BX2S-Net: Learning to reconstruct 3D spinal structures from bi-planar X-ray images

Grasping good understanding of the weight-bearing spatial structure of the spine of a human subject in a standing position is critical for the treatment of spinal disorders. Such disorders are commonly diagnosed via 2D X-ray imaging of the human subject in a standing position. However, 3D reconstruc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers in biology and medicine Ročník 154; s. 106615
Hlavní autoři: Chen, Zheye, Guo, Lijun, Zhang, Rong, Fang, Zhongding, He, Xiuchao, Wang, Jianhua
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.03.2023
Elsevier Limited
Témata:
ISSN:0010-4825, 1879-0534, 1879-0534
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Grasping good understanding of the weight-bearing spatial structure of the spine of a human subject in a standing position is critical for the treatment of spinal disorders. Such disorders are commonly diagnosed via 2D X-ray imaging of the human subject in a standing position. However, 3D reconstruction techniques based on bi-planar X-ray imaging can enable better exploration and analysis of the spinal structure. In particular, compared to earlier deformable modeling approaches, the recently-developed deep-learning-based 3D reconstruction methods exhibit higher efficiency and generalizability. But these methods usually employ simple architectures with 2D encoders and 3D decoders. Thus, these methods have several drawbacks, namely, the existence of a semantic gap between dimensionally-inconsistent feature maps, the difficulty of jointly handling multi-view inputs, and the information source limitations for the decoding process. In order to better assist clinicians and tackle these problems, we propose a novel convolutional neural network framework, which we call BX2S-Net, to effectively achieve 3D spine reconstruction based on bi-planar X-ray images. In particular, a dimensionally-consistent encoder–decoder architecture is designed in conjunction with a dimensionality enhancement method in order to reduce the semantic gap between feature maps and achieve information fusion for multi-view inputs. A feature-guided progressive decoding process is developed on the decoder side, where a full-scale feature attention guidance (FFAG) module is introduced to efficiently aggregate image features and guide the decoding process at each level. In addition, a class augmentation method and a spatially-weighted cross-entropy loss function are used for network training with improved reconstruction quality for the vertebral edge region. The experimental results demonstrate the effectiveness of our model in reconstructing high-quality 3D spinal structures from bi-planar X-ray images. The code is available at https://github.com/NBU-CVMI/bx2s-net. •A deep learning method is proposed to achieve 3D spine reconstruction.•Multi-view inputs are processed via a dimensionally-consistent network structure.•A feature-guided progressive decoding process is developed in the network.•Several strategies are introduced to enhance the reconstruction of edge regions.
AbstractList Grasping good understanding of the weight-bearing spatial structure of the spine of a human subject in a standing position is critical for the treatment of spinal disorders. Such disorders are commonly diagnosed via 2D X-ray imaging of the human subject in a standing position. However, 3D reconstruction techniques based on bi-planar X-ray imaging can enable better exploration and analysis of the spinal structure. In particular, compared to earlier deformable modeling approaches, the recently-developed deep-learning-based 3D reconstruction methods exhibit higher efficiency and generalizability. But these methods usually employ simple architectures with 2D encoders and 3D decoders. Thus, these methods have several drawbacks, namely, the existence of a semantic gap between dimensionally-inconsistent feature maps, the difficulty of jointly handling multi-view inputs, and the information source limitations for the decoding process. In order to better assist clinicians and tackle these problems, we propose a novel convolutional neural network framework, which we call BX2S-Net, to effectively achieve 3D spine reconstruction based on bi-planar X-ray images. In particular, a dimensionally-consistent encoder-decoder architecture is designed in conjunction with a dimensionality enhancement method in order to reduce the semantic gap between feature maps and achieve information fusion for multi-view inputs. A feature-guided progressive decoding process is developed on the decoder side, where a full-scale feature attention guidance (FFAG) module is introduced to efficiently aggregate image features and guide the decoding process at each level. In addition, a class augmentation method and a spatially-weighted cross-entropy loss function are used for network training with improved reconstruction quality for the vertebral edge region. The experimental results demonstrate the effectiveness of our model in reconstructing high-quality 3D spinal structures from bi-planar X-ray images. The code is available at https://github.com/NBU-CVMI/bx2s-net.Grasping good understanding of the weight-bearing spatial structure of the spine of a human subject in a standing position is critical for the treatment of spinal disorders. Such disorders are commonly diagnosed via 2D X-ray imaging of the human subject in a standing position. However, 3D reconstruction techniques based on bi-planar X-ray imaging can enable better exploration and analysis of the spinal structure. In particular, compared to earlier deformable modeling approaches, the recently-developed deep-learning-based 3D reconstruction methods exhibit higher efficiency and generalizability. But these methods usually employ simple architectures with 2D encoders and 3D decoders. Thus, these methods have several drawbacks, namely, the existence of a semantic gap between dimensionally-inconsistent feature maps, the difficulty of jointly handling multi-view inputs, and the information source limitations for the decoding process. In order to better assist clinicians and tackle these problems, we propose a novel convolutional neural network framework, which we call BX2S-Net, to effectively achieve 3D spine reconstruction based on bi-planar X-ray images. In particular, a dimensionally-consistent encoder-decoder architecture is designed in conjunction with a dimensionality enhancement method in order to reduce the semantic gap between feature maps and achieve information fusion for multi-view inputs. A feature-guided progressive decoding process is developed on the decoder side, where a full-scale feature attention guidance (FFAG) module is introduced to efficiently aggregate image features and guide the decoding process at each level. In addition, a class augmentation method and a spatially-weighted cross-entropy loss function are used for network training with improved reconstruction quality for the vertebral edge region. The experimental results demonstrate the effectiveness of our model in reconstructing high-quality 3D spinal structures from bi-planar X-ray images. The code is available at https://github.com/NBU-CVMI/bx2s-net.
AbstractGrasping good understanding of the weight-bearing spatial structure of the spine of a human subject in a standing position is critical for the treatment of spinal disorders. Such disorders are commonly diagnosed via 2D X-ray imaging of the human subject in a standing position. However, 3D reconstruction techniques based on bi-planar X-ray imaging can enable better exploration and analysis of the spinal structure. In particular, compared to earlier deformable modeling approaches, the recently-developed deep-learning-based 3D reconstruction methods exhibit higher efficiency and generalizability. But these methods usually employ simple architectures with 2D encoders and 3D decoders. Thus, these methods have several drawbacks, namely, the existence of a semantic gap between dimensionally-inconsistent feature maps, the difficulty of jointly handling multi-view inputs, and the information source limitations for the decoding process. In order to better assist clinicians and tackle these problems, we propose a novel convolutional neural network framework, which we call BX2S-Net, to effectively achieve 3D spine reconstruction based on bi-planar X-ray images. In particular, a dimensionally-consistent encoder–decoder architecture is designed in conjunction with a dimensionality enhancement method in order to reduce the semantic gap between feature maps and achieve information fusion for multi-view inputs. A feature-guided progressive decoding process is developed on the decoder side, where a full-scale feature attention guidance (FFAG) module is introduced to efficiently aggregate image features and guide the decoding process at each level. In addition, a class augmentation method and a spatially-weighted cross-entropy loss function are used for network training with improved reconstruction quality for the vertebral edge region. The experimental results demonstrate the effectiveness of our model in reconstructing high-quality 3D spinal structures from bi-planar X-ray images. The code is available at https://github.com/NBU-CVMI/bx2s-net.
Grasping good understanding of the weight-bearing spatial structure of the spine of a human subject in a standing position is critical for the treatment of spinal disorders. Such disorders are commonly diagnosed via 2D X-ray imaging of the human subject in a standing position. However, 3D reconstruction techniques based on bi-planar X-ray imaging can enable better exploration and analysis of the spinal structure. In particular, compared to earlier deformable modeling approaches, the recently-developed deep-learning-based 3D reconstruction methods exhibit higher efficiency and generalizability. But these methods usually employ simple architectures with 2D encoders and 3D decoders. Thus, these methods have several drawbacks, namely, the existence of a semantic gap between dimensionally-inconsistent feature maps, the difficulty of jointly handling multi-view inputs, and the information source limitations for the decoding process. In order to better assist clinicians and tackle these problems, we propose a novel convolutional neural network framework, which we call BX2S-Net, to effectively achieve 3D spine reconstruction based on bi-planar X-ray images. In particular, a dimensionally-consistent encoder–decoder architecture is designed in conjunction with a dimensionality enhancement method in order to reduce the semantic gap between feature maps and achieve information fusion for multi-view inputs. A feature-guided progressive decoding process is developed on the decoder side, where a full-scale feature attention guidance (FFAG) module is introduced to efficiently aggregate image features and guide the decoding process at each level. In addition, a class augmentation method and a spatially-weighted cross-entropy loss function are used for network training with improved reconstruction quality for the vertebral edge region. The experimental results demonstrate the effectiveness of our model in reconstructing high-quality 3D spinal structures from bi-planar X-ray images. The code is available at https://github.com/NBU-CVMI/bx2s-net.
Grasping good understanding of the weight-bearing spatial structure of the spine of a human subject in a standing position is critical for the treatment of spinal disorders. Such disorders are commonly diagnosed via 2D X-ray imaging of the human subject in a standing position. However, 3D reconstruction techniques based on bi-planar X-ray imaging can enable better exploration and analysis of the spinal structure. In particular, compared to earlier deformable modeling approaches, the recently-developed deep-learning-based 3D reconstruction methods exhibit higher efficiency and generalizability. But these methods usually employ simple architectures with 2D encoders and 3D decoders. Thus, these methods have several drawbacks, namely, the existence of a semantic gap between dimensionally-inconsistent feature maps, the difficulty of jointly handling multi-view inputs, and the information source limitations for the decoding process. In order to better assist clinicians and tackle these problems, we propose a novel convolutional neural network framework, which we call BX2S-Net, to effectively achieve 3D spine reconstruction based on bi-planar X-ray images. In particular, a dimensionally-consistent encoder–decoder architecture is designed in conjunction with a dimensionality enhancement method in order to reduce the semantic gap between feature maps and achieve information fusion for multi-view inputs. A feature-guided progressive decoding process is developed on the decoder side, where a full-scale feature attention guidance (FFAG) module is introduced to efficiently aggregate image features and guide the decoding process at each level. In addition, a class augmentation method and a spatially-weighted cross-entropy loss function are used for network training with improved reconstruction quality for the vertebral edge region. The experimental results demonstrate the effectiveness of our model in reconstructing high-quality 3D spinal structures from bi-planar X-ray images. The code is available at https://github.com/NBU-CVMI/bx2s-net. •A deep learning method is proposed to achieve 3D spine reconstruction.•Multi-view inputs are processed via a dimensionally-consistent network structure.•A feature-guided progressive decoding process is developed in the network.•Several strategies are introduced to enhance the reconstruction of edge regions.
ArticleNumber 106615
Author Fang, Zhongding
He, Xiuchao
Zhang, Rong
Guo, Lijun
Wang, Jianhua
Chen, Zheye
Author_xml – sequence: 1
  givenname: Zheye
  surname: Chen
  fullname: Chen, Zheye
  email: yingwenn@foxmail.com
  organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo Zhejiang 315000, China
– sequence: 2
  givenname: Lijun
  orcidid: 0000-0002-6133-9564
  surname: Guo
  fullname: Guo, Lijun
  email: guolijun@nbu.edu.cn
  organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo Zhejiang 315000, China
– sequence: 3
  givenname: Rong
  surname: Zhang
  fullname: Zhang, Rong
  email: zhangrong@nbu.edu.cn
  organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo Zhejiang 315000, China
– sequence: 4
  givenname: Zhongding
  orcidid: 0000-0003-3584-0010
  surname: Fang
  fullname: Fang, Zhongding
  email: joongky@foxmail.com
  organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo Zhejiang 315000, China
– sequence: 5
  givenname: Xiuchao
  surname: He
  fullname: He, Xiuchao
  email: hexiuchaoxctmr@163.com
  organization: Department of Radiology, The Affiliated Hospital of Medicine School of Ningbo University, Ningbo Zhejiang 315000, China
– sequence: 6
  givenname: Jianhua
  surname: Wang
  fullname: Wang, Jianhua
  email: woxingw@sina.com
  organization: Department of Radiology, The Affiliated Hospital of Medicine School of Ningbo University, Ningbo Zhejiang 315000, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36739821$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9rFDEUxYNU7Lb6FSTgiy-z3iTz14eira0Ki4JV2LeQydwtWWeSaZIR9tubdVqFBWGfEsK5v9x7zj0jJ9ZZJIQyWDJg5ZvtUrthbI0bsFty4CI9lyUrnpAFq6smg0LkJ2QBwCDLa16ckrMQtgCQg4Bn5FSUlWhqzhbk2-Wa32ZfML6lK1TeGntHo6MetbMh-klHKj7QMBqrejo_TB4D3Xg30NZkY6-s8nSdebWjZlB3GJ6TpxvVB3zxcJ6THzfX368-ZauvHz9fvV9lumB5zIRu2kKntnmNCpoculp0nShaxgquunKjUHFM94rVKu9KrgSHnFdad3UDiolz8nrmjt7dTxiiHEzQ2KeO0E1B8qoSFSsEa5L01YF06yafRvqjKgsBVcOT6uWDamqTsXL0aSC_k49uJcHFLNDeheBxI7WJKhpno1emlwzkPh65lf_ikft45BxPAtQHgMc_jii9nEsxWfrLoJdBG7QaO5PCirJz5hjIxQFE98YarfqfuMPw1xQmA5cgb_cLtN8fLtLu1LBOgHf_BxzXw28ardhZ
CitedBy_id crossref_primary_10_1007_s42600_025_00405_7
crossref_primary_10_1038_s41598_024_65795_7
crossref_primary_10_1186_s12891_025_08667_z
crossref_primary_10_1007_s11760_024_03334_7
crossref_primary_10_1007_s11263_024_02286_2
crossref_primary_10_3390_jpm13121642
crossref_primary_10_1007_s11517_025_03441_8
crossref_primary_10_1016_j_media_2025_103454
crossref_primary_10_1016_j_bone_2025_117570
crossref_primary_10_1016_j_media_2024_103283
crossref_primary_10_1016_j_bspc_2024_106836
crossref_primary_10_1080_17434440_2024_2384541
crossref_primary_10_1007_s11548_024_03110_5
Cites_doi 10.1016/j.apergo.2021.103491
10.1109/ICCV.2019.00278
10.1088/0031-9155/45/10/305
10.1007/s11548-010-0515-7
10.1016/j.compbiomed.2021.105070
10.1016/j.compbiomed.2022.105683
10.1109/RBME.2018.2876450
10.1007/s00586-021-06842-z
10.1007/s11042-020-09722-8
10.1007/978-3-030-01252-6_4
10.1016/j.compbiomed.2022.105347
10.1007/s11548-014-1121-x
10.1016/j.bea.2021.100023
10.1016/S0895-6111(03)00019-3
10.1016/j.compbiomed.2020.103766
10.1109/CVPR.2018.00207
10.1016/j.jelekin.2022.102640
10.1016/j.cag.2020.12.004
10.1016/j.joca.2020.12.003
10.1038/s41551-019-0466-4
10.7717/peerj.8397
10.1016/j.aej.2020.10.046
10.1109/CVPR.2016.445
10.1109/TBME.2013.2246788
10.4310/CIS.2020.v20.n4.a1
10.3390/s20185097
10.3390/ijerph18158152
10.1016/j.compbiomed.2020.104097
10.1016/j.media.2021.102166
10.1302/0301-620X.104B8.BJJ-2021-1638.R1
10.1016/j.medengphy.2009.01.003
10.1016/j.compbiomed.2021.104745
10.1016/j.compbiomed.2021.104268
10.1109/CVPR.2018.00745
10.1109/CVPR.2019.00352
10.1016/j.ijotn.2022.100921
10.1109/CVPR.2019.01087
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
2023. Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
– notice: 2023. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.106615
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database (ProQuest)
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Research Library Prep

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 106615
ExternalDocumentID 36739821
10_1016_j_compbiomed_2023_106615
S001048252300080X
1_s2_0_S001048252300080X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
9DU
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c514t-3c9b5c06628ea0940d83dd35b1152ad6faea2e152718a4d62a320427ccd890a13
IEDL.DBID K7-
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000931786700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4825
1879-0534
IngestDate Wed Oct 01 14:15:25 EDT 2025
Sat Nov 29 14:44:59 EST 2025
Wed Feb 19 02:24:59 EST 2025
Sat Nov 29 07:35:23 EST 2025
Tue Nov 18 22:17:16 EST 2025
Fri Feb 23 02:38:57 EST 2024
Tue Feb 25 20:10:53 EST 2025
Tue Oct 14 19:33:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
3D reconstruction
Bi-planar X-ray images
Spine
Progressive decoding process
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-3c9b5c06628ea0940d83dd35b1152ad6faea2e152718a4d62a320427ccd890a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6133-9564
0000-0003-3584-0010
PMID 36739821
PQID 2776530792
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2773715319
proquest_journals_2776530792
pubmed_primary_36739821
crossref_citationtrail_10_1016_j_compbiomed_2023_106615
crossref_primary_10_1016_j_compbiomed_2023_106615
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_106615
elsevier_clinicalkeyesjournals_1_s2_0_S001048252300080X
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_106615
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Zheng, Nolte, Ferguson (b16) 2011; 6
Wu, Zhang, Xue, Freeman, Tenenbaum (b37) 2016; 29
Muzaffarovna (b6) 2021; 11
C.R. Qi, H. Su, K. Mo, L.J. Guibas, Pointnet: Deep learning on point sets for 3D classification and segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 652–660.
Ahrend, Noser, Shanmugam, Burr, Kamer, Kamarul, Hügli, Nagy, Richards, Gueorguiev-Rüegg (b26) 2020; 20
Shen, Zhao, Xing (b40) 2019; 3
Sekuboyina, Husseini, Bayat, Löffler, Liebl, Li, Tetteh, Kukačka, Payer, Štern (b45) 2021; 73
Torén, Diarbakerli (b5) 2022
Alalwan, Abozeid, ElHabshy, Alzahrani (b33) 2021; 60
M. Tatarchenko, S.R. Richter, R. Ranftl, Z. Li, V. Koltun, T. Brox, What do single-view 3d reconstruction networks learn?, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 3405–3414.
Choy, Xu, Gwak, Chen, Savarese (b24) 2016
Grant, Diamond, Pizzolato, Killen, Devaprakash, Kelly, Maharaj, Saxby (b27) 2020; 8
J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
Zhou, He, Shi, Du, Chen (b31) 2020; 121
Clogenson, Duff, Luethi, Levivier, Meuli, Baur, Henein (b18) 2015; 10
Sung, Chae, Lee, Kim, Kwon, Lee, Moon, Lee, Lee (b1) 2021; 18
Seitz, Curless, Diebel, Scharstein, Szeliski (b13) 2006
Reyneke, Lüthi, Burdin, Douglas, Vetter, Mutsvangwa (b20) 2018; 12
H. Xie, H. Yao, X. Sun, S. Zhou, S. Zhang, Pix2Vox: Context-aware 3D reconstruction from single and multi-view images, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2690–2698.
Kaya, Erbahçeci, Alkan, Kocaman, Büyükturan, Canlı, Büyükturan (b8) 2022; 62
Ogawa, Kisohara, Yamamoto, Shibata, Ojio, Mochizuki, Tatsuta, Iwasaki, Shibamoto (b35) 2022
Singh, Kucukgoz, Murphy, Xiong, Steel, Obara (b36) 2022; 140
Humbert, De Guise, Aubert, Godbout, Skalli (b19) 2009; 31
Zhang, Lv, Shi, Wang, Guo, Zhang, Li (b15) 2013; 60
Fu, Peng, He, Zhang (b23) 2021; 80
Chen, Yang, Wei, Heidari, Zheng, Li, Chen, Hu, Zhou, Guan (b21) 2022
Milickovic, Baltas, Giannouli, Lahanas, Zamboglou (b44) 2000; 45
Yu, Han, Li, Wei, Jiang, Chen, Yu (b29) 2022; 144
S.R. Richter, S. Roth, Matryoshka networks: Predicting 3d geometry via nested shape layers, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1936–1944.
Jin, Jiang, Cai (b22) 2020; 20
Ng, Claus, Izatt, Pivonka, Tucker (b7) 2022
Skals, Bláfoss, de Zee, Andersen, Andersen (b11) 2021; 96
Singh, Wang, Gupta, Goli, Padmanabhan, Gulyás (b30) 2020; 20
Warren, Hey, Mazzoleni (b10) 2021; 2
Labrom, Izatt, Claus, Little (b2) 2021; 30
Marya, Tambe, Millner, Tsirikos (b4) 2022; 104
Qayyum, Lalande, Meriaudeau (b32) 2020; 127
X. Ying, H. Guo, K. Ma, J. Wu, Z. Weng, Y. Zheng, X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10619–10628.
Essex, Bruce, Dibley, Newton, Thompson, Swaine, Dibley (b3) 2022
J.L. Schonberger, J.-M. Frahm, Structure-from-motion revisited, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4104–4113.
van Buuren, Arden, Bierma-Zeinstra, Bramer, Casartelli, Felson, Jones, Lane, Lindner, Maffiuletti (b28) 2021; 29
Deng, Wang, Hui, Li, Li, Luo, Sun, Quan, Yang, Hao (b46) 2021
Fahim, Amin, Zarif (b14) 2021; 94
Benameur, Mignotte, Parent, Labelle, Skalli, de Guise (b17) 2003; 27
Martin, Sciolla, Sdika, Quétin, Delachartre (b34) 2021; 131
N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, Y.-G. Jiang, Pixel2mesh: Generating 3d mesh models from single rgb images, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 52–67.
Zhang, Chon, Zhang, Baker, Gu (b9) 2021; 136
Benameur (10.1016/j.compbiomed.2023.106615_b17) 2003; 27
Grant (10.1016/j.compbiomed.2023.106615_b27) 2020; 8
Sekuboyina (10.1016/j.compbiomed.2023.106615_b45) 2021; 73
Martin (10.1016/j.compbiomed.2023.106615_b34) 2021; 131
Singh (10.1016/j.compbiomed.2023.106615_b30) 2020; 20
10.1016/j.compbiomed.2023.106615_b38
Zhang (10.1016/j.compbiomed.2023.106615_b9) 2021; 136
Fu (10.1016/j.compbiomed.2023.106615_b23) 2021; 80
Alalwan (10.1016/j.compbiomed.2023.106615_b33) 2021; 60
Shen (10.1016/j.compbiomed.2023.106615_b40) 2019; 3
Kaya (10.1016/j.compbiomed.2023.106615_b8) 2022; 62
10.1016/j.compbiomed.2023.106615_b12
Zhou (10.1016/j.compbiomed.2023.106615_b31) 2020; 121
Wu (10.1016/j.compbiomed.2023.106615_b37) 2016; 29
Marya (10.1016/j.compbiomed.2023.106615_b4) 2022; 104
Yu (10.1016/j.compbiomed.2023.106615_b29) 2022; 144
Torén (10.1016/j.compbiomed.2023.106615_b5) 2022
Seitz (10.1016/j.compbiomed.2023.106615_b13) 2006
Choy (10.1016/j.compbiomed.2023.106615_b24) 2016
van Buuren (10.1016/j.compbiomed.2023.106615_b28) 2021; 29
Muzaffarovna (10.1016/j.compbiomed.2023.106615_b6) 2021; 11
Ng (10.1016/j.compbiomed.2023.106615_b7) 2022
10.1016/j.compbiomed.2023.106615_b41
Zheng (10.1016/j.compbiomed.2023.106615_b16) 2011; 6
Milickovic (10.1016/j.compbiomed.2023.106615_b44) 2000; 45
Ogawa (10.1016/j.compbiomed.2023.106615_b35) 2022
Deng (10.1016/j.compbiomed.2023.106615_b46) 2021
Essex (10.1016/j.compbiomed.2023.106615_b3) 2022
Chen (10.1016/j.compbiomed.2023.106615_b21) 2022
10.1016/j.compbiomed.2023.106615_b25
10.1016/j.compbiomed.2023.106615_b47
10.1016/j.compbiomed.2023.106615_b43
Fahim (10.1016/j.compbiomed.2023.106615_b14) 2021; 94
10.1016/j.compbiomed.2023.106615_b42
Clogenson (10.1016/j.compbiomed.2023.106615_b18) 2015; 10
Qayyum (10.1016/j.compbiomed.2023.106615_b32) 2020; 127
Zhang (10.1016/j.compbiomed.2023.106615_b15) 2013; 60
Sung (10.1016/j.compbiomed.2023.106615_b1) 2021; 18
Singh (10.1016/j.compbiomed.2023.106615_b36) 2022; 140
10.1016/j.compbiomed.2023.106615_b39
Skals (10.1016/j.compbiomed.2023.106615_b11) 2021; 96
Labrom (10.1016/j.compbiomed.2023.106615_b2) 2021; 30
Jin (10.1016/j.compbiomed.2023.106615_b22) 2020; 20
Warren (10.1016/j.compbiomed.2023.106615_b10) 2021; 2
Reyneke (10.1016/j.compbiomed.2023.106615_b20) 2018; 12
Humbert (10.1016/j.compbiomed.2023.106615_b19) 2009; 31
Ahrend (10.1016/j.compbiomed.2023.106615_b26) 2020; 20
References_xml – volume: 121
  year: 2020
  ident: b31
  article-title: 3D dense connectivity network with atrous convolutional feature pyramid for brain tumor segmentation in magnetic resonance imaging of human heads
  publication-title: Comput. Biol. Med.
– volume: 60
  start-page: 1231
  year: 2021
  end-page: 1239
  ident: b33
  article-title: Efficient 3D deep learning model for medical image semantic segmentation
  publication-title: Alex. Eng. J.
– volume: 6
  start-page: 351
  year: 2011
  end-page: 366
  ident: b16
  article-title: Scaled, patient-specific 3D vertebral model reconstruction based on 2D lateral fluoroscopy
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– reference: J.L. Schonberger, J.-M. Frahm, Structure-from-motion revisited, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4104–4113.
– volume: 20
  start-page: 100
  year: 2020
  end-page: 106
  ident: b26
  article-title: Development of generic Asian pelvic bone models using CT-based 3D statistical modelling
  publication-title: J. Orthop. Transl.
– start-page: 519
  year: 2006
  end-page: 528
  ident: b13
  article-title: A comparison and evaluation of multi-view stereo reconstruction algorithms
  publication-title: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Vol. 1
– volume: 20
  start-page: 389
  year: 2020
  end-page: 413
  ident: b22
  article-title: 3D reconstruction using deep learning: a survey
  publication-title: Commun. Inf. Syst.
– volume: 62
  year: 2022
  ident: b8
  article-title: Factors influencing of quality of life in adolescent idiopathic scoliosis
  publication-title: Musculoskelet. Sci. Pract.
– volume: 144
  year: 2022
  ident: b29
  article-title: Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: thyroid ultrasound image case study
  publication-title: Comput. Biol. Med.
– volume: 45
  start-page: 2787
  year: 2000
  ident: b44
  article-title: CT imaging based digitally reconstructed radiographs and their application in brachytherapy
  publication-title: Phys. Med. Biol.
– volume: 10
  start-page: 1097
  year: 2015
  end-page: 1107
  ident: b18
  article-title: A statistical shape model of the human second cervical vertebra
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– year: 2022
  ident: b7
  article-title: Is spinal neuromuscular function asymmetrical in adolescents with idiopathic scoliosis compared to those without scoliosis?: A narrative review of surface EMG studies
  publication-title: J. Electromyography Kinesiol.
– volume: 136
  year: 2021
  ident: b9
  article-title: Finite element analysis of the lumbar spine in adolescent idiopathic scoliosis subjected to different loads
  publication-title: Comput. Biol. Med.
– start-page: 628
  year: 2016
  end-page: 644
  ident: b24
  article-title: 3D-R2N2: A unified approach for single and multi-view 3D object reconstruction
  publication-title: European Conference on Computer Vision
– volume: 3
  start-page: 880
  year: 2019
  end-page: 888
  ident: b40
  article-title: Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning
  publication-title: Nat. Biomed. Eng.
– volume: 18
  start-page: 8152
  year: 2021
  ident: b1
  article-title: Incidence and surgery rate of idiopathic scoliosis: a nationwide database study
  publication-title: Int. J. Environ. Res. Public Health
– year: 2021
  ident: b46
  article-title: CTSpine1K: A large-scale dataset for spinal vertebrae segmentation in computed tomography
– volume: 29
  start-page: 607
  year: 2021
  end-page: 618
  ident: b28
  article-title: Statistical shape modeling of the hip and the association with hip osteoarthritis: a systematic review
  publication-title: Osteoarthr. Cartil.
– reference: X. Ying, H. Guo, K. Ma, J. Wu, Z. Weng, Y. Zheng, X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10619–10628.
– volume: 11
  start-page: 359
  year: 2021
  end-page: 361
  ident: b6
  article-title: Morphometric changes in the parameters of physical development of children with scoliosis
  publication-title: Acad. Int. Multidiscip. Res. J.
– year: 2022
  ident: b35
  article-title: Utility of unsupervised deep learning using a 3D variational autoencoder in detecting inner ear abnormalities on CT images
  publication-title: Comput. Biol. Med.
– reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
– volume: 60
  start-page: 1954
  year: 2013
  end-page: 1964
  ident: b15
  article-title: 3-D reconstruction of the spine from biplanar radiographs based on contour matching using the hough transform
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 20
  start-page: 5097
  year: 2020
  ident: b30
  article-title: 3D deep learning on medical images: a review
  publication-title: Sensors
– volume: 30
  start-page: 1823
  year: 2021
  end-page: 1834
  ident: b2
  article-title: Adolescent idiopathic scoliosis 3D vertebral morphology, progression and nomenclature: a current concepts review
  publication-title: Eur. Spine J.
– volume: 8
  year: 2020
  ident: b27
  article-title: Development and validation of statistical shape models of the primary functional bone segments of the foot
  publication-title: PeerJ
– volume: 127
  year: 2020
  ident: b32
  article-title: Automatic segmentation of tumors and affected organs in the abdomen using a 3D hybrid model for computed tomography imaging
  publication-title: Comput. Biol. Med.
– volume: 31
  start-page: 681
  year: 2009
  end-page: 687
  ident: b19
  article-title: 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences
  publication-title: Med. Eng. Phys.
– volume: 73
  year: 2021
  ident: b45
  article-title: VerSe: A vertebrae labelling and segmentation benchmark for multi-detector CT images
  publication-title: Med. Image Anal.
– volume: 131
  year: 2021
  ident: b34
  article-title: Automatic segmentation and location learning of neonatal cerebral ventricles in 3D ultrasound data combining CNN and CPPN
  publication-title: Comput. Biol. Med.
– year: 2022
  ident: b3
  article-title: A systematic scoping review and textual narrative synthesis of the qualitative evidence related to adolescent idiopathic scoliosis
  publication-title: Int. J. Orthop. Trauma Nurs.
– volume: 140
  year: 2022
  ident: b36
  article-title: Benchmarking automated detection of the retinal external limiting membrane in a 3D spectral domain optical coherence tomography image dataset of full thickness macular holes
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2022
  end-page: 7
  ident: b5
  article-title: Health-related quality of life in adolescents with idiopathic scoliosis: a cross-sectional study including healthy controls
  publication-title: Eur. Spine J.
– reference: M. Tatarchenko, S.R. Richter, R. Ranftl, Z. Li, V. Koltun, T. Brox, What do single-view 3d reconstruction networks learn?, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 3405–3414.
– reference: H. Xie, H. Yao, X. Sun, S. Zhou, S. Zhang, Pix2Vox: Context-aware 3D reconstruction from single and multi-view images, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2690–2698.
– volume: 12
  start-page: 269
  year: 2018
  end-page: 286
  ident: b20
  article-title: Review of 2-D/3-D reconstruction using statistical shape and intensity models and X-ray image synthesis: Toward a unified framework
  publication-title: IEEE Rev. Biomed. Eng.
– reference: S.R. Richter, S. Roth, Matryoshka networks: Predicting 3d geometry via nested shape layers, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1936–1944.
– volume: 27
  start-page: 321
  year: 2003
  end-page: 337
  ident: b17
  article-title: 3D/2D registration and segmentation of scoliotic vertebrae using statistical models
  publication-title: Comput. Med. Imaging Graph.
– reference: C.R. Qi, H. Su, K. Mo, L.J. Guibas, Pointnet: Deep learning on point sets for 3D classification and segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 652–660.
– year: 2022
  ident: b21
  article-title: Generative adversarial networks in medical image augmentation: a review
  publication-title: Comput. Biol. Med.
– volume: 80
  start-page: 463
  year: 2021
  end-page: 498
  ident: b23
  article-title: Single image 3D object reconstruction based on deep learning: A review
  publication-title: Multimedia Tools Appl.
– volume: 2
  year: 2021
  ident: b10
  article-title: A finite element study of the relationship between upper body weight and the loads experienced by the human lumbosacral spine, and fusion instrumentation, in a standing upright posture
  publication-title: Biomed. Eng. Adv.
– reference: N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, Y.-G. Jiang, Pixel2mesh: Generating 3d mesh models from single rgb images, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 52–67.
– volume: 94
  start-page: 164
  year: 2021
  end-page: 190
  ident: b14
  article-title: Single-View 3D reconstruction: A Survey of deep learning methods
  publication-title: Comput. Graph.
– volume: 29
  year: 2016
  ident: b37
  article-title: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 104
  start-page: 915
  year: 2022
  end-page: 921
  ident: b4
  article-title: Adolescent idiopathic scoliosis: a review of aetiological theories of a multifactorial disease
  publication-title: Bone Joint J.
– volume: 96
  year: 2021
  ident: b11
  article-title: Effects of load mass and position on the dynamic loading of the knees, shoulders and lumbar spine during lifting: a musculoskeletal modelling approach
  publication-title: Applied Ergon.
– volume: 96
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106615_b11
  article-title: Effects of load mass and position on the dynamic loading of the knees, shoulders and lumbar spine during lifting: a musculoskeletal modelling approach
  publication-title: Applied Ergon.
  doi: 10.1016/j.apergo.2021.103491
– start-page: 628
  year: 2016
  ident: 10.1016/j.compbiomed.2023.106615_b24
  article-title: 3D-R2N2: A unified approach for single and multi-view 3D object reconstruction
– ident: 10.1016/j.compbiomed.2023.106615_b25
  doi: 10.1109/ICCV.2019.00278
– volume: 45
  start-page: 2787
  issue: 10
  year: 2000
  ident: 10.1016/j.compbiomed.2023.106615_b44
  article-title: CT imaging based digitally reconstructed radiographs and their application in brachytherapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/45/10/305
– volume: 6
  start-page: 351
  issue: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2023.106615_b16
  article-title: Scaled, patient-specific 3D vertebral model reconstruction based on 2D lateral fluoroscopy
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-010-0515-7
– volume: 140
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106615_b36
  article-title: Benchmarking automated detection of the retinal external limiting membrane in a 3D spectral domain optical coherence tomography image dataset of full thickness macular holes
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105070
– year: 2022
  ident: 10.1016/j.compbiomed.2023.106615_b35
  article-title: Utility of unsupervised deep learning using a 3D variational autoencoder in detecting inner ear abnormalities on CT images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105683
– volume: 12
  start-page: 269
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106615_b20
  article-title: Review of 2-D/3-D reconstruction using statistical shape and intensity models and X-ray image synthesis: Toward a unified framework
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2018.2876450
– volume: 30
  start-page: 1823
  issue: 7
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106615_b2
  article-title: Adolescent idiopathic scoliosis 3D vertebral morphology, progression and nomenclature: a current concepts review
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-021-06842-z
– volume: 80
  start-page: 463
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106615_b23
  article-title: Single image 3D object reconstruction based on deep learning: A review
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-09722-8
– ident: 10.1016/j.compbiomed.2023.106615_b39
  doi: 10.1007/978-3-030-01252-6_4
– volume: 144
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106615_b29
  article-title: Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: thyroid ultrasound image case study
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105347
– volume: 10
  start-page: 1097
  issue: 7
  year: 2015
  ident: 10.1016/j.compbiomed.2023.106615_b18
  article-title: A statistical shape model of the human second cervical vertebra
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-014-1121-x
– volume: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106615_b10
  article-title: A finite element study of the relationship between upper body weight and the loads experienced by the human lumbosacral spine, and fusion instrumentation, in a standing upright posture
  publication-title: Biomed. Eng. Adv.
  doi: 10.1016/j.bea.2021.100023
– volume: 27
  start-page: 321
  issue: 5
  year: 2003
  ident: 10.1016/j.compbiomed.2023.106615_b17
  article-title: 3D/2D registration and segmentation of scoliotic vertebrae using statistical models
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/S0895-6111(03)00019-3
– volume: 121
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106615_b31
  article-title: 3D dense connectivity network with atrous convolutional feature pyramid for brain tumor segmentation in magnetic resonance imaging of human heads
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103766
– volume: 11
  start-page: 359
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106615_b6
  article-title: Morphometric changes in the parameters of physical development of children with scoliosis
  publication-title: Acad. Int. Multidiscip. Res. J.
– ident: 10.1016/j.compbiomed.2023.106615_b43
  doi: 10.1109/CVPR.2018.00207
– year: 2022
  ident: 10.1016/j.compbiomed.2023.106615_b7
  article-title: Is spinal neuromuscular function asymmetrical in adolescents with idiopathic scoliosis compared to those without scoliosis?: A narrative review of surface EMG studies
  publication-title: J. Electromyography Kinesiol.
  doi: 10.1016/j.jelekin.2022.102640
– volume: 94
  start-page: 164
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106615_b14
  article-title: Single-View 3D reconstruction: A Survey of deep learning methods
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2020.12.004
– volume: 29
  start-page: 607
  issue: 5
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106615_b28
  article-title: Statistical shape modeling of the hip and the association with hip osteoarthritis: a systematic review
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2020.12.003
– volume: 3
  start-page: 880
  issue: 11
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106615_b40
  article-title: Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0466-4
– volume: 20
  start-page: 100
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106615_b26
  article-title: Development of generic Asian pelvic bone models using CT-based 3D statistical modelling
  publication-title: J. Orthop. Transl.
– volume: 8
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106615_b27
  article-title: Development and validation of statistical shape models of the primary functional bone segments of the foot
  publication-title: PeerJ
  doi: 10.7717/peerj.8397
– volume: 60
  start-page: 1231
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106615_b33
  article-title: Efficient 3D deep learning model for medical image semantic segmentation
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.10.046
– volume: 29
  year: 2016
  ident: 10.1016/j.compbiomed.2023.106615_b37
  article-title: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.compbiomed.2023.106615_b12
  doi: 10.1109/CVPR.2016.445
– ident: 10.1016/j.compbiomed.2023.106615_b38
– volume: 60
  start-page: 1954
  issue: 7
  year: 2013
  ident: 10.1016/j.compbiomed.2023.106615_b15
  article-title: 3-D reconstruction of the spine from biplanar radiographs based on contour matching using the hough transform
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2246788
– year: 2021
  ident: 10.1016/j.compbiomed.2023.106615_b46
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106615_b5
  article-title: Health-related quality of life in adolescents with idiopathic scoliosis: a cross-sectional study including healthy controls
  publication-title: Eur. Spine J.
– volume: 20
  start-page: 389
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106615_b22
  article-title: 3D reconstruction using deep learning: a survey
  publication-title: Commun. Inf. Syst.
  doi: 10.4310/CIS.2020.v20.n4.a1
– volume: 20
  start-page: 5097
  issue: 18
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106615_b30
  article-title: 3D deep learning on medical images: a review
  publication-title: Sensors
  doi: 10.3390/s20185097
– volume: 18
  start-page: 8152
  issue: 15
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106615_b1
  article-title: Incidence and surgery rate of idiopathic scoliosis: a nationwide database study
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph18158152
– volume: 127
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106615_b32
  article-title: Automatic segmentation of tumors and affected organs in the abdomen using a 3D hybrid model for computed tomography imaging
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104097
– volume: 73
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106615_b45
  article-title: VerSe: A vertebrae labelling and segmentation benchmark for multi-detector CT images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102166
– volume: 104
  start-page: 915
  issue: 8
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106615_b4
  article-title: Adolescent idiopathic scoliosis: a review of aetiological theories of a multifactorial disease
  publication-title: Bone Joint J.
  doi: 10.1302/0301-620X.104B8.BJJ-2021-1638.R1
– volume: 31
  start-page: 681
  issue: 6
  year: 2009
  ident: 10.1016/j.compbiomed.2023.106615_b19
  article-title: 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2009.01.003
– volume: 136
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106615_b9
  article-title: Finite element analysis of the lumbar spine in adolescent idiopathic scoliosis subjected to different loads
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104745
– volume: 131
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106615_b34
  article-title: Automatic segmentation and location learning of neonatal cerebral ventricles in 3D ultrasound data combining CNN and CPPN
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104268
– ident: 10.1016/j.compbiomed.2023.106615_b42
  doi: 10.1109/CVPR.2018.00745
– ident: 10.1016/j.compbiomed.2023.106615_b47
  doi: 10.1109/CVPR.2019.00352
– year: 2022
  ident: 10.1016/j.compbiomed.2023.106615_b3
  article-title: A systematic scoping review and textual narrative synthesis of the qualitative evidence related to adolescent idiopathic scoliosis
  publication-title: Int. J. Orthop. Trauma Nurs.
  doi: 10.1016/j.ijotn.2022.100921
– ident: 10.1016/j.compbiomed.2023.106615_b41
  doi: 10.1109/CVPR.2019.01087
– volume: 62
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106615_b8
  article-title: Factors influencing of quality of life in adolescent idiopathic scoliosis
  publication-title: Musculoskelet. Sci. Pract.
– start-page: 519
  year: 2006
  ident: 10.1016/j.compbiomed.2023.106615_b13
  article-title: A comparison and evaluation of multi-view stereo reconstruction algorithms
– year: 2022
  ident: 10.1016/j.compbiomed.2023.106615_b21
  article-title: Generative adversarial networks in medical image augmentation: a review
  publication-title: Comput. Biol. Med.
SSID ssj0004030
Score 2.4485877
Snippet Grasping good understanding of the weight-bearing spatial structure of the spine of a human subject in a standing position is critical for the treatment of...
AbstractGrasping good understanding of the weight-bearing spatial structure of the spine of a human subject in a standing position is critical for the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106615
SubjectTerms 3D reconstruction
Artificial neural networks
Bi-planar X-ray images
Coders
Data integration
Decoders
Decoding
Deep learning
Disorders
Entropy
Feature maps
Formability
Human subjects
Humans
Image Processing, Computer-Assisted - methods
Image reconstruction
Imaging, Three-Dimensional - methods
Internal Medicine
Neural networks
Neural Networks, Computer
Other
Progressive decoding process
Semantics
Spine
Spine - diagnostic imaging
Vertebrae
X ray imagery
X-Rays
Title BX2S-Net: Learning to reconstruct 3D spinal structures from bi-planar X-ray images
URI https://www.clinicalkey.com/#!/content/1-s2.0-S001048252300080X
https://www.clinicalkey.es/playcontent/1-s2.0-S001048252300080X
https://dx.doi.org/10.1016/j.compbiomed.2023.106615
https://www.ncbi.nlm.nih.gov/pubmed/36739821
https://www.proquest.com/docview/2776530792
https://www.proquest.com/docview/2773715319
Volume 154
WOSCitedRecordID wos000931786700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: K7-
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: P5Z
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuwhx4f0oLJWRuBpqu4kTOCAWdoWEtlRdQBEXy3FcVLSkpeki8e-ZiZ30wqJKXOaQdJI0M55HPDMfwDNMuEqBkQUvlbd87HGl23lmuRXzMvFzXJpp2YJN6MkkK4p8Gj-4NbGssrOJraGulo6-kb-QWqcJKmQuX69-ckKNot3VCKGxBwdCSkF6_kHzbV_kSIUWFHyCMaZCsZIn1HdRyXZocX9OEOJ4GF1Vcpl7uiz8bN3Qyc3__QO34EYMQNmboDG34Yqv78C107jFfhdmR4U84xO_ecni7NVvbLNkbeIchs0y9Y41K0LTYuHABabsjPpUWLngq3Nb2zUr-Nr-ZosfaK6ae_D55PjT2_c8Ai9wh_HThiuXl4mj2fCZtzRgr8pUVakEpZpIW6Vz6630BIgrMjuuUmmVJMwO56osH1mh7sN-vaz9Q2ASveQ8zUU5du0WHYajmcttIpxyia6qAejufRsXp5ITOMa56crPvputpAxJygRJDUD0nKswmWMHnrwTqek6T9FWGnQfO_Dqv_H6Ji76xgjTSDMyZ-3MI1Q3zO4oIC8G8KrnjHFNiFd2vO9hp0-mv9VWmQbwtD-NloG2e2ztlxftb5QWZGMH8CDobP-iVKpVnknx6N8XfwzX6UlCzd0h7KNS-Sdw1f3aLJr1EPb07AvRQrc0G8LB0fFkOhu2yxDpqfxIVE-RTpOvfwDwPzdZ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigX3o9AASPB0bC2Ny8QQkCpWrVdoT5QbsZxnGpRyS6bLah_it_ITJxkLxTtpQeuSSbPb17xzHwAzzHhygVGFjxXzvChQ003ZWK4EWUeuhJVM8obsol4NEqyLP28Ar-7Xhgqq-xsYmOoi4mlf-SvZBxHIQIyle-mPzixRtHqakeh4WGx485-YcpWv93ewO_7QsrNT4cft3jLKsAtBgdzrmyah5YGnyfO0PS4IlFFoUK85VCaIiqNM9IR26tIzLCIpFGSCCmsLZJ0YITC816Cy2jHBZWQxftfFn2YA-VbXvCJh5h6tZVDvp6MSsR9S_1LoizHzegaw_Pc4XnhbuP2Nm_8by_sJlxvA2z23mvELVhx1W24uteWENyB_Q-ZPOAjN3_N2tmyx2w-Yc2PAT9Ml6kNVk-JLYz5DaczVzPqw2H5mE9PTGVmLOMzc8bG39Ec13fh6EKe6B6sVpPKPQAmMQooo1TkQ9ssQWK4ndjUhMIqG8ZFEUDcfV9t26nrRP5xorvyum96gQxNyNAeGQGIXnLqJ48sIZN2ENJdZy36Ao3ucQnZ-G-yrm6NWq2FrqUe6INmphPCG7NXSjiyAN70km3c5uOxJa-73uFX95dagDeAZ_1utHy0nGUqNzltjlGxIB8SwH2vI_2LUlGs0kSKh_8--VNY2zrc29W726OdR3CN7srXF67DKgLMPYYr9ud8XM-eNIrO4OtFK8ofPjmMGw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgiouvB-GAosEx6XZ3fgFQggIEVUgqihIvm3X6zUKKk6IU1D_Gr-OGa_tXCjKpQeutsfPb17emfkAnmDClQuMLHiunOFDh5puysRwI8o8dCWqZpQ3ZBPxdJpkWXqwBb-7Xhgqq-xsYmOoi7mlf-R7Mo6jEAGZyr2yLYs4GI1fLX5wYpCildaOTsNDZOJOf2H6Vr_cH-G3firl-N3nt-95yzDALQYKK65smoeWhqAnztAkuSJRRaFCvP1QmiIqjTPSEfOrSMywiKRRksgprC2SdGCEwvNegIvohUPSsUnM1z2ZA-XbX_Dph5iGtVVEvraMysV9e_0zoi_Hzegmw7Nc41mhb-MCx1f_55d3Da60gTd77TXlOmy56gbsfGxLC27CpzeZPORTt3rO2pmzX9lqzpofBn7ILlMjVi-IRYz5DSdLVzPqz2H5jC-OTWWWLONLc8pm39FM17fgy7k80W3YruaVuwtMYnRQRqnIh7ZZmsQwPLGpCYVVNoyLIoC4-9battPYiRTkWHdld9_0GiWaUKI9SgIQveTCTyTZQCbt4KS7jlv0ERrd5gay8d9kXd0au1oLXUs90IfNrCeEOma1lIhkAbzoJdt4zsdpG153t8Oy7i-1BnIAj_vdaBFpmctUbn7SHKNiQb4lgDteX_oXpaJYpYkU9_598kewg_qhP-xPJ_fhMt2ULzvchW3El3sAl-zP1axePmx0nsHReevJH4wflHc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BX2S-Net%3A+Learning+to+reconstruct+3D+spinal+structures+from+bi-planar+X-ray+images&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chen%2C+Zheye&rft.au=Guo%2C+Lijun&rft.au=Zhang%2C+Rong&rft.au=Fang%2C+Zhongding&rft.date=2023-03-01&rft.eissn=1879-0534&rft.volume=154&rft.spage=106615&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.106615&rft_id=info%3Apmid%2F36739821&rft.externalDocID=36739821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon