Biogenic isoprene emissions, dry deposition velocity, and surface ozone concentration during summer droughts, heatwaves, and normal conditions in southwestern Europe
At high concentrations, tropospheric ozone (O3) deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological conditions are key to understanding the variability in O3 concentration, especially during extreme weather events. In addition to modifying photochemistry...
Uloženo v:
| Vydáno v: | Atmospheric chemistry and physics Ročník 23; číslo 2; s. 1043 - 1071 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Katlenburg-Lindau
Copernicus GmbH
20.01.2023
European Geosciences Union Copernicus Publications |
| Témata: | |
| ISSN: | 1680-7324, 1680-7316, 1680-7324 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | At high concentrations, tropospheric ozone (O3) deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological conditions are key to understanding the variability in O3 concentration, especially during extreme weather events. In addition to modifying photochemistry and atmospheric transport, droughts and heatwaves affect the state of vegetation and thus the biosphere–troposphere interactions that control atmospheric chemistry, namely biogenic emissions of precursors and gas dry deposition. A major source of uncertainty and inaccuracy in the simulation of surface O3 during droughts and heatwaves is the poor representation of such interactions. This publication aims at quantifying the isolated and combined impacts of both extremes on biogenic isoprene (C5H8) emissions, O3 dry deposition, and surface O3 in southwestern Europe. First, the sensitivity of biogenic C5H8 emissions, O3 dry deposition, and surface O3 to two specific effects of droughts, the decrease in soil moisture and in biomass, is analysed for the extremely dry summer 2012 using the biogenic emission model MEGANv2.1 and the chemistry transport model CHIMEREv2020r1. Despite a significant decrease in biogenic C5H8 emissions and O3 dry deposition velocity, characterized by a large spatial variability, the combined effect on surface O3 concentration remains limited (between +0.5 % and +3 % over the continent). The variations in simulated biogenic C5H8 emissions, O3 dry deposition, and surface O3 during the heatwaves and agricultural droughts are then analysed for summer 2012 (warm and dry), 2013 (warm), and 2014 (relatively wet and cool). We compare the results with large observational data sets, namely O3 concentrations from Air Quality (AQ) e-Reporting (2000–2016) and total columns of formaldehyde (HCHO, which is used as a proxy for biogenic emissions of volatile organic compounds) from the Ozone Monitoring Instrument (OMI) of the Aura satellite (2005–2016). Based on a cluster approach using the percentile limit anomalies indicator, we find that C5H8 emissions increase by +33 % during heatwaves compared to normal conditions, do not vary significantly during all droughts (either accompanied or not by a heatwave), and decrease by −16 % during isolated droughts. OMI data confirm an average increase in HCHO during heatwaves (between +15 % and +31 % depending on the product used) and decrease in HCHO (between −2 % and −6 %) during isolated droughts over the 2005–2016 summers. Simulated O3 dry deposition velocity decreases by −25 % during heatwaves and −35 % during all droughts. Simulated O3 concentrations increase by +7 % during heatwaves and by +3 % during all droughts. Compared to observations, CHIMERE tends to underestimate the daily maximum O3. However, similar sensitivity to droughts and heatwaves are obtained. The analysis of the AQ e-Reporting data set shows an average increase of +14 % during heatwaves and +7 % during all droughts over the 2000–2016 summers (for an average daily concentration value of 69 µg m−3 under normal conditions). This suggests that identifying the presence of combined heatwaves is fundamental to the study of droughts on surface–atmosphere interactions and O3 concentration. |
|---|---|
| AbstractList | At high concentrations, tropospheric ozone (O3) deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological conditions are key to understanding the variability in O3 concentration, especially during extreme weather events. In addition to modifying photochemistry and atmospheric transport, droughts and heatwaves affect the state of vegetation and thus the biosphere–troposphere interactions that control atmospheric chemistry, namely biogenic emissions of precursors and gas dry deposition. A major source of uncertainty and inaccuracy in the simulation of surface O3 during droughts and heatwaves is the poor representation of such interactions. This publication aims at quantifying the isolated and combined impacts of both extremes on biogenic isoprene (C5H8) emissions, O3 dry deposition, and surface O3 in southwestern Europe.First, the sensitivity of biogenic C5H8 emissions, O3 dry deposition, and surface