogn.
– volume: 7
  start-page: 26440
  year: 2019
  end-page: 26447
  ident: bib20
  article-title: Ensemble of instance segmentation models for polyp segmentation in colonoscopy images
  publication-title: IEEE Access
– volume: 39
  start-page: 1856
  year: 2019
  end-page: 1867
  ident: bib29
  article-title: Unet++: redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imag.
– volume: 23
  start-page: 1344
  year: 2004
  end-page: 1352
  ident: bib12
  article-title: Colonic polyp segmentation in CT colonography-based on fuzzy clustering and deformable models
  publication-title: IEEE Trans. Med. Imag.
– start-page: 451
  year: 2020
  end-page: 462
  ident: bib37
  article-title: Kvasir-seg: a segmented polyp dataset
  publication-title: International Conference on Multimedia Modeling
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib23
  article-title: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 70
  year: 2020
  ident: bib1
  article-title: Colorectal cancer statistics, 2020
  publication-title: CA: A Canc. J. Clin.
– volume: 34
  start-page: 1655
  year: 2007
  end-page: 1664
  ident: bib13
  article-title: Adaptive deformable model for colonic polyp segmentation and measurement on CT colonography
  publication-title: Med. Phys.
– volume: 3
  start-page: 1
  year: 2017
  ident: bib11
  article-title: Polyp detection and segmentation from video capsule endoscopy: a review
  publication-title: Journal of Imaging
– start-page: 11078
  year: 2018
  ident: bib34
  article-title: Tversky as a Loss Function for Highly Unbalanced Image Segmentation Using 3d Fully Convolutional Deep Networks
– volume: 51
  start-page: 33
  year: 2000
  end-page: 36
  ident: bib5
  article-title: Colonoscopic withdrawal technique is associated with adenoma miss rates
  publication-title: Gastrointest. Endosc.
– year: 2020
  ident: bib17
  article-title: Deep neural networks approaches for detecting and classifying colorectal polyps
  publication-title: Neurocomputing
– year: 2020
  ident: bib44
  article-title: Boundary-aware Context Neural Network for Medical Image Segmentation
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib42
  article-title: Linknet: exploiting encoder representations for efficient semantic segmentation
  publication-title: 2017 IEEE Visual Communications and Image Processing (VCIP)
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib30
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 225
  year: 2019
  end-page: 2255
  ident: bib41
  article-title: Resunet++: an advanced architecture for medical image segmentation
  publication-title: 2019 IEEE International Symposium on Multimedia (ISM)
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib19
  article-title: Polyp detection and segmentation using mask r-cnn: does a deeper feature extractor cnn always perform better?
  publication-title: 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT), IEEE
– volume: 69
  start-page: 7
  year: 2019
  end-page: 34
  ident: bib2
  article-title: Cancer statistics, 2019
  publication-title: CA: A Canc. J. Clin.
– year: 2020
  ident: bib43
  article-title: Doubleu-net: A Deep Convolutional Neural Network for Medical Image Segmentation
– year: 2015
  ident: bib31
  article-title: Multi-scale context aggregation by dilated convolutions
– volume: 43
  start-page: 99
  year: 2015
  end-page: 111
  ident: bib35
  article-title: Wm-dova maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians
  publication-title: Comput. Med. Imag. Graph.
– volume: 7
  start-page: 169537
  year: 2019
  end-page: 169547
  ident: bib21
  article-title: A framework with a fully convolutional neural network for semi-automatic colon polyp annotation
  publication-title: IEEE Access
– start-page: 683
  year: 2019
  end-page: 687
  ident: bib36
  article-title: A novel focal tversky loss function with improved attention u-net for lesion segmentation
  publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
– volume: 22
  start-page: 1250
  year: 2017
  end-page: 1260
  ident: bib15
  article-title: Automatic polyp detection via a novel unified bottom-up and top-down saliency approach
  publication-title: IEEE journal of biomedical and health informatics
– start-page: 632
  year: 2019
  end-page: 641
  ident: bib22
  article-title: Giana polyp segmentation with fully convolutional dilation neural networks
  publication-title: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib33
  article-title: Rethinking the inception architecture for computer vision
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 100
  start-page: 152
  year: 2018
  end-page: 164
  ident: bib14
  article-title: Automatized colon polyp segmentation via contour region analysis
  publication-title: Comput. Biol. Med.
– volume: 39
  start-page: 1392
  year: 2019
  end-page: 1403
  ident: bib28
  article-title: Dense dilated network with probability regularized walk for vessel detection
  publication-title: IEEE Trans. Med. Imag.
– volume: 9
  start-page: 283
  year: 2014
  end-page: 293
  ident: bib38
  article-title: Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer
  publication-title: International Journal of Computer Assisted Radiology and Surgery
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib40
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 370
  start-page: 1298
  year: 2014
  end-page: 1306
  ident: bib4
  article-title: Adenoma detection rate and risk of colorectal cancer and death
  publication-title: N. Engl. J. Med.
– start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104119_bib19
  article-title: Polyp detection and segmentation using mask r-cnn: does a deeper feature extractor cnn always perform better?
– volume: 43
  start-page: 99
  year: 2015
  ident: 10.1016/j.compbiomed.2020.104119_bib35
  article-title: Wm-dova maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians
  publication-title: Comput. Med. Imag. Graph.
  doi: 10.1016/j.compmedimag.2015.02.007
– volume: 7
  start-page: 169537
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104119_bib21
  article-title: A framework with a fully convolutional neural network for semi-automatic colon polyp annotation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954675
– volume: 7
  start-page: 26440
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104119_bib20
  article-title: Ensemble of instance segmentation models for polyp segmentation in colonoscopy images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2900672
– volume: 39
  start-page: 1856
  issue: 6
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104119_bib29
  article-title: Unet++: redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2019.2959609
– volume: 370
  start-page: 1298
  issue: 14
  year: 2014
  ident: 10.1016/j.compbiomed.2020.104119_bib7
  article-title: Adenoma detection rate and risk of colorectal cancer and death
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1309086
– volume: 121
  start-page: 74
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104119_bib25
  article-title: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2019.08.025
– start-page: 2818
  year: 2016
  ident: 10.1016/j.compbiomed.2020.104119_bib33
  article-title: Rethinking the inception architecture for computer vision
– volume: 100
  start-page: 152
  year: 2018
  ident: 10.1016/j.compbiomed.2020.104119_bib14
  article-title: Automatized colon polyp segmentation via contour region analysis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.07.002
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104119_bib44
– volume: 69
  start-page: 7
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104119_bib2
  article-title: Cancer statistics, 2019
  publication-title: CA: A Canc. J. Clin.
– volume: 23
  start-page: 1344
  issue: 11
  year: 2004
  ident: 10.1016/j.compbiomed.2020.104119_bib12
  article-title: Colonic polyp segmentation in CT colonography-based on fuzzy clustering and deformable models
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2004.826941
– start-page: 632
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104119_bib22
  article-title: Giana polyp segmentation with fully convolutional dilation neural networks
– volume: 25
  start-page: 182
  issue: Suppl 1
  year: 2014
  ident: 10.1016/j.compbiomed.2020.104119_bib3
  article-title: A retrospective study on endoscopic missing diagnosis of colorectal polyp and its related factors
  publication-title: Turk. J. Gastroenterol.
– volume: 153
  start-page: 98
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104119_bib6
  article-title: Increased rate of adenoma detection associates with reduced risk of colorectal cancer and death
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2017.04.006
– volume: 5
  start-page: 343
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104119_bib18
  article-title: Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (cade-db trial): a double-blind randomised study
  publication-title: The Lancet Gastroenterology & Hepatology
  doi: 10.1016/S2468-1253(19)30411-X
– start-page: 770
  year: 2016
  ident: 10.1016/j.compbiomed.2020.104119_bib26
  article-title: Deep residual learning for image recognition
– start-page: 1251
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104119_bib32
  article-title: Xception: deep learning with depthwise separable convolutions
– volume: 29
  start-page: 688
  issue: 3
  year: 2010
  ident: 10.1016/j.compbiomed.2020.104119_bib16
  article-title: Detection and segmentation of colonic polyps on implicit isosurfaces by second principal curvature flow
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2009.2031323
– volume: 45
  start-page: 3166
  issue: 9
  year: 2012
  ident: 10.1016/j.compbiomed.2020.104119_bib39
  article-title: Towards automatic polyp detection with a polyp appearance model
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2012.03.002
– start-page: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2020.104119_bib30
  article-title: Going deeper with convolutions
– volume: 69
  start-page: 799
  issue: 5
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104119_bib8
  article-title: New artificial intelligence system: first validation study versus experienced endoscopists for colorectal polyp detection
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-319914
– start-page: 451
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104119_bib37
  article-title: Kvasir-seg: a segmented polyp dataset
– volume: 39
  start-page: 1392
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104119_bib28
  article-title: Dense dilated network with probability regularized walk for vessel detection
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2019.2950051
– volume: 34
  start-page: 1655
  issue: 5
  year: 2007
  ident: 10.1016/j.compbiomed.2020.104119_bib13
  article-title: Adaptive deformable model for colonic polyp segmentation and measurement on CT colonography
  publication-title: Med. Phys.
  doi: 10.1118/1.2717411
– volume: 9
  start-page: 283
  issue: 2
  year: 2014
  ident: 10.1016/j.compbiomed.2020.104119_bib38
  article-title: Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer
  publication-title: International Journal of Computer Assisted Radiology and Surgery
  doi: 10.1007/s11548-013-0926-3
– volume: 23
  start-page: 289
  issue: 2
  year: 2012
  ident: 10.1016/j.compbiomed.2020.104119_bib9
  article-title: Adverse events after screening and follow-up colonoscopy
  publication-title: Canc. Causes Contr.
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104119_bib43
– start-page: 234
  year: 2015
  ident: 10.1016/j.compbiomed.2020.104119_bib23
  article-title: Convolutional networks for biomedical image segmentation
– year: 2015
  ident: 10.1016/j.compbiomed.2020.104119_bib31
– volume: 2
  start-page: 741
  issue: 10
  year: 2018
  ident: 10.1016/j.compbiomed.2020.104119_bib10
  article-title: Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy
  publication-title: Nature biomedical engineering
  doi: 10.1038/s41551-018-0301-3
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104119_bib17
  article-title: Deep neural networks approaches for detecting and classifying colorectal polyps
  publication-title: Neurocomputing
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104119_bib42
  article-title: Linknet: exploiting encoder representations for efficient semantic segmentation
– volume: 70
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104119_bib1
  article-title: Colorectal cancer statistics, 2020
  publication-title: CA: A Canc. J. Clin.
– volume: 39
  issue: 10
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104119_bib27
  article-title: DU-Net: convolutional network for the detection of arterial calcifications in mammograms
  publication-title: IEEE Trans. Med. Imag.
– volume: 6
  start-page: 69
  issue: 7
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104119_bib45
  article-title: Polyp segmentation with fully convolutional deep neural networks—extended evaluation study
  publication-title: Journal of Imaging
  doi: 10.3390/jimaging6070069
– start-page: 3431
  year: 2015
  ident: 10.1016/j.compbiomed.2020.104119_bib40
  article-title: Fully convolutional networks for semantic segmentation
– volume: 22
  start-page: 1250
  issue: 4
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104119_bib15
  article-title: Automatic polyp detection via a novel unified bottom-up and top-down saliency approach
  publication-title: IEEE journal of biomedical and health informatics
  doi: 10.1109/JBHI.2017.2734329
– volume: 51
  start-page: 33
  issue: 1
  year: 2000
  ident: 10.1016/j.compbiomed.2020.104119_bib5
  article-title: Colonoscopic withdrawal technique is associated with adenoma miss rates
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/S0016-5107(00)70383-X
– volume: 370
  start-page: 1298
  issue: 14
  year: 2014
  ident: 10.1016/j.compbiomed.2020.104119_bib4
  article-title: Adenoma detection rate and risk of colorectal cancer and death
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1309086
– start-page: 11078
  year: 2018
  ident: 10.1016/j.compbiomed.2020.104119_bib34
– start-page: 683
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104119_bib36
  article-title: A novel focal tversky loss function with improved attention u-net for lesion segmentation
– start-page: 225
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104119_bib41
  article-title: Resunet++: an advanced architecture for medical image segmentation
– volume: 3
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104119_bib11
  article-title: Polyp detection and segmentation from video capsule endoscopy: a review
  publication-title: Journal of Imaging
  doi: 10.3390/jimaging3010001
– volume: 7
  start-page: 44676
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104119_bib24
  article-title: Nested dilation network (ndn) for multi-task medical image segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2908386
SSID ssj0004030
Score 2.531855
Snippet Colorectal cancer has become one of the major causes of death throughout the world. Early detection of Polyp, an early symptom of colorectal cancer, can...
AbstractColorectal cancer has become one of the major causes of death throughout the world. Early detection of Polyp, an early symptom of colorectal cancer,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104119
SubjectTerms Architecture
Artificial neural networks
Automation
Cancer
Coders
Colonoscopy
Colorectal cancer
Colorectal carcinoma
Computer architecture
Computer-aided diagnosis
Diagnosis
Diagnostic systems
Encoders-Decoders
Feature maps
Image processing
Image segmentation
Internal Medicine
Medical diagnosis
Medical imaging
Modules
Neural network
Neural networks
Other
Polyp segmentation
Polyps
Reconstruction
Semantics
Title PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482520304509
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482520304509
https://dx.doi.org/10.1016/j.compbiomed.2020.104119
https://www.ncbi.nlm.nih.gov/pubmed/33254083
https://www.proquest.com/docview/2472657289
https://www.proquest.com/docview/2466038372
Volume 128
WOSCitedRecordID wos000604572200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: P5Z
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: K7-
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_a9QwFA9uExHBL3O603lE8Ndgm7RNqz_IKRuC7CybyuEvIWnScbJrb9eesP_elzTt7YcpB_6SUprX0LzXl0_yviH0hipVslgnxARak0glBVGSRiRgPJCUlonWqSs2wafTdDbLcn_g1ni3yl4nOkWt68Kekb-lEadJzGF_8GF5RWzVKGtd9SU0dtCezZJAnetevomLDFgXggK6JoKtkPfk6fy7rMt2F-IOu0TqjJ2hzbdz-_L0N_jplqGTR__7AY_RQw9A8aSTmCfojqn20YPJDXvCPrp36i3uT9Eiry-vl-fmYmrad3iCF7WelwBbsU2Aqc2KaOOu-KZFAgMSxnLd1gCHoevSvgI35mLhA50qbKNasE2YXdU2LuYazxeg2JoD9P3k-Nunz8SXaCAFIK2WJJyrlJcSploqgIahArxYSJlmkZJMG1OwVNsUeiErtYkT2G-qSGkD8lGmUajYM7Rb1ZU5RLgMUh3LyEjGZMRklukyKwKlwiArQm30CPGeM6Lw-cttGY1L0Tuq_RIbngrLU9HxdITCgXLZ5fDYgibrmS_6GFXQqgIWmi1o-W20pvHqoRGhaKgIxLnLjgSCSZ3BOgDK9wOlR0Adstly3KNe8sQw1EbsRuj18Bh0iDUMycrUa9snSQJ7VEFH6Hkn3cNEMUYB1Kfsxb9f_hLdp9bbxx1OHaHddrU2r9Dd4nc7b1ZjtMPPfth2xl2bjtHex-NpfgZ3XziB9pR-HbufF9o8_vkH3-pKaA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwFC4jJuhQFGgkeLxHbjBIRQBUybulWTNqS9eXbsTEVrUpoU1D_Fb-Q4l3YPA_VlDzz1oTmOknzn-Ds-N4A3zJiM921EXWAtFSZKqdFM0IDLQDOWRdbG9bAJORrFJyfJ4Qb87mphfFplZxNrQ22L1J-Rv2NCsqgv0T_4NP1B_dQoH13tRmg0sBi6xS902cqPe1_w-75lbOfr8edd2k4VoCmSg4pGUppYZhrRqw2ymdAgxUm1jhNhNLfOpTy2vutbyDPr-hG6SEYY6_CRsliEhuO61-C64LH0ejWUdFWHGfCm5AVtm0DXq80cavLJfIp4U1KPXimrg6uh7-9z-Xb4N7pbb3s79_63F3Yf7rYEmwwajXgAGy7fgjuDC_GSLbh50GYUPITJYXG-mB65s5Gr3pMBmRR2nCEtJ77Bp3Uzal39Sy5GXAgyfaLnVYF0Hy-d-iVI6c4mbSFXTnzVDvENwfPC1_0syHiChrt8BN-u5Nkfw2Ze5O4pkCyIbV8LpznXgusksVmSBsaEQZKG1tkeyA4JKm37s_sxIeeqS8T7rlYYUh5DqsFQD8Kl5LTpUbKGTNKBTXU1uLhrKNxI15CVl8m6sjV_pQpVyVSgjuruT6gIrA7IByj5YSnZMryGua153-0O6Wp5qxXMe_B6-TfaSB_40rkr5v6aKAr8UQzrwZNGm5YvinOGTkvMn_178Vdwa_f4YF_t742Gz-E285lN9UHcNmxWs7l7ATfSn9W4nL2sTQKB06tWqT-eDaCl
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgiqExKO8AgUWCY5W17u21wYhFFEiqkIUqSBVXJZd77oKauwQO6D8NX4ds36lh4Jy6YFTDvGsZXtmdr6db2YAXjCtMx6ayLPUGC_QUeppxQKPckEVY1lkTFwPmxDjcXxykky24HdXC-NolZ1PrB21KVJ3Rr7PAsGiUCA-2M9aWsTkYPR2_sNzE6RcprUbp9GoyJFd_UL4Vr45PMBv_ZKx0fvP7z547YQBL8VAofIiIXQsMoWarDRGNr7GcCdVKk4CrbixNuWxcR3gfJ4ZG0YIl3SgjcXHy-LA1xzXvQJXBWJMRyechF_XNZmUN-Uv6OcChGEti6jhljm6eFNejwiV1YlW3_X6uXhr_FvoW2-Bo1v_88u7DTfbwJsMG0u5A1s234Ubw3N5lF3Y-dQyDe7CbFKcrebH9nRsq1dkSGaFmWYYrhPX-NPYhWds_UvOZ2IIIgCillWBMAAvnbslSGlPZ22BV05cNQ9xjcLzwtUDrch0hg69vAdfLuXZ78N2XuT2IZCMxiZUgVWcq4CrJDFZklKtfZqkvrFmAKLTCpm2fdvd-JAz2RH0vsu1PkmnT7LRpwH4veS86V2ygUzSKZ7sanNxN5G4wW4gKy6StWXrFkvpy5JJKo_rrlBoFKxO1FOUfN1LtpFfE9FteN-9Tutlf6u1yg_gef83-k6XEFO5LZbumiii7oiGDeBBY1n9i-KcIZiJ-aN_L_4MdtCS5MfD8dFjuM4c4ak-n9uD7WqxtE_gWvqzmpaLp7V3IPDtsi3qD1Jlqck
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PolypSegNet%3A+A+modified+encoder-decoder+architecture+for+automated+polyp+segmentation+from+colonoscopy+images&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Mahmud%2C+Tanvir&rft.au=Bishmoy%2C+Paul&rft.au=Shaikh+Anowarul+Fattah&rft.date=2021-01-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=128&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.104119&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon