CFD simulations of inhalation through a subject-specific human larynx – Impact of the unilateral vocal fold immobility
The larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the...
Gespeichert in:
| Veröffentlicht in: | Computers in biology and medicine Jg. 143; S. 105243 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Ltd
01.04.2022
Elsevier Limited |
| Schlagworte: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study.
Transient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes.
The laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI.
Surgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs.
•LES simulations of subject-specific UVFI configurations•Analysis of laryngeal jet generation and jet travelling length•Quantification of flow transition with spectral entropy•Increased airway resistance and power loss with higher airway constriction due to UVFI |
|---|---|
| AbstractList | The larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study.
Transient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes.
The laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI.
Surgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs.
•LES simulations of subject-specific UVFI configurations•Analysis of laryngeal jet generation and jet travelling length•Quantification of flow transition with spectral entropy•Increased airway resistance and power loss with higher airway constriction due to UVFI The larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study.BACKGROUNDThe larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study.Transient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes.METHODSTransient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes.The laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI.RESULTSThe laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI.Surgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs.CONCLUSIONSSurgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs. AbstractBackgroundThe larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study. MethodsTransient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes. ResultsThe laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI. ConclusionsSurgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs. The larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study. Transient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes. The laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI. Surgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs. BackgroundThe larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study.MethodsTransient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes.ResultsThe laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI.ConclusionsSurgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs. |
| ArticleNumber | 105243 |
| Author | Voss, Samuel Vutlapalli, Swetha Chowdary Saalfeld, Patrick Arens, Christoph Janiga, Gabor |
| Author_xml | – sequence: 1 givenname: Samuel orcidid: 0000-0002-9757-7564 surname: Voss fullname: Voss, Samuel organization: Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany – sequence: 2 givenname: Swetha Chowdary orcidid: 0000-0001-8941-7555 surname: Vutlapalli fullname: Vutlapalli, Swetha Chowdary organization: Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany – sequence: 3 givenname: Patrick surname: Saalfeld fullname: Saalfeld, Patrick organization: Department of Simulation and Graphics, Faculty of Computer Science, University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany – sequence: 4 givenname: Christoph orcidid: 0000-0001-8072-1438 surname: Arens fullname: Arens, Christoph organization: Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Giessen, Justus Liebig University Giessen, Germany – sequence: 5 givenname: Gabor orcidid: 0000-0002-4560-9640 surname: Janiga fullname: Janiga, Gabor email: janiga@ovgu.de organization: Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35139455$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1u1DAUhS1URKeFV0CW2LDJ4N8ks6mAgUKlSiwAiZ3lODbjkNjBdqrOjnfgDXkSHNKCNBLSbGzZOve7V-fcM3DivNMAQIzWGOHyRbdWfhgb6wfdrgkiJH9zwugDsMJ1tSkQp-wErBDCqGA14afgLMYOIcQQRY_AKeWYbhjnK3C7vXwDox2mXibrXYTeQOt2cnnCtAt--rqDEsap6bRKRRy1ssYquJsG6WAvw97dwl8_fsKrYZQqzYC003ByNjN0kD288SqfxvcttMPgG9vbtH8MHhrZR_3k7j4Hny_fftq-L64_vLvavrouFMcsFUw1pqkbVrUtrnWJDKFUS1VRWrKWVQ1SvGa8lEgpZgxpjWSmaTct4rgyRmp6Dp4v3DH475OOSQw2Kt330mk_RUFKUrE6G8Kz9NmBtPNTcHm6rKKc1bzELKue3qmmJtsvxmCHbIK49zQLLhaBCj7GoI1QNv2xMwVpe4GRmEMUnfgXophDFEuIGVAfAO57HFH6einV2dIbq4OIymqndGtDTk-03h4DuTiAqN46m0P8pvc6_jUFi0gEEh_nNZu3jJC8YZR_yYCX_wccN8Nv7-Hp9A |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2023_107537 crossref_primary_10_1016_j_anl_2023_04_012 crossref_primary_10_1016_j_compfluid_2023_105819 crossref_primary_10_1016_j_jhazmat_2024_133856 crossref_primary_10_1016_j_compbiomed_2024_108834 crossref_primary_10_1016_j_jbiomech_2023_111910 crossref_primary_10_1016_j_partic_2024_04_006 |
| Cites_doi | 10.1007/s00348-012-1336-y 10.1109/MPUL.2011.942929 10.1016/j.jaerosci.2008.06.002 10.1007/s10439-019-02410-1 10.1121/1.2836783 10.3233/XST-140420 10.1121/1.3592216 10.1007/s10494-018-9894-6 10.1016/j.resp.2016.09.002 10.1016/j.compbiomed.2014.01.004 10.1002/cnm.3144 10.1016/j.jfluidstructs.2014.06.022 10.1023/A:1009995426001 10.1115/1.4006983 10.1121/1.3271276 10.1016/j.jbiomech.2015.11.033 10.1016/j.resp.2007.02.006 10.1016/S0892-1997(96)80018-X 10.1016/j.jbiomech.2011.08.019 10.1121/1.3655893 10.1016/j.ijheatfluidflow.2017.09.013 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. 2022. Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: 2022. Elsevier Ltd |
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2022.105243 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 105243 |
| ExternalDocumentID | 35139455 10_1016_j_compbiomed_2022_105243 S001048252200035X 1_s2_0_S001048252200035X |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR 9DU AAYXX AFFHD CITATION NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c514t-4cbfb8b47dd18e60f233eac73364d47b0c58456a0cc4ff2dfa4fbd9d0517ffae3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788124800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Wed Oct 01 13:49:14 EDT 2025 Tue Oct 07 06:45:41 EDT 2025 Thu Apr 03 07:08:34 EDT 2025 Tue Nov 18 22:32:58 EST 2025 Sat Nov 29 07:32:17 EST 2025 Fri Feb 23 02:41:43 EST 2024 Tue Feb 25 20:12:01 EST 2025 Tue Oct 14 19:33:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Power loss Vocal fold immobility Spectral entropy Large eddy simulations Airway resistance Larynx Human respiratory tract |
| Language | English |
| License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-4cbfb8b47dd18e60f233eac73364d47b0c58456a0cc4ff2dfa4fbd9d0517ffae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8941-7555 0000-0002-4560-9640 0000-0001-8072-1438 0000-0002-9757-7564 |
| PMID | 35139455 |
| PQID | 2635485614 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2627483515 proquest_journals_2635485614 pubmed_primary_35139455 crossref_citationtrail_10_1016_j_compbiomed_2022_105243 crossref_primary_10_1016_j_compbiomed_2022_105243 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105243 elsevier_clinicalkeyesjournals_1_s2_0_S001048252200035X elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105243 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Lin, Tawhai, McLennan, Hoffman (bib5) 2007; 157 Ritter, Boskamp, Homeyer, Laue, Schwier, Link, Peitgen (bib25) 2011; 2 Nicoud, Ducros (bib27) 1999; 62 Shinneeb, Pollard (bib4) 2012; 53 Jayaraju, Brouns, Lacor, Belkassem, Verbanck (bib6) 2008; 39 Celik, Ghia, Roache, Freitas, Coleman, Raad (bib26) 2008; 130 Mihaescu, Khosla, Murugappan, Gutmark (bib9) 2010; 127 Bates, Comerford, Cetto, Schroter, Tolley, Doorly (bib19) 2016; 49 Voss, Arens, Janiga (bib22) 2019; 102 Abdelsamie, Janiga, Thévenin (bib24) 2017; 68 Bates, Schuh, McConnell, Williams, Lanier, Willmering, Woods, Fleck, Dumoulin, Amin (bib11) 2018; 34 Xiao, Cetto, Doorly, Bates, Rose, McIntyre, Comerford, Madani, Tolley, Schroter (bib17) 2020; 48 Cui, Gutheil (bib3) 2011; 44 Bates, Cetto, Doorly, Schroter, Tolley, Comerford (bib21) 2016; 234 Suh, Frankel (bib7) 2008; 123 Kaltenbacher, Zörner, Hüppe, Sidlof (bib15) 2014 Bauer, Rudert, Brücker (bib13) 2012; 134 Kirmse, Brücker (bib14) 2014; 50 Arens, Voigt- Zimmermann (bib1) 2019 Urbankowski, Przybytowski (bib16) 2016; 84 Mattheus, Brucker (bib8) 2011; 130 Zheng, Mittal, Xue, Bielamowicz (bib12) 2011; 130 Janiga (bib23) 2014; 47 Chen, Horng, Shih (bib18) 2014; 22 Alipour, Scherer, Knowles (bib10) 1996; 10 Frauenrath, Goemmel, Butenweg, Otten, Niendorf (bib2) 2010; 18 Xiao (10.1016/j.compbiomed.2022.105243_bib17) 2020; 48 Bates (10.1016/j.compbiomed.2022.105243_bib11) 2018; 34 Zheng (10.1016/j.compbiomed.2022.105243_bib12) 2011; 130 Lin (10.1016/j.compbiomed.2022.105243_bib5) 2007; 157 Abdelsamie (10.1016/j.compbiomed.2022.105243_bib24) 2017; 68 Suh (10.1016/j.compbiomed.2022.105243_bib7) 2008; 123 Celik (10.1016/j.compbiomed.2022.105243_bib26) 2008; 130 Arens (10.1016/j.compbiomed.2022.105243_bib1) 2019 Shinneeb (10.1016/j.compbiomed.2022.105243_bib4) 2012; 53 Nicoud (10.1016/j.compbiomed.2022.105243_bib27) 1999; 62 Cui (10.1016/j.compbiomed.2022.105243_bib3) 2011; 44 Bauer (10.1016/j.compbiomed.2022.105243_bib13) 2012; 134 Alipour (10.1016/j.compbiomed.2022.105243_bib10) 1996; 10 Voss (10.1016/j.compbiomed.2022.105243_bib22) 2019; 102 Bates (10.1016/j.compbiomed.2022.105243_bib19) 2016; 49 Kaltenbacher (10.1016/j.compbiomed.2022.105243_bib15) 2014 Bates (10.1016/j.compbiomed.2022.105243_bib21) 2016; 234 Jayaraju (10.1016/j.compbiomed.2022.105243_bib6) 2008; 39 Ritter (10.1016/j.compbiomed.2022.105243_bib25) 2011; 2 Kirmse (10.1016/j.compbiomed.2022.105243_bib14) 2014; 50 Janiga (10.1016/j.compbiomed.2022.105243_bib23) 2014; 47 Mattheus (10.1016/j.compbiomed.2022.105243_bib8) 2011; 130 Urbankowski (10.1016/j.compbiomed.2022.105243_bib16) 2016; 84 Frauenrath (10.1016/j.compbiomed.2022.105243_bib2) 2010; 18 Mihaescu (10.1016/j.compbiomed.2022.105243_bib9) 2010; 127 Chen (10.1016/j.compbiomed.2022.105243_bib18) 2014; 22 |
| References_xml | – volume: 18 start-page: 2413 year: 2010 ident: bib2 article-title: 3D mapping of vocal fold geometry during articulatory maneuvers using ultrashort echo time imaging at 3.0 T publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 130 start-page: 404 year: 2011 end-page: 415 ident: bib12 article-title: Direct numerical simulation of the glottal jet and vocal fold dynamics in a three-dimensional laryngeal model publication-title: J. Acoust. Soc. Am. – volume: 134 year: 2012 ident: bib13 article-title: Three-dimensional flow patterns in the upper human airways publication-title: J. Biomech. Eng. – volume: 234 start-page: 69 year: 2016 end-page: 78 ident: bib21 article-title: The effects of curvature and constriction on airflow and energy loss in pathological tracheas publication-title: Respir. Physiol. Neurobiol. – volume: 130 start-page: 373 year: 2011 end-page: 379 ident: bib8 article-title: Asymmetric glottal jet deflection: differences of two- and three-dimensional models publication-title: J. Acoust. Soc. Am. – start-page: 43 year: 2019 end-page: 61 ident: bib1 article-title: Unilateral vocal fold immobility Neurolaryngology publication-title: Neurolaryngology – start-page: 1 year: 2014 end-page: 11 ident: bib15 article-title: 3D numerical simulations of human phonation publication-title: (Barcelona, Spain) – volume: 68 start-page: 102 year: 2017 end-page: 113 ident: bib24 article-title: Spectral entropy as a flow state indicator publication-title: Int. J. Heat Fluid Flow – volume: 48 start-page: 822 year: 2020 end-page: 833 ident: bib17 article-title: Assessing changes in airflow and energy loss in a progressive tracheal compression before and after surgical correction publication-title: Ann. Biomed. Eng. – volume: 157 start-page: 295 year: 2007 end-page: 309 ident: bib5 article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways publication-title: Respir. Physiol. Neurobiol. – volume: 84 start-page: 134 year: 2016 end-page: 141 ident: bib16 article-title: Methods of airway resistance assessment publication-title: Pneumonologia Alergologia Polska – volume: 44 start-page: 2768 year: 2011 end-page: 2774 ident: bib3 article-title: Large eddy simulation of the unsteady flow-field in an idealized human mouth-throat configuration publication-title: J. Biomech. – volume: 102 start-page: 117 year: 2019 end-page: 128 ident: bib22 article-title: Assessing transitional air flow during human exhalation from large eddy simulations based on spectral entropy publication-title: Flow, Turbul. Combust. – volume: 10 start-page: 50 year: 1996 end-page: 58 ident: bib10 article-title: Velocity distributions in glottal models publication-title: J. Voice – volume: 127 start-page: 435 year: 2010 end-page: 444 ident: bib9 article-title: Unsteady laryngeal airflow simulations of the intra-glottal vortical structures publication-title: J. Acoust. Soc. Am. – volume: 50 start-page: 137 year: 2014 end-page: 152 ident: bib14 article-title: On the jet formation through a leaky glottis publication-title: J. Fluid Struct. – volume: 47 start-page: 113 year: 2014 end-page: 119 ident: bib23 article-title: Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500 publication-title: Comput. Biol. Med. – volume: 123 start-page: 1237 year: 2008 end-page: 1240 ident: bib7 article-title: Comparing turbulence models for flow through a rigid glottal model publication-title: J. Acoust. Soc. Am. – volume: 39 start-page: 862 year: 2008 end-page: 875 ident: bib6 article-title: Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth-throat publication-title: J. Aerosol Sci. – volume: 53 start-page: 989 year: 2012 end-page: 1003 ident: bib4 article-title: Investigation of the flow physics in the human pharynx/larynx region publication-title: Exp. Fluid – volume: 34 start-page: 21 year: 2018 end-page: 55 ident: bib11 article-title: A novel method to generate dynamic boundary conditions for airway CFD by mapping upper airway movement with non-rigid registration of dynamic and static MRI publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 130 year: 2008 ident: bib26 article-title: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications publication-title: J. Fluid Eng. – volume: 2 start-page: 60 year: 2011 end-page: 70 ident: bib25 article-title: Medical image analysis publication-title: IEEE Pulse – volume: 49 start-page: 2187 year: 2016 end-page: 2192 ident: bib19 article-title: Power loss mechanisms in pathological tracheas publication-title: J. Biomech. – volume: 62 start-page: 183 year: 1999 end-page: 200 ident: bib27 article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor publication-title: Flow Turb. Combust. – volume: 22 start-page: 213 year: 2014 end-page: 225 ident: bib18 article-title: Simulation analysis of airflow alteration in the trachea following the vascular ring surgery based on CT images using the computational fluid dynamics method publication-title: J. X Ray Sci. Technol. – volume: 53 start-page: 989 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2022.105243_bib4 article-title: Investigation of the flow physics in the human pharynx/larynx region publication-title: Exp. Fluid doi: 10.1007/s00348-012-1336-y – volume: 2 start-page: 60 issue: 6 year: 2011 ident: 10.1016/j.compbiomed.2022.105243_bib25 article-title: Medical image analysis publication-title: IEEE Pulse doi: 10.1109/MPUL.2011.942929 – volume: 39 start-page: 862 issue: 10 year: 2008 ident: 10.1016/j.compbiomed.2022.105243_bib6 article-title: Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth-throat publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2008.06.002 – volume: 48 start-page: 822 issue: 2 year: 2020 ident: 10.1016/j.compbiomed.2022.105243_bib17 article-title: Assessing changes in airflow and energy loss in a progressive tracheal compression before and after surgical correction publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-019-02410-1 – start-page: 43 year: 2019 ident: 10.1016/j.compbiomed.2022.105243_bib1 article-title: Unilateral vocal fold immobility Neurolaryngology – volume: 123 start-page: 1237 issue: 3 year: 2008 ident: 10.1016/j.compbiomed.2022.105243_bib7 article-title: Comparing turbulence models for flow through a rigid glottal model publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2836783 – volume: 84 start-page: 134 issue: 2 year: 2016 ident: 10.1016/j.compbiomed.2022.105243_bib16 article-title: Methods of airway resistance assessment publication-title: Pneumonologia Alergologia Polska – volume: 22 start-page: 213 issue: 2 year: 2014 ident: 10.1016/j.compbiomed.2022.105243_bib18 article-title: Simulation analysis of airflow alteration in the trachea following the vascular ring surgery based on CT images using the computational fluid dynamics method publication-title: J. X Ray Sci. Technol. doi: 10.3233/XST-140420 – volume: 18 start-page: 2413 year: 2010 ident: 10.1016/j.compbiomed.2022.105243_bib2 article-title: 3D mapping of vocal fold geometry during articulatory maneuvers using ultrashort echo time imaging at 3.0 T publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 130 start-page: 404 issue: 1 year: 2011 ident: 10.1016/j.compbiomed.2022.105243_bib12 article-title: Direct numerical simulation of the glottal jet and vocal fold dynamics in a three-dimensional laryngeal model publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3592216 – volume: 102 start-page: 117 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2022.105243_bib22 article-title: Assessing transitional air flow during human exhalation from large eddy simulations based on spectral entropy publication-title: Flow, Turbul. Combust. doi: 10.1007/s10494-018-9894-6 – volume: 130 issue: 7 year: 2008 ident: 10.1016/j.compbiomed.2022.105243_bib26 article-title: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications publication-title: J. Fluid Eng. – volume: 234 start-page: 69 year: 2016 ident: 10.1016/j.compbiomed.2022.105243_bib21 article-title: The effects of curvature and constriction on airflow and energy loss in pathological tracheas publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2016.09.002 – start-page: 1 year: 2014 ident: 10.1016/j.compbiomed.2022.105243_bib15 article-title: 3D numerical simulations of human phonation – volume: 47 start-page: 113 year: 2014 ident: 10.1016/j.compbiomed.2022.105243_bib23 article-title: Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.01.004 – volume: 34 start-page: 21 issue: 12 year: 2018 ident: 10.1016/j.compbiomed.2022.105243_bib11 article-title: A novel method to generate dynamic boundary conditions for airway CFD by mapping upper airway movement with non-rigid registration of dynamic and static MRI publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.3144 – volume: 50 start-page: 137 year: 2014 ident: 10.1016/j.compbiomed.2022.105243_bib14 article-title: On the jet formation through a leaky glottis publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2014.06.022 – volume: 62 start-page: 183 issue: 3 year: 1999 ident: 10.1016/j.compbiomed.2022.105243_bib27 article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor publication-title: Flow Turb. Combust. doi: 10.1023/A:1009995426001 – volume: 134 issue: 7 year: 2012 ident: 10.1016/j.compbiomed.2022.105243_bib13 article-title: Three-dimensional flow patterns in the upper human airways publication-title: J. Biomech. Eng. doi: 10.1115/1.4006983 – volume: 127 start-page: 435 issue: 1 year: 2010 ident: 10.1016/j.compbiomed.2022.105243_bib9 article-title: Unsteady laryngeal airflow simulations of the intra-glottal vortical structures publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3271276 – volume: 49 start-page: 2187 issue: 11 year: 2016 ident: 10.1016/j.compbiomed.2022.105243_bib19 article-title: Power loss mechanisms in pathological tracheas publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.11.033 – volume: 157 start-page: 295 issue: 2–3 year: 2007 ident: 10.1016/j.compbiomed.2022.105243_bib5 article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2007.02.006 – volume: 10 start-page: 50 issue: 1 year: 1996 ident: 10.1016/j.compbiomed.2022.105243_bib10 article-title: Velocity distributions in glottal models publication-title: J. Voice doi: 10.1016/S0892-1997(96)80018-X – volume: 44 start-page: 2768 issue: 16 year: 2011 ident: 10.1016/j.compbiomed.2022.105243_bib3 article-title: Large eddy simulation of the unsteady flow-field in an idealized human mouth-throat configuration publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.08.019 – volume: 130 start-page: 373 issue: 6 year: 2011 ident: 10.1016/j.compbiomed.2022.105243_bib8 article-title: Asymmetric glottal jet deflection: differences of two- and three-dimensional models publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3655893 – volume: 68 start-page: 102 year: 2017 ident: 10.1016/j.compbiomed.2022.105243_bib24 article-title: Spectral entropy as a flow state indicator publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2017.09.013 |
| SSID | ssj0004030 |
| Score | 2.3699288 |
| Snippet | The larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological... AbstractBackgroundThe larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or... BackgroundThe larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105243 |
| SubjectTerms | Airway resistance Breathing Configuration management Entropy Flow resistance Glottis Human respiratory tract Inhalation Internal Medicine Investigations Large eddy simulation Large eddy simulations Larynx Medical imaging Numerical analysis Numerical methods Oropharynx Other Power loss Respiration Respiratory system Respiratory tract Simulation Spectral entropy Trachea Turbulence Turbulence models Velocity Vocal fold immobility Vocal organs |
| Title | CFD simulations of inhalation through a subject-specific human larynx – Impact of the unilateral vocal fold immobility |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S001048252200035X https://www.clinicalkey.es/playcontent/1-s2.0-S001048252200035X https://dx.doi.org/10.1016/j.compbiomed.2022.105243 https://www.ncbi.nlm.nih.gov/pubmed/35139455 https://www.proquest.com/docview/2635485614 https://www.proquest.com/docview/2627483515 |
| Volume | 143 |
| WOSCitedRecordID | wos000788124800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: P5Z dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: K7- dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7RV dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAvfH8URmUkXiMSx61T8YBgrAKJlWrAVPFi-SMWQSMZSzttb_wP_If8JdzZTvrCUCVeTm3as9Pc9Xz23f2OkGfYz0WnOk8KVeiEswxewSYsUWaSKp7rQni0z6P3YjYrFovJPB64tTGtsrOJ3lDbxuAZ-XMETeEF4la-PPmRYNcojK7GFhpbZCdjMA8GZUWyrotM81CCAraGw1YoZvKE_C5M2Q4l7rBLZAwb3jKeX7Y8XeZ--mVoevN_f8AtciM6oPRV0Jjb5EpZ3yHXDmKI_S4535u-oW31Pbb1amnjaFV_VeEtjX19qKLtSuMZToK1mphvRH27Pwo75Yv6nP7--Yu-8xWYOAB4mXRVVzAGHoHRM1xAqWuOLa3gvnx-7sU98nm6_2nvbRLbMyQGvKxlwo12utBcWJsV5Th1LM_BjCO-IrccNMCAczMaq9QY7hyzTnGn7cQiKphzqszvk-26qcuHhDqdp0Zrq51RvMw8WO7YcgMOmUBMsgERnVSkidjl2ELjWHZJat_kWp4S5SmDPAck6zlPAn7HBjyTTvCyq08FiyphkdmAV_yNt2yjaWhlJlsmU_nRIyOBUjLmw7mLAXnRc0bvJ3g1G86722md7Kdaq9yAPO0_BvuBQSFVl80Kv8MEBzc8g4f8IGh2_6Dgaj7ho9Gjfw_-mFzHOwn5TLtke3m6Kp-Qq-ZsWbWnQ7IlDo-QLoSnxZDsvN6fzQ-H_s8K9IB9QCrmQOejL38AyAFIeg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBQEX3o_CAkaCY0TiuE0ihBDapdpquxUSC-rN-BGLoJIsTbtsb_wH_gc_il_CjJ2kFxb1sgdubdNxUnc8D_ubbwh5hv1cVKjiIJWpCjiL4BUkYYHUWSh5rNLEsX1-HCeTSTqdZu-2yK-2FgZhla1NdIbaVBr3yF8gaQpPkbfy9fG3ALtG4elq20LDq8VBvvoOKVv9arQH_-9zxoZvj3b3g6arQKAhOFgEXCurUsUTY6I0H4SWxTFYH6QF5IbDg2vwyf2BDLXm1jJjJbfKZAbJrKyVeQzjXiAXwY4nCCFLpsm6DjOMfckL2DYOqVeDHPJ4MoSI-5J6yEoZwwa7jMdnucOzwl3n9obX_7cJu0GuNQE2feNXxE2ylZe3yOXDBkJwm5zuDvdoXXxt2pbVtLK0KD9L_5Y2fYuopPVS4R5VgLWoiKeirp0hncn5qjylv3_8pCNXYYoDQBRNl2UBY-AWHz3BAIHaamZoAfPg8MerO-TDufzuu2S7rMr8PqFWxaFWyiirJc8jRwY8MFxDwJkg51qPJK0WCN1ws2OLkJloQXhfxFp_BOqP8PrTI1Eneez5STaQyVpFE239LXgMAU50A9nkb7J53Zi-WkSiZiIU7x3zEywCxtxx9bRHXnaSTXTno7YN77vTarnobrVW8R552l0G-4iHXrLMqyV-hyUc0owIJvmeX0ndRMGnccb7_Qf_HvwJubJ_dDgW49Hk4CG5ik_lsVs7ZHsxX-aPyCV9sijq-WNnDij5dN7L6Q_AlqHk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBa32wvtRWMBIcIw2cdwmFUIIbamodqkq8VDFxdhOLLIqydK0y_bGf-Df8HP4JczYTnphUS974NbXOIk7nof9zTeEPMV-LipUcZDKVAWcRfAKkrBA6n4oeazSxLJ9fjxKxuN0Ou1PtsivphYGYZWNTbSGOqs07pHvI2kKT5G3ct94WMRkMHx58i3ADlJ40tq003AqcpivvkP6Vr8YDeC_fsbY8PX7gzeB7zAQaAgUFgHXyqhU8STLojTvhYbFMVgipAjkGYeH0OCfuz0Zas2NYZmR3KisnyGxlTEyj2HcS-RyAjkmJn6T7qd1TWYYu_IXsHMc0jCPInLYMoSLu_J6yFAZw2a7jMfnucbzQl_rAofX_ufJu06u-sCbvnIr5QbZysubZOethxbcImcHwwGti6--nVlNK0OL8ot0b6nvZ0QlrZcK964CrFFFnBW1bQ7pTM5X5Rn9_eMnHdnKUxwAomu6LAsYA7f-6CkGDtRUs4wWMA8Wl7y6TT5cyHPfIdtlVeb3CDUqDrVSmTJa8jyyJMG9jGsIRBPkYuuQpNEIoT1nO7YOmYkGnHcs1rokUJeE06UOiVrJE8dbsoFMv1E60dTlgicR4Fw3kE3-JpvX3iTWIhI1E6F4ZxmhYEEwZo-xpx3yvJX0UZ-L5ja87l6j8aK91FrdO-RJ-zXYTTwMk2VeLfE3LOGQfkQwyXfdqmonCj6N-7zbvf_vwR-THVhF4mg0PnxAdvGmHKRrj2wv5sv8IbmiTxdFPX9kLQMlny96Nf0Bv3Gq1w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+simulations+of+inhalation+through+a+subject-specific+human+larynx+%E2%80%93+Impact+of+the+unilateral+vocal+fold+immobility&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Voss%2C+Samuel&rft.au=Vutlapalli%2C+Swetha+Chowdary&rft.au=Saalfeld%2C+Patrick&rft.au=Arens%2C+Christoph&rft.date=2022-04-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=143&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105243&rft.externalDocID=S001048252200035X |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482522X00024%2Fcov150h.gif |