CFD simulations of inhalation through a subject-specific human larynx – Impact of the unilateral vocal fold immobility

The larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine Jg. 143; S. 105243
Hauptverfasser: Voss, Samuel, Vutlapalli, Swetha Chowdary, Saalfeld, Patrick, Arens, Christoph, Janiga, Gabor
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.04.2022
Elsevier Limited
Schlagworte:
ISSN:0010-4825, 1879-0534, 1879-0534
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study. Transient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes. The laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI. Surgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs. •LES simulations of subject-specific UVFI configurations•Analysis of laryngeal jet generation and jet travelling length•Quantification of flow transition with spectral entropy•Increased airway resistance and power loss with higher airway constriction due to UVFI
AbstractList The larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study. Transient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes. The laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI. Surgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs. •LES simulations of subject-specific UVFI configurations•Analysis of laryngeal jet generation and jet travelling length•Quantification of flow transition with spectral entropy•Increased airway resistance and power loss with higher airway constriction due to UVFI
The larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study.BACKGROUNDThe larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study.Transient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes.METHODSTransient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes.The laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI.RESULTSThe laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI.Surgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs.CONCLUSIONSSurgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs.
AbstractBackgroundThe larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study. MethodsTransient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes. ResultsThe laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI. ConclusionsSurgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs.
The larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study. Transient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes. The laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI. Surgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs.
BackgroundThe larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study.MethodsTransient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes.ResultsThe laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI.ConclusionsSurgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs.
ArticleNumber 105243
Author Voss, Samuel
Vutlapalli, Swetha Chowdary
Saalfeld, Patrick
Arens, Christoph
Janiga, Gabor
Author_xml – sequence: 1
  givenname: Samuel
  orcidid: 0000-0002-9757-7564
  surname: Voss
  fullname: Voss, Samuel
  organization: Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
– sequence: 2
  givenname: Swetha Chowdary
  orcidid: 0000-0001-8941-7555
  surname: Vutlapalli
  fullname: Vutlapalli, Swetha Chowdary
  organization: Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
– sequence: 3
  givenname: Patrick
  surname: Saalfeld
  fullname: Saalfeld, Patrick
  organization: Department of Simulation and Graphics, Faculty of Computer Science, University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
– sequence: 4
  givenname: Christoph
  orcidid: 0000-0001-8072-1438
  surname: Arens
  fullname: Arens, Christoph
  organization: Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Giessen, Justus Liebig University Giessen, Germany
– sequence: 5
  givenname: Gabor
  orcidid: 0000-0002-4560-9640
  surname: Janiga
  fullname: Janiga, Gabor
  email: janiga@ovgu.de
  organization: Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35139455$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFV0CW2LDJ4N8ks6mAgUKlSiwAiZ3lODbjkNjBdqrOjnfgDXkSHNKCNBLSbGzZOve7V-fcM3DivNMAQIzWGOHyRbdWfhgb6wfdrgkiJH9zwugDsMJ1tSkQp-wErBDCqGA14afgLMYOIcQQRY_AKeWYbhjnK3C7vXwDox2mXibrXYTeQOt2cnnCtAt--rqDEsap6bRKRRy1ssYquJsG6WAvw97dwl8_fsKrYZQqzYC003ByNjN0kD288SqfxvcttMPgG9vbtH8MHhrZR_3k7j4Hny_fftq-L64_vLvavrouFMcsFUw1pqkbVrUtrnWJDKFUS1VRWrKWVQ1SvGa8lEgpZgxpjWSmaTct4rgyRmp6Dp4v3DH475OOSQw2Kt330mk_RUFKUrE6G8Kz9NmBtPNTcHm6rKKc1bzELKue3qmmJtsvxmCHbIK49zQLLhaBCj7GoI1QNv2xMwVpe4GRmEMUnfgXophDFEuIGVAfAO57HFH6einV2dIbq4OIymqndGtDTk-03h4DuTiAqN46m0P8pvc6_jUFi0gEEh_nNZu3jJC8YZR_yYCX_wccN8Nv7-Hp9A
CitedBy_id crossref_primary_10_1016_j_compbiomed_2023_107537
crossref_primary_10_1016_j_anl_2023_04_012
crossref_primary_10_1016_j_compfluid_2023_105819
crossref_primary_10_1016_j_jhazmat_2024_133856
crossref_primary_10_1016_j_compbiomed_2024_108834
crossref_primary_10_1016_j_jbiomech_2023_111910
crossref_primary_10_1016_j_partic_2024_04_006
Cites_doi 10.1007/s00348-012-1336-y
10.1109/MPUL.2011.942929
10.1016/j.jaerosci.2008.06.002
10.1007/s10439-019-02410-1
10.1121/1.2836783
10.3233/XST-140420
10.1121/1.3592216
10.1007/s10494-018-9894-6
10.1016/j.resp.2016.09.002
10.1016/j.compbiomed.2014.01.004
10.1002/cnm.3144
10.1016/j.jfluidstructs.2014.06.022
10.1023/A:1009995426001
10.1115/1.4006983
10.1121/1.3271276
10.1016/j.jbiomech.2015.11.033
10.1016/j.resp.2007.02.006
10.1016/S0892-1997(96)80018-X
10.1016/j.jbiomech.2011.08.019
10.1121/1.3655893
10.1016/j.ijheatfluidflow.2017.09.013
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2022.105243
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 105243
ExternalDocumentID 35139455
10_1016_j_compbiomed_2022_105243
S001048252200035X
1_s2_0_S001048252200035X
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
9DU
AAYXX
AFFHD
CITATION
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c514t-4cbfb8b47dd18e60f233eac73364d47b0c58456a0cc4ff2dfa4fbd9d0517ffae3
IEDL.DBID K7-
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788124800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4825
1879-0534
IngestDate Wed Oct 01 13:49:14 EDT 2025
Tue Oct 07 06:45:41 EDT 2025
Thu Apr 03 07:08:34 EDT 2025
Tue Nov 18 22:32:58 EST 2025
Sat Nov 29 07:32:17 EST 2025
Fri Feb 23 02:41:43 EST 2024
Tue Feb 25 20:12:01 EST 2025
Tue Oct 14 19:33:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Power loss
Vocal fold immobility
Spectral entropy
Large eddy simulations
Airway resistance
Larynx
Human respiratory tract
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-4cbfb8b47dd18e60f233eac73364d47b0c58456a0cc4ff2dfa4fbd9d0517ffae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8941-7555
0000-0002-4560-9640
0000-0001-8072-1438
0000-0002-9757-7564
PMID 35139455
PQID 2635485614
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2627483515
proquest_journals_2635485614
pubmed_primary_35139455
crossref_citationtrail_10_1016_j_compbiomed_2022_105243
crossref_primary_10_1016_j_compbiomed_2022_105243
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105243
elsevier_clinicalkeyesjournals_1_s2_0_S001048252200035X
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105243
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Lin, Tawhai, McLennan, Hoffman (bib5) 2007; 157
Ritter, Boskamp, Homeyer, Laue, Schwier, Link, Peitgen (bib25) 2011; 2
Nicoud, Ducros (bib27) 1999; 62
Shinneeb, Pollard (bib4) 2012; 53
Jayaraju, Brouns, Lacor, Belkassem, Verbanck (bib6) 2008; 39
Celik, Ghia, Roache, Freitas, Coleman, Raad (bib26) 2008; 130
Mihaescu, Khosla, Murugappan, Gutmark (bib9) 2010; 127
Bates, Comerford, Cetto, Schroter, Tolley, Doorly (bib19) 2016; 49
Voss, Arens, Janiga (bib22) 2019; 102
Abdelsamie, Janiga, Thévenin (bib24) 2017; 68
Bates, Schuh, McConnell, Williams, Lanier, Willmering, Woods, Fleck, Dumoulin, Amin (bib11) 2018; 34
Xiao, Cetto, Doorly, Bates, Rose, McIntyre, Comerford, Madani, Tolley, Schroter (bib17) 2020; 48
Cui, Gutheil (bib3) 2011; 44
Bates, Cetto, Doorly, Schroter, Tolley, Comerford (bib21) 2016; 234
Suh, Frankel (bib7) 2008; 123
Kaltenbacher, Zörner, Hüppe, Sidlof (bib15) 2014
Bauer, Rudert, Brücker (bib13) 2012; 134
Kirmse, Brücker (bib14) 2014; 50
Arens, Voigt- Zimmermann (bib1) 2019
Urbankowski, Przybytowski (bib16) 2016; 84
Mattheus, Brucker (bib8) 2011; 130
Zheng, Mittal, Xue, Bielamowicz (bib12) 2011; 130
Janiga (bib23) 2014; 47
Chen, Horng, Shih (bib18) 2014; 22
Alipour, Scherer, Knowles (bib10) 1996; 10
Frauenrath, Goemmel, Butenweg, Otten, Niendorf (bib2) 2010; 18
Xiao (10.1016/j.compbiomed.2022.105243_bib17) 2020; 48
Bates (10.1016/j.compbiomed.2022.105243_bib11) 2018; 34
Zheng (10.1016/j.compbiomed.2022.105243_bib12) 2011; 130
Lin (10.1016/j.compbiomed.2022.105243_bib5) 2007; 157
Abdelsamie (10.1016/j.compbiomed.2022.105243_bib24) 2017; 68
Suh (10.1016/j.compbiomed.2022.105243_bib7) 2008; 123
Celik (10.1016/j.compbiomed.2022.105243_bib26) 2008; 130
Arens (10.1016/j.compbiomed.2022.105243_bib1) 2019
Shinneeb (10.1016/j.compbiomed.2022.105243_bib4) 2012; 53
Nicoud (10.1016/j.compbiomed.2022.105243_bib27) 1999; 62
Cui (10.1016/j.compbiomed.2022.105243_bib3) 2011; 44
Bauer (10.1016/j.compbiomed.2022.105243_bib13) 2012; 134
Alipour (10.1016/j.compbiomed.2022.105243_bib10) 1996; 10
Voss (10.1016/j.compbiomed.2022.105243_bib22) 2019; 102
Bates (10.1016/j.compbiomed.2022.105243_bib19) 2016; 49
Kaltenbacher (10.1016/j.compbiomed.2022.105243_bib15) 2014
Bates (10.1016/j.compbiomed.2022.105243_bib21) 2016; 234
Jayaraju (10.1016/j.compbiomed.2022.105243_bib6) 2008; 39
Ritter (10.1016/j.compbiomed.2022.105243_bib25) 2011; 2
Kirmse (10.1016/j.compbiomed.2022.105243_bib14) 2014; 50
Janiga (10.1016/j.compbiomed.2022.105243_bib23) 2014; 47
Mattheus (10.1016/j.compbiomed.2022.105243_bib8) 2011; 130
Urbankowski (10.1016/j.compbiomed.2022.105243_bib16) 2016; 84
Frauenrath (10.1016/j.compbiomed.2022.105243_bib2) 2010; 18
Mihaescu (10.1016/j.compbiomed.2022.105243_bib9) 2010; 127
Chen (10.1016/j.compbiomed.2022.105243_bib18) 2014; 22
References_xml – volume: 18
  start-page: 2413
  year: 2010
  ident: bib2
  article-title: 3D mapping of vocal fold geometry during articulatory maneuvers using ultrashort echo time imaging at 3.0 T
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 130
  start-page: 404
  year: 2011
  end-page: 415
  ident: bib12
  article-title: Direct numerical simulation of the glottal jet and vocal fold dynamics in a three-dimensional laryngeal model
  publication-title: J. Acoust. Soc. Am.
– volume: 134
  year: 2012
  ident: bib13
  article-title: Three-dimensional flow patterns in the upper human airways
  publication-title: J. Biomech. Eng.
– volume: 234
  start-page: 69
  year: 2016
  end-page: 78
  ident: bib21
  article-title: The effects of curvature and constriction on airflow and energy loss in pathological tracheas
  publication-title: Respir. Physiol. Neurobiol.
– volume: 130
  start-page: 373
  year: 2011
  end-page: 379
  ident: bib8
  article-title: Asymmetric glottal jet deflection: differences of two- and three-dimensional models
  publication-title: J. Acoust. Soc. Am.
– start-page: 43
  year: 2019
  end-page: 61
  ident: bib1
  article-title: Unilateral vocal fold immobility Neurolaryngology
  publication-title: Neurolaryngology
– start-page: 1
  year: 2014
  end-page: 11
  ident: bib15
  article-title: 3D numerical simulations of human phonation
  publication-title: (Barcelona, Spain)
– volume: 68
  start-page: 102
  year: 2017
  end-page: 113
  ident: bib24
  article-title: Spectral entropy as a flow state indicator
  publication-title: Int. J. Heat Fluid Flow
– volume: 48
  start-page: 822
  year: 2020
  end-page: 833
  ident: bib17
  article-title: Assessing changes in airflow and energy loss in a progressive tracheal compression before and after surgical correction
  publication-title: Ann. Biomed. Eng.
– volume: 157
  start-page: 295
  year: 2007
  end-page: 309
  ident: bib5
  article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways
  publication-title: Respir. Physiol. Neurobiol.
– volume: 84
  start-page: 134
  year: 2016
  end-page: 141
  ident: bib16
  article-title: Methods of airway resistance assessment
  publication-title: Pneumonologia Alergologia Polska
– volume: 44
  start-page: 2768
  year: 2011
  end-page: 2774
  ident: bib3
  article-title: Large eddy simulation of the unsteady flow-field in an idealized human mouth-throat configuration
  publication-title: J. Biomech.
– volume: 102
  start-page: 117
  year: 2019
  end-page: 128
  ident: bib22
  article-title: Assessing transitional air flow during human exhalation from large eddy simulations based on spectral entropy
  publication-title: Flow, Turbul. Combust.
– volume: 10
  start-page: 50
  year: 1996
  end-page: 58
  ident: bib10
  article-title: Velocity distributions in glottal models
  publication-title: J. Voice
– volume: 127
  start-page: 435
  year: 2010
  end-page: 444
  ident: bib9
  article-title: Unsteady laryngeal airflow simulations of the intra-glottal vortical structures
  publication-title: J. Acoust. Soc. Am.
– volume: 50
  start-page: 137
  year: 2014
  end-page: 152
  ident: bib14
  article-title: On the jet formation through a leaky glottis
  publication-title: J. Fluid Struct.
– volume: 47
  start-page: 113
  year: 2014
  end-page: 119
  ident: bib23
  article-title: Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500
  publication-title: Comput. Biol. Med.
– volume: 123
  start-page: 1237
  year: 2008
  end-page: 1240
  ident: bib7
  article-title: Comparing turbulence models for flow through a rigid glottal model
  publication-title: J. Acoust. Soc. Am.
– volume: 39
  start-page: 862
  year: 2008
  end-page: 875
  ident: bib6
  article-title: Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth-throat
  publication-title: J. Aerosol Sci.
– volume: 53
  start-page: 989
  year: 2012
  end-page: 1003
  ident: bib4
  article-title: Investigation of the flow physics in the human pharynx/larynx region
  publication-title: Exp. Fluid
– volume: 34
  start-page: 21
  year: 2018
  end-page: 55
  ident: bib11
  article-title: A novel method to generate dynamic boundary conditions for airway CFD by mapping upper airway movement with non-rigid registration of dynamic and static MRI
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 130
  year: 2008
  ident: bib26
  article-title: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
  publication-title: J. Fluid Eng.
– volume: 2
  start-page: 60
  year: 2011
  end-page: 70
  ident: bib25
  article-title: Medical image analysis
  publication-title: IEEE Pulse
– volume: 49
  start-page: 2187
  year: 2016
  end-page: 2192
  ident: bib19
  article-title: Power loss mechanisms in pathological tracheas
  publication-title: J. Biomech.
– volume: 62
  start-page: 183
  year: 1999
  end-page: 200
  ident: bib27
  article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor
  publication-title: Flow Turb. Combust.
– volume: 22
  start-page: 213
  year: 2014
  end-page: 225
  ident: bib18
  article-title: Simulation analysis of airflow alteration in the trachea following the vascular ring surgery based on CT images using the computational fluid dynamics method
  publication-title: J. X Ray Sci. Technol.
– volume: 53
  start-page: 989
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105243_bib4
  article-title: Investigation of the flow physics in the human pharynx/larynx region
  publication-title: Exp. Fluid
  doi: 10.1007/s00348-012-1336-y
– volume: 2
  start-page: 60
  issue: 6
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105243_bib25
  article-title: Medical image analysis
  publication-title: IEEE Pulse
  doi: 10.1109/MPUL.2011.942929
– volume: 39
  start-page: 862
  issue: 10
  year: 2008
  ident: 10.1016/j.compbiomed.2022.105243_bib6
  article-title: Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth-throat
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2008.06.002
– volume: 48
  start-page: 822
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105243_bib17
  article-title: Assessing changes in airflow and energy loss in a progressive tracheal compression before and after surgical correction
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-019-02410-1
– start-page: 43
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105243_bib1
  article-title: Unilateral vocal fold immobility Neurolaryngology
– volume: 123
  start-page: 1237
  issue: 3
  year: 2008
  ident: 10.1016/j.compbiomed.2022.105243_bib7
  article-title: Comparing turbulence models for flow through a rigid glottal model
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2836783
– volume: 84
  start-page: 134
  issue: 2
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105243_bib16
  article-title: Methods of airway resistance assessment
  publication-title: Pneumonologia Alergologia Polska
– volume: 22
  start-page: 213
  issue: 2
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105243_bib18
  article-title: Simulation analysis of airflow alteration in the trachea following the vascular ring surgery based on CT images using the computational fluid dynamics method
  publication-title: J. X Ray Sci. Technol.
  doi: 10.3233/XST-140420
– volume: 18
  start-page: 2413
  year: 2010
  ident: 10.1016/j.compbiomed.2022.105243_bib2
  article-title: 3D mapping of vocal fold geometry during articulatory maneuvers using ultrashort echo time imaging at 3.0 T
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 130
  start-page: 404
  issue: 1
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105243_bib12
  article-title: Direct numerical simulation of the glottal jet and vocal fold dynamics in a three-dimensional laryngeal model
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3592216
– volume: 102
  start-page: 117
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105243_bib22
  article-title: Assessing transitional air flow during human exhalation from large eddy simulations based on spectral entropy
  publication-title: Flow, Turbul. Combust.
  doi: 10.1007/s10494-018-9894-6
– volume: 130
  issue: 7
  year: 2008
  ident: 10.1016/j.compbiomed.2022.105243_bib26
  article-title: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
  publication-title: J. Fluid Eng.
– volume: 234
  start-page: 69
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105243_bib21
  article-title: The effects of curvature and constriction on airflow and energy loss in pathological tracheas
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2016.09.002
– start-page: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105243_bib15
  article-title: 3D numerical simulations of human phonation
– volume: 47
  start-page: 113
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105243_bib23
  article-title: Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.01.004
– volume: 34
  start-page: 21
  issue: 12
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105243_bib11
  article-title: A novel method to generate dynamic boundary conditions for airway CFD by mapping upper airway movement with non-rigid registration of dynamic and static MRI
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.3144
– volume: 50
  start-page: 137
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105243_bib14
  article-title: On the jet formation through a leaky glottis
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2014.06.022
– volume: 62
  start-page: 183
  issue: 3
  year: 1999
  ident: 10.1016/j.compbiomed.2022.105243_bib27
  article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor
  publication-title: Flow Turb. Combust.
  doi: 10.1023/A:1009995426001
– volume: 134
  issue: 7
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105243_bib13
  article-title: Three-dimensional flow patterns in the upper human airways
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4006983
– volume: 127
  start-page: 435
  issue: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2022.105243_bib9
  article-title: Unsteady laryngeal airflow simulations of the intra-glottal vortical structures
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3271276
– volume: 49
  start-page: 2187
  issue: 11
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105243_bib19
  article-title: Power loss mechanisms in pathological tracheas
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.11.033
– volume: 157
  start-page: 295
  issue: 2–3
  year: 2007
  ident: 10.1016/j.compbiomed.2022.105243_bib5
  article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2007.02.006
– volume: 10
  start-page: 50
  issue: 1
  year: 1996
  ident: 10.1016/j.compbiomed.2022.105243_bib10
  article-title: Velocity distributions in glottal models
  publication-title: J. Voice
  doi: 10.1016/S0892-1997(96)80018-X
– volume: 44
  start-page: 2768
  issue: 16
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105243_bib3
  article-title: Large eddy simulation of the unsteady flow-field in an idealized human mouth-throat configuration
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.08.019
– volume: 130
  start-page: 373
  issue: 6
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105243_bib8
  article-title: Asymmetric glottal jet deflection: differences of two- and three-dimensional models
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3655893
– volume: 68
  start-page: 102
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105243_bib24
  article-title: Spectral entropy as a flow state indicator
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2017.09.013
SSID ssj0004030
Score 2.3699288
Snippet The larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological...
AbstractBackgroundThe larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or...
BackgroundThe larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105243
SubjectTerms Airway resistance
Breathing
Configuration management
Entropy
Flow resistance
Glottis
Human respiratory tract
Inhalation
Internal Medicine
Investigations
Large eddy simulation
Large eddy simulations
Larynx
Medical imaging
Numerical analysis
Numerical methods
Oropharynx
Other
Power loss
Respiration
Respiratory system
Respiratory tract
Simulation
Spectral entropy
Trachea
Turbulence
Turbulence models
Velocity
Vocal fold immobility
Vocal organs
Title CFD simulations of inhalation through a subject-specific human larynx – Impact of the unilateral vocal fold immobility
URI https://www.clinicalkey.com/#!/content/1-s2.0-S001048252200035X
https://www.clinicalkey.es/playcontent/1-s2.0-S001048252200035X
https://dx.doi.org/10.1016/j.compbiomed.2022.105243
https://www.ncbi.nlm.nih.gov/pubmed/35139455
https://www.proquest.com/docview/2635485614
https://www.proquest.com/docview/2627483515
Volume 143
WOSCitedRecordID wos000788124800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: P5Z
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: K7-
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAvfH8URmUkXiMSx61T8YBgrAKJlWrAVPFi-SMWQSMZSzttb_wP_If8JdzZTvrCUCVeTm3as9Pc9Xz23f2OkGfYz0WnOk8KVeiEswxewSYsUWaSKp7rQni0z6P3YjYrFovJPB64tTGtsrOJ3lDbxuAZ-XMETeEF4la-PPmRYNcojK7GFhpbZCdjMA8GZUWyrotM81CCAraGw1YoZvKE_C5M2Q4l7rBLZAwb3jKeX7Y8XeZ--mVoevN_f8AtciM6oPRV0Jjb5EpZ3yHXDmKI_S4535u-oW31Pbb1amnjaFV_VeEtjX19qKLtSuMZToK1mphvRH27Pwo75Yv6nP7--Yu-8xWYOAB4mXRVVzAGHoHRM1xAqWuOLa3gvnx-7sU98nm6_2nvbRLbMyQGvKxlwo12utBcWJsV5Th1LM_BjCO-IrccNMCAczMaq9QY7hyzTnGn7cQiKphzqszvk-26qcuHhDqdp0Zrq51RvMw8WO7YcgMOmUBMsgERnVSkidjl2ELjWHZJat_kWp4S5SmDPAck6zlPAn7HBjyTTvCyq08FiyphkdmAV_yNt2yjaWhlJlsmU_nRIyOBUjLmw7mLAXnRc0bvJ3g1G86722md7Kdaq9yAPO0_BvuBQSFVl80Kv8MEBzc8g4f8IGh2_6Dgaj7ho9Gjfw_-mFzHOwn5TLtke3m6Kp-Qq-ZsWbWnQ7IlDo-QLoSnxZDsvN6fzQ-H_s8K9IB9QCrmQOejL38AyAFIeg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBQEX3o_CAkaCY0TiuE0ihBDapdpquxUSC-rN-BGLoJIsTbtsb_wH_gc_il_CjJ2kFxb1sgdubdNxUnc8D_ubbwh5hv1cVKjiIJWpCjiL4BUkYYHUWSh5rNLEsX1-HCeTSTqdZu-2yK-2FgZhla1NdIbaVBr3yF8gaQpPkbfy9fG3ALtG4elq20LDq8VBvvoOKVv9arQH_-9zxoZvj3b3g6arQKAhOFgEXCurUsUTY6I0H4SWxTFYH6QF5IbDg2vwyf2BDLXm1jJjJbfKZAbJrKyVeQzjXiAXwY4nCCFLpsm6DjOMfckL2DYOqVeDHPJ4MoSI-5J6yEoZwwa7jMdnucOzwl3n9obX_7cJu0GuNQE2feNXxE2ylZe3yOXDBkJwm5zuDvdoXXxt2pbVtLK0KD9L_5Y2fYuopPVS4R5VgLWoiKeirp0hncn5qjylv3_8pCNXYYoDQBRNl2UBY-AWHz3BAIHaamZoAfPg8MerO-TDufzuu2S7rMr8PqFWxaFWyiirJc8jRwY8MFxDwJkg51qPJK0WCN1ws2OLkJloQXhfxFp_BOqP8PrTI1Eneez5STaQyVpFE239LXgMAU50A9nkb7J53Zi-WkSiZiIU7x3zEywCxtxx9bRHXnaSTXTno7YN77vTarnobrVW8R552l0G-4iHXrLMqyV-hyUc0owIJvmeX0ndRMGnccb7_Qf_HvwJubJ_dDgW49Hk4CG5ik_lsVs7ZHsxX-aPyCV9sijq-WNnDij5dN7L6Q_AlqHk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBa32wvtRWMBIcIw2cdwmFUIIbamodqkq8VDFxdhOLLIqydK0y_bGf-Df8HP4JczYTnphUS974NbXOIk7nof9zTeEPMV-LipUcZDKVAWcRfAKkrBA6n4oeazSxLJ9fjxKxuN0Ou1PtsivphYGYZWNTbSGOqs07pHvI2kKT5G3ct94WMRkMHx58i3ADlJ40tq003AqcpivvkP6Vr8YDeC_fsbY8PX7gzeB7zAQaAgUFgHXyqhU8STLojTvhYbFMVgipAjkGYeH0OCfuz0Zas2NYZmR3KisnyGxlTEyj2HcS-RyAjkmJn6T7qd1TWYYu_IXsHMc0jCPInLYMoSLu_J6yFAZw2a7jMfnucbzQl_rAofX_ufJu06u-sCbvnIr5QbZysubZOethxbcImcHwwGti6--nVlNK0OL8ot0b6nvZ0QlrZcK964CrFFFnBW1bQ7pTM5X5Rn9_eMnHdnKUxwAomu6LAsYA7f-6CkGDtRUs4wWMA8Wl7y6TT5cyHPfIdtlVeb3CDUqDrVSmTJa8jyyJMG9jGsIRBPkYuuQpNEIoT1nO7YOmYkGnHcs1rokUJeE06UOiVrJE8dbsoFMv1E60dTlgicR4Fw3kE3-JpvX3iTWIhI1E6F4ZxmhYEEwZo-xpx3yvJX0UZ-L5ja87l6j8aK91FrdO-RJ-zXYTTwMk2VeLfE3LOGQfkQwyXfdqmonCj6N-7zbvf_vwR-THVhF4mg0PnxAdvGmHKRrj2wv5sv8IbmiTxdFPX9kLQMlny96Nf0Bv3Gq1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+simulations+of+inhalation+through+a+subject-specific+human+larynx+%E2%80%93+Impact+of+the+unilateral+vocal+fold+immobility&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Voss%2C+Samuel&rft.au=Vutlapalli%2C+Swetha+Chowdary&rft.au=Saalfeld%2C+Patrick&rft.au=Arens%2C+Christoph&rft.date=2022-04-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=143&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105243&rft.externalDocID=S001048252200035X
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482522X00024%2Fcov150h.gif