O3 to two specific effects of droughts, the decrease in soil moisture and in biomass, is analysed for the extremely dry summer 2012 using the biogenic emission model MEGANv2.1 and the chemistry transport model CHIMEREv2020r1. Despite a significant decrease in biogenic C5H8 emissions and O3 dry deposition velocity, characterized by a large spatial variability, the combined effect on surface O3 concentration remains limited (between +0.5 % and +3 % over the continent).The variations in simulated biogenic C5H8 emissions, O3 dry deposition, and surface O3 during the heatwaves and agricultural droughts are then analysed for summer 2012 (warm and dry), 2013 (warm), and 2014 (relatively wet and cool). We compare the results with large observational data sets, namely O3 concentrations from Air Quality (AQ) e-Reporting (2000–2016) and total columns of formaldehyde (HCHO, which is used as a proxy for biogenic emissions of volatile organic compounds) from the Ozone Monitoring Instrument (OMI) of the Aura satellite (2005–2016).Based on a cluster approach using the percentile limit anomalies indicator, we find that C5H8 emissions increase by +33 % during heatwaves compared to normal conditions, do not vary significantly during all droughts (either accompanied or not by a heatwave), and decrease by -16 % during isolated droughts. OMI data confirm an average increase in HCHO during heatwaves (between +15 % and +31 % depending on the product used) and decrease in HCHO (between -2 % and -6 %) during isolated droughts over the 2005–2016 summers. Simulated O3 dry deposition velocity decreases by -25 % during heatwaves and -35 % during all droughts. Simulated O3 concentrations increase by +7 % during heatwaves and by +3 % during all droughts. Compared to observations, CHIMERE tends to underestimate the daily maximum O3. However, similar sensitivity to droughts and heatwaves are obtained. The analysis of the AQ e-Reporting data set shows an average increase of +14 % during heatwaves and +7 % during all droughts over the 2000–2016 summers (for an average daily concentration value of 69 µg m-3 under normal conditions). This suggests that identifying the presence of combined heatwaves is fundamental to the study of droughts on surface–atmosphere interactions and O3 concentration. At high concentrations, tropospheric ozone (O 3 ) deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological conditions are key to understanding the variability in O 3 concentration, especially during extreme weather events. In addition to modifying photochemistry and atmospheric transport, droughts and heatwaves affect the state of vegetation and thus the biosphere–troposphere interactions that control atmospheric chemistry, namely biogenic emissions of precursors and gas dry deposition. A major source of uncertainty and inaccuracy in the simulation of surface O 3 during droughts and heatwaves is the poor representation of such interactions. This publication aims at quantifying the isolated and combined impacts of both extremes on biogenic isoprene (C 5 H 8 ) emissions, O 3 dry deposition, and surface O 3 in southwestern Europe. First, the sensitivity of biogenic C 5 H 8 emissions, O 3 dry deposition, and surface O 3 to two specific effects of droughts, the decrease in soil moisture and in biomass, is analysed for the extremely dry summer 2012 using the biogenic emission model MEGANv2.1 and the chemistry transport model CHIMEREv2020r1. Despite a significant decrease in biogenic C 5 H 8 emissions and O 3 dry deposition velocity, characterized by a large spatial variability, the combined effect on surface O 3 concentration remains limited (between + 0.5 % and + 3 % over the continent). The variations in simulated biogenic C 5 H 8 emissions, O 3 dry deposition, and surface O 3 during the heatwaves and agricultural droughts are then analysed for summer 2012 (warm and dry), 2013 (warm), and 2014 (relatively wet and cool). We compare the results with large observational data sets, namely O 3 concentrations from Air Quality (AQ) e-Reporting (2000–2016) and total columns of formaldehyde (HCHO, which is used as a proxy for biogenic emissions of volatile organic compounds) from the Ozone Monitoring Instrument (OMI) of the Aura satellite (2005–2016). Based on a cluster approach using the percentile limit anomalies indicator, we find that C 5 H 8 emissions increase by + 33 % during heatwaves compared to normal conditions, do not vary significantly during all droughts (either accompanied or not by a heatwave), and decrease by − 16 % during isolated droughts. OMI data confirm an average increase in HCHO during heatwaves (between + 15 % and + 31 % depending on the product used) and decrease in HCHO (between − 2 % and − 6 %) during isolated droughts over the 2005–2016 summers. Simulated O 3 dry deposition velocity decreases by − 25 % during heatwaves and − 35 % during all droughts. Simulated O 3 concentrations increase by + 7 % during heatwaves and by + 3 % during all droughts. Compared to observations, CHIMERE tends to underestimate the daily maximum O 3 . However, similar sensitivity to droughts and heatwaves are obtained. The analysis of the AQ e-Reporting data set shows an average increase of + 14 % during heatwaves and + 7 % during all droughts over the 2000–2016 summers (for an average daily concentration value of 69 µ g m −3 under normal conditions). This suggests that identifying the presence of combined heatwaves is fundamental to the study of droughts on surface–atmosphere interactions and O 3 concentration. At high concentrations, tropospheric ozone (O.sub.3) deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological conditions are key to understanding the variability in O.sub.3 concentration, especially during extreme weather events. In addition to modifying photochemistry and atmospheric transport, droughts and heatwaves affect the state of vegetation and thus the biosphere-troposphere interactions that control atmospheric chemistry, namely biogenic emissions of precursors and gas dry deposition. A major source of uncertainty and inaccuracy in the simulation of surface O.sub.3 during droughts and heatwaves is the poor representation of such interactions. This publication aims at quantifying the isolated and combined impacts of both extremes on biogenic isoprene (C.sub.5 H.sub.8) emissions, O.sub.3 dry deposition, and surface O.sub.3 in southwestern Europe. First, the sensitivity of biogenic C.sub.5 H.sub.8 emissions, O.sub.3 dry deposition, and surface O.sub.3 to two specific effects of droughts, the decrease in soil moisture and in biomass, is analysed for the extremely dry summer 2012 using the biogenic emission model MEGANv2.1 and the chemistry transport model CHIMEREv2020r1. Despite a significant decrease in biogenic C.sub.5 H.sub.8 emissions and O.sub.3 dry deposition velocity, characterized by a large spatial variability, the combined effect on surface O.sub.3 concentration remains limited (between +0.5 % and +3 % over the continent). The variations in simulated biogenic C.sub.5 H.sub.8 emissions, O.sub.3 dry deposition, and surface O.sub.3 during the heatwaves and agricultural droughts are then analysed for summer 2012 (warm and dry), 2013 (warm), and 2014 (relatively wet and cool). We compare the results with large observational data sets, namely O.sub.3 concentrations from Air Quality (AQ) e-Reporting (2000-2016) and total columns of formaldehyde (HCHO, which is used as a proxy for biogenic emissions of volatile organic compounds) from the Ozone Monitoring Instrument (OMI) of the Aura satellite (2005-2016). Based on a cluster approach using the percentile limit anomalies indicator, we find that C.sub.5 H.sub.8 emissions increase by +33 % during heatwaves compared to normal conditions, do not vary significantly during all droughts (either accompanied or not by a heatwave), and decrease by -16 % during isolated droughts. OMI data confirm an average increase in HCHO during heatwaves (between +15 % and +31 % depending on the product used) and decrease in HCHO (between -2 % and -6 %) during isolated droughts over the 2005-2016 summers. Simulated O.sub.3 dry deposition velocity decreases by -25 % during heatwaves and -35 % during all droughts. Simulated O.sub.3 concentrations increase by +7 % during heatwaves and by +3 % during all droughts. Compared to observations, CHIMERE tends to underestimate the daily maximum O.sub.3 . However, similar sensitivity to droughts and heatwaves are obtained. The analysis of the AQ e-Reporting data set shows an average increase of +14 % during heatwaves and +7 % during all droughts over the 2000-2016 summers (for an average daily concentration value of 69 µg m.sup.-3 under normal conditions). This suggests that identifying the presence of combined heatwaves is fundamental to the study of droughts on surface-atmosphere interactions and O.sub.3 concentration. At high concentrations, tropospheric ozone (O.sub.3) deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological conditions are key to understanding the variability in O.sub.3 concentration, especially during extreme weather events. In addition to modifying photochemistry and atmospheric transport, droughts and heatwaves affect the state of vegetation and thus the biosphere-troposphere interactions that control atmospheric chemistry, namely biogenic emissions of precursors and gas dry deposition. A major source of uncertainty and inaccuracy in the simulation of surface O.sub.3 during droughts and heatwaves is the poor representation of such interactions. This publication aims at quantifying the isolated and combined impacts of both extremes on biogenic isoprene (C.sub.5 H.sub.8) emissions, O.sub.3 dry deposition, and surface O.sub.3 in southwestern Europe. At high concentration, tropospheric O3 deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological conditions are key to understand the variability of O3 concentration, especially during extreme weather events. They modify the photochemistry activity and the vegetation state. An important source of uncertainties and inaccuracy in simulating surface O3 during droughts and heatwaves is the lack of interactions between the biosphere and the troposphere. Based on the biogenic emission model MEGANv2.1 and the chemistry-transport model CHIMERE v2020r1, the first objective of this study is to assess the sensitivity of biogenic emissions, O3 dry deposition and surface O3 to biomass decrease and soil dryness effect (using several configurations) during the extremely dry summer 2012. Secondly, this research aims at quantifying the variation of observed (EEA's air quality database, 2000-2016) and simulated (CHIMERE, 2012-2014) surface O3 during summer heatwaves and agricultural droughts that have been identified using the Percentile Limit Anomalies (PLA) method. Our sensitivity analysis shows that soil dryness is a key factor during drought events, decreasing considerably the C5H8 emissions and O3 dry deposition velocity. This effect has a larger impact than the biomass decrease. However, the resulting effect on surface O3 remains limited. Based on a cluster approach using the PLA indicator, we show that observed O3 concentration is on average significantly higher during heatwaves (+18µg/m3 in daily maximum) and droughts (+9µg/m 3) compared to normal conditions. Despite a difference of several µg/m3 , CHIMERE correctly simulates the variations of O3 concentration between the clusters of extreme events. The overall increase of surface O3 during both heatwaves and droughts would be explained by O3 precursor emission enhancement (in agreement with HCHO satellite observations), O3 dry deposition decrease and favourable weather conditions. However, we simulated a decrease of C5H8 emissions (in agreement with HCHO observations) during droughts not accompanied by a heatwave, resulting in a non-significant difference of surface O3 compared to normal conditions (from both observations and simulations). At high concentrations, tropospheric ozone (O3) deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological conditions are key to understanding the variability in O3 concentration, especially during extreme weather events. In addition to modifying photochemistry and atmospheric transport, droughts and heatwaves affect the state of vegetation and thus the biosphere–troposphere interactions that control atmospheric chemistry, namely biogenic emissions of precursors and gas dry deposition. A major source of uncertainty and inaccuracy in the simulation of surface O3 during droughts and heatwaves is the poor representation of such interactions. This publication aims at quantifying the isolated and combined impacts of both extremes on biogenic isoprene (C5H8) emissions, O3 dry deposition, and surface O3 in southwestern Europe. First, the sensitivity of biogenic C5H8 emissions, O3 dry deposition, and surface O3 to two specific effects of droughts, the decrease in soil moisture and in biomass, is analysed for the extremely dry summer 2012 using the biogenic emission model MEGANv2.1 and the chemistry transport model CHIMEREv2020r1. Despite a significant decrease in biogenic C5H8 emissions and O3 dry deposition velocity, characterized by a large spatial variability, the combined effect on surface O3 concentration remains limited (between +0.5 % and +3 % over the continent). The variations in simulated biogenic C5H8 emissions, O3 dry deposition, and surface O3 during the heatwaves and agricultural droughts are then analysed for summer 2012 (warm and dry), 2013 (warm), and 2014 (relatively wet and cool). We compare the results with large observational data sets, namely O3 concentrations from Air Quality (AQ) e-Reporting (2000–2016) and total columns of formaldehyde (HCHO, which is used as a proxy for biogenic emissions of volatile organic compounds) from the Ozone Monitoring Instrument (OMI) of the Aura satellite (2005–2016). Based on a cluster approach using the percentile limit anomalies indicator, we find that C5H8 emissions increase by +33 % during heatwaves compared to normal conditions, do not vary significantly during all droughts (either accompanied or not by a heatwave), and decrease by −16 % during isolated droughts. OMI data confirm an average increase in HCHO during heatwaves (between +15 % and +31 % depending on the product used) and decrease in HCHO (between −2 % and −6 %) during isolated droughts over the 2005–2016 summers. Simulated O3 dry deposition velocity decreases by −25 % during heatwaves and −35 % during all droughts. Simulated O3 concentrations increase by +7 % during heatwaves and by +3 % during all droughts. Compared to observations, CHIMERE tends to underestimate the daily maximum O3. However, similar sensitivity to droughts and heatwaves are obtained. The analysis of the AQ e-Reporting data set shows an average increase of +14 % during heatwaves and +7 % during all droughts over the 2000–2016 summers (for an average daily concentration value of 69 µg m−3 under normal conditions). This suggests that identifying the presence of combined heatwaves is fundamental to the study of droughts on surface–atmosphere interactions and O3 concentration. |
| Audience | Academic |
| Author | Cholakian, Arineh Guion, Antoine Lathière, Juliette Turquety, Solène Ehret, Antoine Polcher, Jan |
| Author_xml | – sequence: 1 givenname: Antoine surname: Guion fullname: Guion, Antoine – sequence: 2 givenname: Solène surname: Turquety fullname: Turquety, Solène – sequence: 3 givenname: Arineh surname: Cholakian fullname: Cholakian, Arineh – sequence: 4 givenname: Jan surname: Polcher fullname: Polcher, Jan – sequence: 5 givenname: Antoine surname: Ehret fullname: Ehret, Antoine – sequence: 6 givenname: Juliette surname: Lathière fullname: Lathière, Juliette |
| BackLink | https://hal.science/hal-03695802$$DView record in HAL |
| BookMark | eNp1kktv1DAUhSNUJNrCnqUlVpWa4kcSJ8tSFTrSSEg81pbj3GQ8ytjBdqYM_4f_yZ0ZEAwCeRHr5jvH9r3nIjtz3kGWvWT0pmRN8VqbKeciZ7QQOadcPMnOWVXTXApenP2xf5ZdxLimlJeUFefZ9zfWD-CsITb6KYADAhsbo_UuXpMu7EgHk482YYFsYfTGpt010a4jcQ69NkD8N7wJMd4ZcCnoA9nNwboBkc0GAtr4eVglNFyBTo96C_Fo4XzY6HGv7Q4nRGIdiX5Oq0eICYIj93PwEzzPnvZ6jPDi5_cy-_z2_tPdQ758_25xd7vMTcmKlLOeCd0I2rOeVwK07GvJK6hYVZWtZp2WUlJDW1bIRtRGUPxZmLYtme4aWvfiMlscfTuv12oKdqPDTnlt1aHgw6B0SNaMoEA3lNa8kLqtC8bbuqxa0xWlEZxzY1r0ujp6rfR4YvVwu1T7GhVVU9aUbzmyr47sFPyXGZ-u1n4ODp-quKwklYxW7Dc1aLyAdb3HdhucllG3UoimYIILpG7-QeHqcLDYaegt1k8EVycCZBJ8TYOeY1SLjx9O2erImuBjDNArzMNh5HiIHRWjap9GhWlUXKh9GtU-jSikfwl_teS_kh8MwuST |
| CitedBy_id | crossref_primary_10_1016_j_envpol_2025_126964 crossref_primary_10_1016_j_agrformet_2025_110480 crossref_primary_10_5194_acp_25_3029_2025 crossref_primary_10_5194_acp_23_13301_2023 crossref_primary_10_1007_s11814_023_1460_9 crossref_primary_10_1016_j_chemosphere_2025_144453 crossref_primary_10_5194_acp_25_2807_2025 crossref_primary_10_3390_pollutants4020012 |
| Cites_doi | 10.5194/acp-21-8413-2021 10.1002/joc.4050 10.1016/j.ejrh.2015.01.001 10.1002/2017GL073859 10.1109/TGRS.2006.872333 10.1029/2005JD006853 10.1175/2009JCLI2568.1 10.1002/2017JD027934 10.3389/fpls.2017.01016 10.5194/gmd-4-1103-2011 10.5194/acp-12-8727-2012 10.1029/95JD00690 10.5194/acp-17-7555-2017 10.5194/acp-20-7843-2020 10.5194/gmd-7-283-2014 10.1029/2007JD008950 10.5194/bg-16-4627-2019 10.1029/2020JD033263 10.1002/2016GL071791 10.1029/2018GB006157 10.1007/s11356-017-9239-3 10.5194/acp-13-2331-2013 10.1038/s41597-020-0488-5 10.5194/acp-17-12827-2017 10.1029/2019RG000670 10.5194/acp-10-11501-2010 10.1016/j.atmosenv.2013.05.018 10.5194/acp-15-12519-2015 10.5194/acp-8-1329-2008 10.1007/978-94-009-4738-2_6 10.5194/acp-18-2601-2018 10.1073/pnas.1207068110 10.1111/pce.13535 10.1016/j.atmosenv.2019.04.038 10.1016/j.atmosenv.2018.01.026 10.1007/s11869-021-00977-0 10.1029/2001JD000634 10.1029/2017JD028200 10.1029/2002JD003296 10.1175/JAS-D-13-0305.1 10.1016/j.atmosres.2004.04.011 10.1016/j.envpol.2012.01.048 10.1016/j.envpol.2007.11.025 10.1007/s00382-021-05938-y 10.1029/2021GL095717 10.1039/C1EM10728C 10.5194/acp-20-3841-2020 10.1002/joc.5291 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 10.1002/2016JD025871 10.5194/acp-22-7461-2022 10.5194/gmd-13-2981-2020 10.5194/bg-2021-125 10.5194/gmd-14-6781-2021 10.1016/j.rse.2009.08.016 10.1175/JAMC-D-12-0239.1 10.1088/1748-9326/7/1/014023 10.5194/gmd-11-165-2018 10.1038/s41558-020-0743-y 10.1007/s00382-016-3374-2 10.1016/j.atmosenv.2012.11.007 10.1016/j.atmosenv.2013.11.055 10.1029/2000JD900339 10.1023/A:1014980619462 10.5194/acp-18-5699-2018 10.1021/acs.est.8b04852 10.5194/acp-16-13477-2016 10.5194/amt-8-19-2015 10.1016/j.atmosenv.2020.118037 10.1016/j.atmosres.2019.04.017 10.1029/2007JD009235 10.1029/2020JD032398 10.1056/NEJMoa0803894 10.1016/j.rse.2011.01.001 10.1175/BAMS-D-14-00176.1 10.1016/0021-9991(77)90095-X 10.1038/s41598-017-12520-2 10.1029/2001JD001421 10.5194/acp-22-1905-2022 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2 10.5194/gmd-5-1471-2012 10.1007/978-94-009-4738-2_5 10.5194/bg-18-535-2021 10.5194/acp-18-5747-2018 10.1016/j.atmosenv.2007.10.058 10.1088/1748-9326/10/12/124003 10.5194/acp-14-11031-2014 10.1029/93JD00527 10.1111/nyas.13912 10.5194/acp-11-6063-2011 10.5194/bg-19-1753-2022 10.1016/1352-2310(96)00104-5 10.1175/2009JCLI2909.1 10.1021/acs.est.0c06834 10.5194/acp-12-7825-2012 10.1038/nclimate2317 10.5194/acp-6-3181-2006 10.1007/s11069-006-0009-7 10.1016/j.atmosenv.2005.01.039 10.5194/acp-22-2351-2022 10.5194/acp-19-13367-2019 10.1016/j.agwat.2007.11.009 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 Copernicus GmbH 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution - NonCommercial |
| Copyright_xml | – notice: COPYRIGHT 2023 Copernicus GmbH – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution - NonCommercial |
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY 1XC VOOES DOA |
| DOI | 10.5194/acp-23-1043-2023 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Continental Europe Database (ProQuest) ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Environmental Sciences |
| EISSN | 1680-7324 |
| EndPage | 1071 |
| ExternalDocumentID | oai_doaj_org_article_ea9008247ab8412b856bcd45c3222ccb oai:HAL:hal-03695802v2 A733941323 10_5194_acp_23_1043_2023 |
| GeographicLocations | Europe |
| GeographicLocations_xml | – name: Europe |
| GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BANNL BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PYCSY Q2X RKB RNS TR2 XSB ~02 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQUKI 1XC C1A IPNFZ RIG VOOES |
| ID | FETCH-LOGICAL-c514t-1f13a930f1f263ea7f8726e61665ba1da7770c0b147938c3026e4cbb51ad908f3 |
| IEDL.DBID | RKB |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000919469800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1680-7324 1680-7316 |
| IngestDate | Mon Nov 10 04:33:33 EST 2025 Tue Oct 14 20:49:02 EDT 2025 Tue Aug 12 18:14:32 EDT 2025 Sat Nov 29 13:39:50 EST 2025 Sat Nov 29 09:56:01 EST 2025 Mon Nov 24 15:08:40 EST 2025 Sat Nov 29 06:47:58 EST 2025 Tue Nov 18 22:43:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-1f13a930f1f263ea7f8726e61665ba1da7770c0b147938c3026e4cbb51ad908f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4405-6060 0000-0001-9020-5795 0000-0002-0398-547X 0009-0001-5783-9662 |
| OpenAccessLink | https://doaj.org/article/ea9008247ab8412b856bcd45c3222ccb |
| PQID | 2767071061 |
| PQPubID | 105744 |
| PageCount | 29 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ea9008247ab8412b856bcd45c3222ccb hal_primary_oai_HAL_hal_03695802v2 proquest_journals_2767071061 gale_infotracmisc_A733941323 gale_infotracacademiconefile_A733941323 gale_incontextgauss_ISR_A733941323 crossref_citationtrail_10_5194_acp_23_1043_2023 crossref_primary_10_5194_acp_23_1043_2023 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-20 |
| PublicationDateYYYYMMDD | 2023-01-20 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric chemistry and physics |
| PublicationYear | 2023 |
| Publisher | Copernicus GmbH European Geosciences Union Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: European Geosciences Union – name: Copernicus Publications |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref67 ref117 ref69 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref62 ref61 |
| References_xml | – ident: ref91 – ident: ref76 doi: 10.5194/acp-21-8413-2021 – ident: ref58 doi: 10.1002/joc.4050 – ident: ref92 doi: 10.1016/j.ejrh.2015.01.001 – ident: ref117 doi: 10.1002/2017GL073859 – ident: ref56 doi: 10.1109/TGRS.2006.872333 – ident: ref67 doi: 10.1029/2005JD006853 – ident: ref27 – ident: ref115 doi: 10.1175/2009JCLI2568.1 – ident: ref11 doi: 10.1002/2017JD027934 – ident: ref9 – ident: ref47 doi: 10.3389/fpls.2017.01016 – ident: ref62 doi: 10.5194/gmd-4-1103-2011 – ident: ref48 doi: 10.5194/acp-12-8727-2012 – ident: ref63 doi: 10.1029/95JD00690 – ident: ref87 doi: 10.5194/acp-17-7555-2017 – ident: ref65 doi: 10.5194/acp-20-7843-2020 – ident: ref36 doi: 10.5194/gmd-7-283-2014 – ident: ref44 – ident: ref68 doi: 10.1029/2007JD008950 – ident: ref6 doi: 10.5194/bg-16-4627-2019 – ident: ref108 doi: 10.1029/2020JD033263 – ident: ref50 – ident: ref54 doi: 10.1002/2016GL071791 – ident: ref59 doi: 10.1029/2018GB006157 – ident: ref75 doi: 10.1007/s11356-017-9239-3 – ident: ref83 doi: 10.5194/acp-13-2331-2013 – ident: ref111 doi: 10.1038/s41597-020-0488-5 – ident: ref109 doi: 10.5194/acp-17-12827-2017 – ident: ref15 doi: 10.1029/2019RG000670 – ident: ref19 doi: 10.5194/acp-10-11501-2010 – ident: ref101 doi: 10.1016/j.atmosenv.2013.05.018 – ident: ref24 doi: 10.5194/acp-15-12519-2015 – ident: ref29 – ident: ref72 doi: 10.5194/acp-8-1329-2008 – ident: ref71 doi: 10.1007/978-94-009-4738-2_6 – ident: ref74 – ident: ref84 doi: 10.5194/acp-18-2601-2018 – ident: ref107 doi: 10.1073/pnas.1207068110 – ident: ref33 doi: 10.1111/pce.13535 – ident: ref30 doi: 10.1016/j.atmosenv.2019.04.038 – ident: ref53 doi: 10.1016/j.atmosenv.2018.01.026 – ident: ref110 doi: 10.1007/s11869-021-00977-0 – ident: ref23 doi: 10.1029/2001JD000634 – ident: ref17 doi: 10.1029/2017JD028200 – ident: ref28 doi: 10.1029/2002JD003296 – ident: ref100 doi: 10.1175/JAS-D-13-0305.1 – ident: ref66 doi: 10.1016/j.atmosres.2004.04.011 – ident: ref20 doi: 10.1016/j.envpol.2012.01.048 – ident: ref37 doi: 10.1016/j.envpol.2007.11.025 – ident: ref45 doi: 10.1007/s00382-021-05938-y – ident: ref113 doi: 10.1029/2021GL095717 – ident: ref5 doi: 10.1039/C1EM10728C – ident: ref8 – ident: ref38 doi: 10.5194/acp-20-3841-2020 – ident: ref93 doi: 10.1002/joc.5291 – ident: ref10 doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 – ident: ref12 doi: 10.1002/2016JD025871 – ident: ref49 doi: 10.5194/acp-22-7461-2022 – ident: ref102 doi: 10.5194/gmd-13-2981-2020 – ident: ref2 doi: 10.5194/bg-2021-125 – ident: ref64 doi: 10.5194/gmd-14-6781-2021 – ident: ref89 – ident: ref34 doi: 10.1016/j.rse.2009.08.016 – ident: ref40 doi: 10.1175/JAMC-D-12-0239.1 – ident: ref94 doi: 10.1088/1748-9326/7/1/014023 – ident: ref18 doi: 10.5194/gmd-11-165-2018 – ident: ref60 doi: 10.1038/s41558-020-0743-y – ident: ref78 doi: 10.1007/s00382-016-3374-2 – ident: ref32 doi: 10.1016/j.atmosenv.2012.11.007 – ident: ref82 doi: 10.1016/j.atmosenv.2013.11.055 – ident: ref1 doi: 10.1029/2000JD900339 – ident: ref4 doi: 10.1023/A:1014980619462 – ident: ref57 doi: 10.5194/acp-18-5699-2018 – ident: ref21 doi: 10.1021/acs.est.8b04852 – ident: ref116 doi: 10.5194/acp-16-13477-2016 – ident: ref39 doi: 10.5194/amt-8-19-2015 – ident: ref51 doi: 10.1016/j.atmosenv.2020.118037 – ident: ref14 doi: 10.1016/j.atmosres.2019.04.017 – ident: ref55 doi: 10.1029/2007JD009235 – ident: ref16 doi: 10.1029/2020JD032398 – ident: ref52 doi: 10.1056/NEJMoa0803894 – ident: ref26 – ident: ref114 doi: 10.1016/j.rse.2011.01.001 – ident: ref86 doi: 10.1175/BAMS-D-14-00176.1 – ident: ref103 doi: 10.1016/0021-9991(77)90095-X – ident: ref79 doi: 10.1038/s41598-017-12520-2 – ident: ref22 doi: 10.1029/2001JD001421 – ident: ref77 doi: 10.5194/acp-22-1905-2022 – ident: ref13 doi: 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2 – ident: ref43 doi: 10.5194/gmd-5-1471-2012 – ident: ref61 doi: 10.1007/978-94-009-4738-2_5 – ident: ref25 – ident: ref80 doi: 10.5194/bg-18-535-2021 – ident: ref3 doi: 10.5194/acp-18-5747-2018 – ident: ref112 doi: 10.1016/j.atmosenv.2007.10.058 – ident: ref85 doi: 10.1088/1748-9326/10/12/124003 – ident: ref46 doi: 10.5194/acp-14-11031-2014 – ident: ref42 doi: 10.1029/93JD00527 – ident: ref70 – ident: ref69 doi: 10.1111/nyas.13912 – ident: ref95 doi: 10.5194/acp-11-6063-2011 – ident: ref97 doi: 10.5194/bg-19-1753-2022 – ident: ref96 doi: 10.1016/1352-2310(96)00104-5 – ident: ref106 doi: 10.1175/2009JCLI2909.1 – ident: ref88 doi: 10.1021/acs.est.0c06834 – ident: ref90 doi: 10.5194/acp-12-7825-2012 – ident: ref99 doi: 10.1038/nclimate2317 – ident: ref98 – ident: ref73 – ident: ref41 doi: 10.5194/acp-6-3181-2006 – ident: ref105 doi: 10.1007/s11069-006-0009-7 – ident: ref104 doi: 10.1016/j.atmosenv.2005.01.039 – ident: ref7 doi: 10.5194/acp-22-2351-2022 – ident: ref81 doi: 10.5194/acp-19-13367-2019 – ident: ref35 doi: 10.1016/j.agwat.2007.11.009 – ident: ref31 |
| SSID | ssj0025014 |
| Score | 2.4640222 |
| Snippet | At high concentrations, tropospheric ozone (O3) deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological conditions are... At high concentrations, tropospheric ozone (O.sub.3) deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological... At high concentration, tropospheric O3 deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological conditions are key to... At high concentrations, tropospheric ozone (O 3 ) deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological conditions... |
| SourceID | doaj hal proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1043 |
| SubjectTerms | Agricultural drought Air pollution Air quality Air quality management Analysis Anomalies Atmospheric chemistry Atmospheric transport Biogenic emissions Biomass Biosphere Datasets Deposition Drought Dry deposition Emission analysis Emissions Environmental Sciences Extreme weather Formaldehyde Heat waves Heatwaves Humidity Hydrology Isoprene Isoprene emissions Meteorological conditions Moisture effects Monitoring instruments Organic compounds Ozone Ozone concentration Ozone monitoring Photochemistry Radiation Rain Simulation Soil moisture Spatial variability Spatial variations Summer Transport Troposphere Tropospheric ozone Vegetation Velocity VOCs Volatile organic compounds Water shortages Weather |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgxYEL4ikKC7JWCIS0UeNH7OTYXbFaJFghHtLeLNux2UhVskraIvg__E9mEreiHODCsel46nim9jf2-BtCXrAoZCksyyLXEQMUl1WlYhmsDE45r5S1diw2oS8uysvL6sNvpb4wJ2yiB54Gbh5shcuU1NaVknFXFqCiloXHIwLvHc6-ua62wVQKtfC0DEMtVeYZ1maaDigBrci59dcZx3wsKTKsHb63II28_bvZ-eYVJkf-MUePC8_ZXXInIUa6mHp6j9wI7X0yew9gt-vHPXH6kp4uG0Ce46cH5OdJ04FbNJ42QzdSVlIs6obbYsMxrfvvtA7bXC2KKUMekPgxtW1Nh3UfrQ-0-9FBK49XGtvEq0unC40UPTf0oAbL-6xAIc7m3-wmDJOKFkHwEtvWUzYYbVo6YKG-RMpApwOAh-TL2ZvPp-dZqsaQeQBVq4xFJmwl8sgiVyJYHUvNVVBMqcJZVlutde5zx3CvrvQCgrsgvXMFs3WVl1E8IgctdP4xobmOoYjW6SCVdFJa5gQvAkRmEcNTNiPzrUmMT1TlWDFjaSBkQSMaMKLhwqARDRpxRl7vWlxPNB1_kT1BK-_kkGB7fABuZ5LbmX-53YwcoY8YpNBoMUfnq10Pg3n76aNZaCEqwAb4S6-SUOyg_96mKw8wCsi6tSd5uCcJXuH3vj4CV9zr8fnincFngECqosz5hoOOraeaNBENhmulEUUq9uR_vPZTchuHEPegeH5IDlb9Ojwjt_xm1Qz98_E_-Av3xDTw priority: 102 providerName: Directory of Open Access Journals – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZo4cCFN-pCQVaFQEiNGtuJnZzQtqIqElQVD6niYtmOXSKtkiXZXQT_h__JTOJdtBx64ZjEdqzk83heno-QFyyIrBCGJYGrgAaKTcpCsgR2Biutk9IYM5BNqPPz4vKyvIgOtz6mVa5l4iCoq9ahj_yIK6lwO5Tszfx7gqxRGF2NFBo75CZWSUDqhov868bgwpgZGlyySBNkaBrDlKCzZEfGzROOWVmZSJBBfGtbGqr3b2T0zjdMkfxHUg_bz-nd_534PXInKp50OiLlPrnhmwdk8gF05rYbXOv0JT2Z1aDADlcPye_jugV01Y7WfTtUvqTIDYfetf6QVt1PWvl1yhfFzCMHCv0hNU1F-2UXjPO0_dVCL4cnI5tYnpeO5yIpTsx3MAyyBC1gQNwUfpiV78chGtSlZ9i3GpPKaN3QHvn-Ym0HOsYRHpEvp28_n5wlkdQhcaCbLRIWmDClSAMLXApvVCgUl14yKXNrWGWUUqlLLUOXX-EE2Ig-c9bmzFRlWgTxmOw2MPk9QlMVfB6MVT6Tmc0yw6zguQcDL6CVyybkaP1PtYsVz5F4Y6bB8kEUaECB5kIjCjSiYEJeb3rMx2of17Q9Rphs2mGd7uFG213puOy1NyUqWZkytsgYt0UOC6DKcocBLufshBwgyDRW4mgw1efKLPtev_v0UU-VECWoGPimV7FRaGH-zsSTE_AVsHjXVsv9rZaACrf1-ACwvDXjs-l7jfdAkSnzIuUrDmOscayjPOv1XxA_uf7xU3IbPw46qXi6T3YX3dI_I7fcalH33fNhef4BJ5hDDw priority: 102 providerName: ProQuest |
| Title | Biogenic isoprene emissions, dry deposition velocity, and surface ozone concentration during summer droughts, heatwaves, and normal conditions in southwestern Europe |
| URI | https://www.proquest.com/docview/2767071061 https://hal.science/hal-03695802 https://doaj.org/article/ea9008247ab8412b856bcd45c3222ccb |
| Volume | 23 |
| WOSCitedRecordID | wos000919469800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: RKB dateStart: 20010101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: P5Z dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Continental Europe Database (ProQuest) customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BFMQW dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PCBAR dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PATMY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BENPR dateStart: 20100415 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PIMPY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdg8MAL34jCmKwJgZAWNY4TO3lsp02bRKtoDGnwYtmOPSJVyZS0RfD_8H9yl6QV5QEe4KVR3fPVta--D5_vR8hr5nmccs0CH0mPDooJslSwADSDEcYKobXuwCbkfJ5eXWX5L1BfmBPWlwfuJ27sdIZqKpbapDGLTJoAiyJOLB4RWGvw3jpsteinI4bb4GrhaRm6WiINA8Rm6g8owVqJx9reBBHmY8U8QOzwHYXU1e3f7s63v2By5G97dKd4Th_8w5AfkvuDtUknfZdH5JarHpPRDAzluuni6fQNPV6UYLV2756QH9OyBpEqLS3buit3SREQDkNq7REtmm-0cJs8L4rpRhas-COqq4K2q8Zr62j9vYZeFq9DVkNNXtpfhqQo9a4BNggNtASGqAm-6rVrexYVGtAL7Fv0mWS0rGiLIH9DQQfaHx48JR9PTy6Pz4IBySGwYJAtA-YZ1xkPPfOR4E5Ln8pIOMGESIxmhZZShjY0DON8qeXgGLrYGpMwXWRh6vkzslfB4J8TGkrvEq-NdLGITRxrZniUOPDqPLq2bETGm-VUdihzjmgbCwXuDgqAAgFQEVcoAAoFYETebXvc9CU-_kA7xeXe0mFx7q4B1l8N66_-tv4jcojypbD8RoX5Pdd61bbq_MOFmkjOM7Ar8JveDkS-hvFbPVyXgFnAil07lPs7lCAVdufjQxDjnRGfTd4rbAPrJUvSMFpHwGMj5WrYxFoVSSHRAhXsxf_42S_JPZxCjF9F4T7ZWzYr94rctetl2TYH5M70ZJ5fHHRBEXjNk8_Qlk8uZ5_weT7L4Yn_8Z-V804D |
| linkProvider | Copernicus Gesellschaft |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELb6QIILb8RCAaviIaRGGzuJnRwQagtVV-2uKihSORnbsctKVVKSbavyf7jyG5nJY9Fy6K0HjpvYXsuZ8cznGc9HyEvmoziNNAs8lx4BigmyVLAALIMRxgqhtW7IJuRkkh4dZQdL5Hd_FwbTKvs9sdmo89LiGfmQSyHRHAr2_vRHgKxRGF3tKTRasdhzlxcA2ep3ow_wfV9xvvPxcHs36FgFAgvOwSxgnkU6i0LPPBeR09KnkgsnmBCJ0SzXUsrQhobhmVNqIwApLrbGJEznWZj6CMZdJqsxCvsKWT0YjQ--ziEeRukQ4ok0DJATqg2MgpcUD7U9DTjmgcVRgJzlC4aw4QuYW4Xl75iU-Y9taAzezp3_banuktuda003W124R5ZccZ8MxoAKyqoJHtDXdPtkCi568-sB-bU1LUF_ppZO67Kp7UmR_Q7PD-sNmleXNHd9UhvF3CoLkGWD6iKn9VnltXW0_FlCL4t3P4uuADFtb35SXAhXwTDIgzSDAdHsXehzV7dDFIgWTrBv3qbN0WlBa2Q07KpX0DZS8pB8uZZVe0RWCpj8Y0JD6V3itZEuFrGJY81MxBMHENYjjmcDMuxlSNmupjtSi5wowHYodQqkTvFIodQplLoBeTvvcdrWM7mi7RaK5bwdViJvHpTVseo2NuV0hm5kLLVJY8ZNmoCK53FiMYRnrRmQdRRqhbVGCkxmOtZnda1Gnz-pTRlFGThR-E9vuka-hPlb3d0NgVXA8mQLLdcWWoJU2IXX66A7CzPe3dxX-AxctSxJQ37OYYxeb1S3Y9fqr9I8ufr1C3Jz93C8r_ZHk72n5BYuFB7J8XCNrMyqM_eM3LDns2ldPe82B0q-XbeS_QGLJ5_S |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbaLUJceCMWClgVDyE12thJ7OSAUB-sWvWh8qjozdiOXVaqkpLsblX-D3-CX8dMkl20HHrrgeMmttdyZjzzecbzEfKS-ShOI80Cz6VHgGKCLBUsAMtghLFCaK0bsgl5eJienGRHS-T37C4MplXO9sRmo85Li2fkAy6FRHMo2MB3aRFH28P35z8CZJDCSOuMTqMVkT13eQHwrX63uw3f-hXnww9ftnaCjmEgsOAojAPmWaSzKPTMcxE5LX0quXCCCZEYzXItpQxtaBieP6U2AsDiYmtMwnSehamPYNxlspIKkYY9srI5PPj4dQ73MGKHcA_eBcgP1QZJwWOKB9qeBxxzwuIoQP7yBaPYcAfMLcTyd0zQ_MdONMZveOd_Xra75HbnctONVkfukSVX3Cf9A0ALZdUEFehrunU2Ate9-fWA_NoclaBXI0tHddnU_KTIiofnivU6zatLmrtZshvFnCsLUGad6iKn9aTy2jpa_iyhl8U7oUVXmJi2N0IpLoSrYBjkRxrDgGgOL_TU1e0QBaKIM-ybt-l0dFTQGpkOu6oWtI2gPCTH17Jqj0ivgMk_JjSU3iVeG-liEZs41sxEPHEAbT3ie9Yng5k8KdvVekfKkTMFmA8lUIEEKh4plECFEtgnb-c9zts6J1e03UQRnbfDCuXNg7I6Vd2Gp5zO0L2MpTZpzLhJE1D9PE4shvasNX2yhgKusAZJgWJ5qid1rXY_f1IbMooycK7wn950jXwJ87e6uzMCq4BlyxZari60BKmwC6_XQI8WZryzsa_wGbhwWZKGfMphjJkOqW4nr9VfBXpy9esX5CZoltrfPdx7Sm7hOuFJHQ9XSW9cTdwzcsNOx6O6et7tE5R8u24d-wM6Wahy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biogenic+isoprene+emissions%2C+dry+deposition+velocity%2C+and+surface+ozone+concentration+during+summer+droughts%2C+heatwaves%2C+and+normal+conditions+in+southwestern+Europe&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=A.+Guion&rft.au=A.+Guion&rft.au=S.+Turquety&rft.au=S.+Turquety&rft.date=2023-01-20&rft.pub=Copernicus+Publications&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=23&rft.spage=1043&rft.epage=1071&rft_id=info:doi/10.5194%2Facp-23-1043-2023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ea9008247ab8412b856bcd45c3222ccb |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |