Leveraging prior mean models for faster Bayesian optimization of particle accelerators

Tuning particle accelerators is a challenging and time-consuming task that can be automated and carried out efficiently using suitable optimization algorithms, such as model-based Bayesian optimization techniques. One of the major advantages of Bayesian algorithms is the ability to incorporate prior...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 12232 - 14
Main Authors: Boltz, Tobias, Martinez, Jose L., Xu, Connie, Baker, Kathryn R. L., Zhu, Zihan, Morgan, Jenny, Roussel, Ryan, Ratner, Daniel, Mustapha, Brahim, Edelen, Auralee L.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 10.04.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Tuning particle accelerators is a challenging and time-consuming task that can be automated and carried out efficiently using suitable optimization algorithms, such as model-based Bayesian optimization techniques. One of the major advantages of Bayesian algorithms is the ability to incorporate prior information about beam physics and historical behavior into the model used to make control decisions. In this work, we examine incorporating prior accelerator physics information into Bayesian optimization algorithms by utilizing fast executing, neural network models trained on simulated or historical datasets as prior mean functions in Gaussian process models. We show that in ideal cases, this technique substantially increases convergence speed to optimal solutions in high-dimensional tuning parameter spaces. Additionally, we demonstrate that even in non-ideal cases, where prior models of beam dynamics do not exactly match experimental conditions, the use of this technique can still enhance convergence speed. Finally, we demonstrate how these methods can be used to improve optimization in practical applications, such as transferring information gained from beam dynamics simulations to online control of the LCLS injector, and transferring knowledge gained from experimental measurements across different operating modes, such as accelerating different ion species at the ATLAS heavy ion accelerator.
AbstractList Abstract Tuning particle accelerators is a challenging and time-consuming task that can be automated and carried out efficiently using suitable optimization algorithms, such as model-based Bayesian optimization techniques. One of the major advantages of Bayesian algorithms is the ability to incorporate prior information about beam physics and historical behavior into the model used to make control decisions. In this work, we examine incorporating prior accelerator physics information into Bayesian optimization algorithms by utilizing fast executing, neural network models trained on simulated or historical datasets as prior mean functions in Gaussian process models. We show that in ideal cases, this technique substantially increases convergence speed to optimal solutions in high-dimensional tuning parameter spaces. Additionally, we demonstrate that even in non-ideal cases, where prior models of beam dynamics do not exactly match experimental conditions, the use of this technique can still enhance convergence speed. Finally, we demonstrate how these methods can be used to improve optimization in practical applications, such as transferring information gained from beam dynamics simulations to online control of the LCLS injector, and transferring knowledge gained from experimental measurements across different operating modes, such as accelerating different ion species at the ATLAS heavy ion accelerator.
Tuning particle accelerators is a challenging and time-consuming task that can be automated and carried out efficiently using suitable optimization algorithms, such as model-based Bayesian optimization techniques. One of the major advantages of Bayesian algorithms is the ability to incorporate prior information about beam physics and historical behavior into the model used to make control decisions. In this work, we examine incorporating prior accelerator physics information into Bayesian optimization algorithms by utilizing fast executing, neural network models trained on simulated or historical datasets as prior mean functions in Gaussian process models. We show that in ideal cases, this technique substantially increases convergence speed to optimal solutions in high-dimensional tuning parameter spaces. Additionally, we demonstrate that even in non-ideal cases, where prior models of beam dynamics do not exactly match experimental conditions, the use of this technique can still enhance convergence speed. Finally, we demonstrate how these methods can be used to improve optimization in practical applications, such as transferring information gained from beam dynamics simulations to online control of the LCLS injector, and transferring knowledge gained from experimental measurements across different operating modes, such as accelerating different ion species at the ATLAS heavy ion accelerator.Tuning particle accelerators is a challenging and time-consuming task that can be automated and carried out efficiently using suitable optimization algorithms, such as model-based Bayesian optimization techniques. One of the major advantages of Bayesian algorithms is the ability to incorporate prior information about beam physics and historical behavior into the model used to make control decisions. In this work, we examine incorporating prior accelerator physics information into Bayesian optimization algorithms by utilizing fast executing, neural network models trained on simulated or historical datasets as prior mean functions in Gaussian process models. We show that in ideal cases, this technique substantially increases convergence speed to optimal solutions in high-dimensional tuning parameter spaces. Additionally, we demonstrate that even in non-ideal cases, where prior models of beam dynamics do not exactly match experimental conditions, the use of this technique can still enhance convergence speed. Finally, we demonstrate how these methods can be used to improve optimization in practical applications, such as transferring information gained from beam dynamics simulations to online control of the LCLS injector, and transferring knowledge gained from experimental measurements across different operating modes, such as accelerating different ion species at the ATLAS heavy ion accelerator.
Tuning particle accelerators is a challenging and time-consuming task that can be automated and carried out efficiently using suitable optimization algorithms, such as model-based Bayesian optimization techniques. One of the major advantages of Bayesian algorithms is the ability to incorporate prior information about beam physics and historical behavior into the model used to make control decisions. In this work, we examine incorporating prior accelerator physics information into Bayesian optimization algorithms by utilizing fast executing, neural network models trained on simulated or historical datasets as prior mean functions in Gaussian process models. We show that in ideal cases, this technique substantially increases convergence speed to optimal solutions in high-dimensional tuning parameter spaces. Additionally, we demonstrate that even in non-ideal cases, where prior models of beam dynamics do not exactly match experimental conditions, the use of this technique can still enhance convergence speed. Finally, we demonstrate how these methods can be used to improve optimization in practical applications, such as transferring information gained from beam dynamics simulations to online control of the LCLS injector, and transferring knowledge gained from experimental measurements across different operating modes, such as accelerating different ion species at the ATLAS heavy ion accelerator.
ArticleNumber 12232
Author Zhu, Zihan
Roussel, Ryan
Edelen, Auralee L.
Morgan, Jenny
Martinez, Jose L.
Boltz, Tobias
Mustapha, Brahim
Baker, Kathryn R. L.
Xu, Connie
Ratner, Daniel
Author_xml – sequence: 1
  givenname: Tobias
  surname: Boltz
  fullname: Boltz, Tobias
  email: tboltz@slac.stanford.edu
  organization: SLAC National Laboratory
– sequence: 2
  givenname: Jose L.
  surname: Martinez
  fullname: Martinez, Jose L.
  email: jl.mrtnz.mrn@gmail.com
  organization: Argonne National Laboratory
– sequence: 3
  givenname: Connie
  surname: Xu
  fullname: Xu, Connie
  organization: Duke University
– sequence: 4
  givenname: Kathryn R. L.
  surname: Baker
  fullname: Baker, Kathryn R. L.
  organization: ISIS Neutron and Muon Source, STFC
– sequence: 5
  givenname: Zihan
  surname: Zhu
  fullname: Zhu, Zihan
  organization: SLAC National Laboratory
– sequence: 6
  givenname: Jenny
  surname: Morgan
  fullname: Morgan, Jenny
  organization: SLAC National Laboratory
– sequence: 7
  givenname: Ryan
  surname: Roussel
  fullname: Roussel, Ryan
  organization: SLAC National Laboratory
– sequence: 8
  givenname: Daniel
  surname: Ratner
  fullname: Ratner, Daniel
  organization: SLAC National Laboratory
– sequence: 9
  givenname: Brahim
  surname: Mustapha
  fullname: Mustapha, Brahim
  organization: Argonne National Laboratory
– sequence: 10
  givenname: Auralee L.
  surname: Edelen
  fullname: Edelen, Auralee L.
  organization: SLAC National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40210915$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2540558$$D View this record in Osti.gov
BookMark eNp9kk2PFCEQholZ467r_gEPpqMXL618NnDUjR-bTOJFvRKaLkYm3c0IzCY7v15melzNHpYLFDzvSxXUc3Q2xxkQeknwO4KZep85EVq1mIpWC6plu3-CLijmoqWM0rP_1ufoKucNrqNynOhn6JxjSrAm4gL9XMEtJLsO87rZphBTM4GdmykOMObG19jbXCA1H-0d5FCP4raEKextCbEGvtnaVIIbobHOwVi9Skz5BXrq7Zjh6jRfoh-fP32__tquvn25uf6wap0gvLS0lxq46rSlHg-i8wMF0vXYee07jZm1NctBWu0Y7xR4yfpeM0I7YgfFAdglull8h2g3phYw2XRnog3muBHT2pzSM0JhQoQiunMDV0xrPDglbS-9BCb8wev14hVzCSa7UMD9cnGewRVDBcdCqAq9XaBtir93kIuZQq51j3aGuMuGEaUU6bCQFX3zAN3EXZrrcxwp2UkmD9SrE7XrJxjua_j7RRWgC-BSzDmBv0cINodWMEsrmNoK5tgKZl9F6oGolnP8spJsGB-XskWa6z3zGtK_tB9R_QG68sck
CitedBy_id crossref_primary_10_1364_OE_570448
Cites_doi 10.18429/JACoW-IPAC2022-WEPOMS036
10.18429/JACoW-IPAC2023-THPL004
10.1103/PhysRevAccelBeams.27.054601
10.1145/3620665.3640366
10.18429/JACoW-IPAC2023-THPL164
10.1103/PhysRevSTAB.9.044204
10.18429/JACoW-IPAC2021-THPAB217
10.1103/PhysRevAccelBeams.27.084801
10.1103/PhysRevAccelBeams.24.072802
10.1126/science.153.3731.34
10.1016/S0168-9002(99)00114-X
10.1103/PhysRevLett.124.124801
10.18429/JACoW-IPAC2023-WEPA065
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
CorporateAuthor SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
OIOZB
OTOTI
DOA
DOI 10.1038/s41598-025-95297-z
DatabaseName Open Access资源_Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_5801158196cd483990dc87ab7f7e35fe
2540558
40210915
10_1038_s41598_025_95297_z
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences
  grantid: DE-AC02-76SF00515
– fundername: U.S. Department of Energy, Office of Nuclear Physics
  grantid: DE-AC02-06CH11357
– fundername: U.S. Department of Energy, Office of Science
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
OIOZB
OTOTI
ID FETCH-LOGICAL-c514t-2b79e4869a2f0d56fd2e16b0cf9f6903aa091d7a9c3468ef73bb931261ad84ee3
IEDL.DBID M2P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001464799500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:07:09 EDT 2025
Mon Apr 28 02:20:36 EDT 2025
Fri Sep 05 17:39:58 EDT 2025
Tue Oct 07 08:02:52 EDT 2025
Mon Apr 14 01:51:52 EDT 2025
Sat Nov 29 08:02:21 EST 2025
Tue Nov 18 22:32:54 EST 2025
Fri Apr 11 01:28:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-2b79e4869a2f0d56fd2e16b0cf9f6903aa091d7a9c3468ef73bb931261ad84ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF)
AC02-76SF00515; AC02-06CH11357
USDOE Office of Science (SC), Nuclear Physics (NP)
OpenAccessLink https://www.proquest.com/docview/3188767377?pq-origsite=%requestingapplication%
PMID 40210915
PQID 3188767377
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_5801158196cd483990dc87ab7f7e35fe
osti_scitechconnect_2540558
proquest_miscellaneous_3188816057
proquest_journals_3188767377
pubmed_primary_40210915
crossref_primary_10_1038_s41598_025_95297_z
crossref_citationtrail_10_1038_s41598_025_95297_z
springer_journals_10_1038_s41598_025_95297_z
PublicationCentury 2000
PublicationDate 2025-04-10
PublicationDateYYYYMMDD 2025-04-10
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References R Bellman (95297_CR1) 1966; 153
95297_CR20
95297_CR10
95297_CR12
95297_CR13
95297_CR15
95297_CR16
J Qiang (95297_CR11) 2006; 9
J Duris (95297_CR4) 2020; 124
CE Rasmussen (95297_CR5) 2006
95297_CR8
95297_CR9
95297_CR6
J Kaiser (95297_CR14) 2024; 27
95297_CR17
EV Bonilla (95297_CR7) 2007; 20
95297_CR18
95297_CR19
A Hanuka (95297_CR3) 2021; 24
R Roussel (95297_CR2) 2024; 27
References_xml – ident: 95297_CR18
  doi: 10.18429/JACoW-IPAC2022-WEPOMS036
– ident: 95297_CR10
  doi: 10.18429/JACoW-IPAC2023-THPL004
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: 95297_CR5
– ident: 95297_CR20
– volume: 27
  year: 2024
  ident: 95297_CR14
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.27.054601
– ident: 95297_CR19
  doi: 10.1145/3620665.3640366
– ident: 95297_CR12
  doi: 10.18429/JACoW-IPAC2023-THPL164
– volume: 20
  start-page: 153
  year: 2007
  ident: 95297_CR7
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 95297_CR9
– volume: 9
  year: 2006
  ident: 95297_CR11
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.9.044204
– ident: 95297_CR13
  doi: 10.18429/JACoW-IPAC2021-THPAB217
– ident: 95297_CR8
– volume: 27
  year: 2024
  ident: 95297_CR2
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.27.084801
– volume: 24
  year: 2021
  ident: 95297_CR3
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.24.072802
– volume: 153
  start-page: 34
  year: 1966
  ident: 95297_CR1
  publication-title: Science
  doi: 10.1126/science.153.3731.34
– ident: 95297_CR16
– ident: 95297_CR6
– ident: 95297_CR15
  doi: 10.1016/S0168-9002(99)00114-X
– volume: 124
  year: 2020
  ident: 95297_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.124801
– ident: 95297_CR17
  doi: 10.18429/JACoW-IPAC2023-WEPA065
SSID ssj0000529419
Score 2.4524238
Snippet Tuning particle accelerators is a challenging and time-consuming task that can be automated and carried out efficiently using suitable optimization algorithms,...
Abstract Tuning particle accelerators is a challenging and time-consuming task that can be automated and carried out efficiently using suitable optimization...
SourceID doaj
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12232
SubjectTerms 639/624/1020/1087
639/766
639/766/259
639/766/419/1131
Algorithms
Bayesian analysis
Convergence
Experimental particle physics
Free-electron lasers
Humanities and Social Sciences
Information theory and computation
Mathematical models
MATHEMATICS AND COMPUTING
multidisciplinary
Neural networks
Optimization algorithms
Optimization techniques
PARTICLE ACCELERATORS
Particle Accelerators, Bayesian Optimization
Physics
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kKHgRv11bJYI3XbqbZDfJsRWLBykeVHoLSTYBwe6Wt6-F9q_vTLLvWfHr4mkhyYZkMsn8hmR-A_A6Ra5D0KE2utM1-hu-NkH5WpN14cphgczJJtTxsT45MZ9upPqiN2GFHrgIbr_TBFrQbvVhkGjNTTMErZxXSUXRpUinb6PMDWeqsHpzI1uzRMk0Qu_PaKkomox3tcFKVV_9ZIkyYT9-JtxYvwObv1yUZvtzdB_uLcCRHZQBP4BbcXwId0oqyctH8PVjRKXMKYcY9jCt2Gl0I8uJbmaGyJQlR5wI7NBdRgqcZBMeFqdLFCabEjtbZMFcCGiL8vX7_Bi-HL3__O5DveRMqANCn3XNvTJR6t44npqh69PAY9v7JiST0BEWziFAGJQzQchex6SE90a06Ee5QcsYxRPYGacxPgMmImGNvkWIp6VJ0TQmaS-c8UKmwfkK2o38bFgIxSmvxXebL7aFtkXmFmVus8ztVQVvtv-cFTqNv7Y-pGXZtiQq7FyACmIXodh_KUgFu7SoFhEF0eIGej8U1pYTVO10BXubtbbL7p0tnnNoJJRQqoJX22rcd3SZ4sY4nZc2ukVnENs8LTqyHackR9q0XQVvN0rzo_M_T_f5_5juLtzlpORER9nswc56dR5fwO1wsf42r17mXXINjVIR2Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Leveraging prior mean models for faster Bayesian optimization of particle accelerators
URI https://link.springer.com/article/10.1038/s41598-025-95297-z
https://www.ncbi.nlm.nih.gov/pubmed/40210915
https://www.proquest.com/docview/3188767377
https://www.proquest.com/docview/3188816057
https://www.osti.gov/servlets/purl/2540558
https://doaj.org/article/5801158196cd483990dc87ab7f7e35fe
Volume 15
WOSCitedRecordID wos001464799500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xFaS98M0IG5WReINoSZzE9hOiaBNIrKoQoPJkOY6NkFhTmg5p--u5c9xOCNgLL05kO5GTu_P9zmffATz3rpDWSpsqWckU7Y0mVVY0qSTtUgiDFWVINiGmUzmfq1lccOvjtsrNnBgm6raztEZ-hLyHgiu4EK-WP1LKGkXe1ZhCYwdGiGxy2tJ1Wsy2ayzkxSpzFc_KZFwe9aiv6ExZUaUKG0V6-Zs-CmH78dKheP0Ncv7hLg1a6OTO_47_LtyO-JO9HhjmHtxwi_twa8hIeYF3YUeo7R_A5_cOuTzkMGI4mG7FzpxZsJA5p2cIdZk3FGSBTcyFo5OYrMPZ5ywe62SdZ8vIlcxYi8ot-PP7h_Dp5Pjjm7dpTMKQWsRS67RohHKlrJUpfNZWtW8Ll9dNZr3yaFlzYxBxtMIoy8taOi940yieo2FmWlk6xx_B7qJbuMfAuCPwUueIGWWpvFOZ8rLhRjW89K1pEsg3pNA2RiinRBnfdfCUc6kH8mkknw7k05cJvNg-sxzic1zbe0IU3vak2Nqholt91fGn6EoSTEakVNu2RPyostZKYRrhheOVdwkcEH9ohCgUZ9fShiS71gVh30omcLihv47TQa-viJ_As20zCjJ5Z8zCdedDH5mjdYl99gd2246zJMtc5VUCLzf8d_Xyf3_uk-vHcgB7BUkCRa7MDmF3vTp3T-Gm_bn-1q_GsCPmIpRyDKPJ8XT2YRxWLMZByKgUWI5m705nX34Bpm0qjQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70doASPBCaImcRLbB4QoULXqsuqhoN6M49ioUrtZNlvQ9kfxG5lxkq0Q0FsPnDZKvFGcfDPzjT0PgOfeZdJaaWMlCxmjv1HFyooqlmRdMmHwRB6aTYjxWB4cqL0V-DnkwlBY5aATg6KuG0tr5BuIPRRcwYV4M_0WU9co2l0dWmh0sNh1ix_osrWvd97j932RZVsf9t9tx31XgdgiOZjHWSWUy2WpTOaTuih9nbm0rBLrlUdXkRuDJrQWRlmel9J5watK8RQ9DVPL3DmO970El3OqLEahgtneck2Hds3yVPW5OQmXGy3aR8phy4pY4UURn_5m_0KbAPxpUJz_RnH_2J4NVm_r5v_2vm7BjZ5fs7edQNyGFTe5A1e7jpsLPAoRr7a9C59HDqU49GhiOPlmxo6dmbDQGahlSOWZN1REgm2ahaNMU9agdj3u01ZZ49m0lzpmrEXjHeIV2nvw6UKmdx9WJ83EPQTGHZGzMkVOLHPlnUqUlxU3quK5r00VQTp8em37CuzUCORIh0gALnUHF41w0QEu-jSCl8v_TLv6I-eO3iRELUdS7fBwopl91f1L0YUkNwCZYGnrHPmxSmorhamEF44X3kWwRnjUSMGojrClgCs71xlx-0JGsD7gTffqrtVnYIvg2fIyKirafTIT15x0Y2SK3jOOedDBe_mcOa08qLSI4NWA97Ob_3u6j85_lqdwbXv_40iPdsa7a3A9IymkKp3JOqzOZyfuMVyx3-eH7exJEGMGXy5aDn4Bf76A1g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-hBYwEJ4g2sZPYPiBEKStWLas9AGpPxnFshEQ3y2YL2v40fh1jJ9kKAb31wCmrxIkS7zcz39jzAHjiLBXGCBNLkYsY_Y0yloaXsfDWhXKNJ7LQbIJPJuLgQE434GefC-PDKnudGBR1VRu_Rj5E7KHgcsb50HVhEdPd0cv5t9h3kPI7rX07jRYie3b1A9235sV4F__rp5SO3rx__TbuOgzEBonCMqYllzYThdTUJVVeuIratCgT46RDt5Fpjea04loalhXCOs7KUrIUvQ5dicxahs-9AJtIyTM6gM3p-N30cL3C4_fQslR2mToJE8MGraXPaKN5LPEij09-s4ahaQAeahTuvxHePzZrgw0cXfufZ-86XO2YN3nVisoN2LCzm3Cp7cW5wl8hFtY0t-DjvkX5Dt2bCE5EvSBHVs9I6BnUECT5xGlfXoLs6JX1OaikRr171CW0ktqReSePRBuDZj1EMjS34cO5fN4dGMzqmb0HhFlP24oU2bLIpLMykU6UTMuSZa7SZQRpDwNlutrsvkXIVxViBJhQLXQUQkcF6KiTCJ6t75m3lUnOHL3j0bUe6auKhxP14rPqJkXlwjsIyBELU2XInGVSGcF1yR23LHc2gi2PTYXkzFcYNj4UyywV9aw_FxFs99hTnSJs1CnwIni8vowqzO9L6Zmtj9sxIkW_GsfcbaG-fs_Mr0nINI_geY_904f_-3Pvn_0uj-Aywl_tjyd7W3CFeoH05TuTbRgsF8f2AVw035dfmsXDTqYJfDpvQfgFlPiLHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+prior+mean+models+for+faster+Bayesian+optimization+of+particle+accelerators&rft.jtitle=Scientific+reports&rft.date=2025-04-10&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=12232&rft_id=info:doi/10.1038%2Fs41598-025-95297-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon