Generalizing polygenic risk scores from Europeans to Hispanics/Latinos
Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single‐nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome‐Wide Association Studies (GWASs), and the majority of which has been performed in l...
Uloženo v:
| Vydáno v: | Genetic epidemiology Ročník 43; číslo 1; s. 50 - 62 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Wiley Subscription Services, Inc
01.02.2019
|
| Témata: | |
| ISSN: | 0741-0395, 1098-2272, 1098-2272 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single‐nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome‐Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype‐trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL,
n
=
12
,
803). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women’s Health Initiative (WHI,
n
=
3
,
582). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non‐EA GWAS results to estimate weights improved results. |
|---|---|
| AbstractList | Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single-nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome-Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype-trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL,
). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women's Health Initiative (WHI,
). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non-EA GWAS results to estimate weights improved results. Polygenic risk scores (PRSs) are typically constructed as weighted sums of risk allele counts of single nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome-Wide Association Studies (GWASs), the majority of which have been performed in large populations of European Ancestry (EA) individuals. While many genotype-trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: the Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n = 12,803). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women’s Health Initiative (WHI, n = 3,582). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, use of EA GWASs for weight estimation was suboptimal. Using non-EA GWAS results to estimate weights improved results. Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single‐nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome‐Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype‐trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n = 12 , 803). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women’s Health Initiative (WHI, n = 3 , 582). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non‐EA GWAS results to estimate weights improved results. Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single‐nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome‐Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype‐trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n=12,803). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women’s Health Initiative (WHI, n=3,582). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non‐EA GWAS results to estimate weights improved results. Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single-nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome-Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype-trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n = 12 , 803 ). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women's Health Initiative (WHI, n = 3 , 582 ). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non-EA GWAS results to estimate weights improved results.Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single-nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome-Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype-trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n = 12 , 803 ). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women's Health Initiative (WHI, n = 3 , 582 ). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non-EA GWAS results to estimate weights improved results. |
| Author | Shadyab, Aladdin H. Sofer, Tamar Qi, Qibin Thornton, Timothy A. Liu, Simin Grinde, Kelsey E. Chan, Kei Hang K. Reiner, Alexander P. |
| AuthorAffiliation | 6 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 1 Department of Biostatistics, University of Washington, Seattle, WA, USA 3 Department of Epidemiology, Brown University, Providence, RI, USA 5 Departments of Biomedical Sciences and Electronic Engineering, City University of Hong Kong, HKSAR 2 Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA 4 Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA, USA 8 Department of Medicine, Harvard Medical School, Boston, MA, USA 7 Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA |
| AuthorAffiliation_xml | – name: 1 Department of Biostatistics, University of Washington, Seattle, WA, USA – name: 7 Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA – name: 2 Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA – name: 4 Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA, USA – name: 3 Department of Epidemiology, Brown University, Providence, RI, USA – name: 8 Department of Medicine, Harvard Medical School, Boston, MA, USA – name: 6 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA – name: 5 Departments of Biomedical Sciences and Electronic Engineering, City University of Hong Kong, HKSAR |
| Author_xml | – sequence: 1 givenname: Kelsey E. surname: Grinde fullname: Grinde, Kelsey E. organization: University of Washington – sequence: 2 givenname: Qibin surname: Qi fullname: Qi, Qibin organization: Albert Einstein College of Medicine – sequence: 3 givenname: Timothy A. surname: Thornton fullname: Thornton, Timothy A. organization: University of Washington – sequence: 4 givenname: Simin surname: Liu fullname: Liu, Simin organization: Brown University – sequence: 5 givenname: Aladdin H. surname: Shadyab fullname: Shadyab, Aladdin H. organization: University of California San Diego – sequence: 6 givenname: Kei Hang K. surname: Chan fullname: Chan, Kei Hang K. organization: City University of Hong Kong – sequence: 7 givenname: Alexander P. surname: Reiner fullname: Reiner, Alexander P. organization: Fred Hutchinson Cancer Research Center – sequence: 8 givenname: Tamar orcidid: 0000-0001-8520-8860 surname: Sofer fullname: Sofer, Tamar email: tsofer@bwh.harvard.edu organization: Harvard Medical School |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30368908$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFv1DAUhC1URLeFCz8AReKCKqV9z07s-IJUVdttpZXgAGfL67UXl6wd7AS0_PompEVQIU4-vG9G45kTchRisIS8RjhHAHqxs50_pxQ5f0YWCLIpKRX0iCxAVFgCk_UxOcn5DgCxkvULcsyA8UZCsyDXKxts0q3_6cOu6GJ72NngTZF8_lpkE5PNhUtxXyyHFDurQy76WNz43OkRyxdr3fsQ80vy3Ok221cP7yn5fL38dHVTrj-sbq8u16WpseKl4IZJLXBLuaYO69rx2jjDhN2IjcBGGyl446rabQUi3VDqJAgnOfDKgKPslLyffbths7dbY0M_hldd8nudDipqr_6-BP9F7eJ3xRkDpHI0ePdgkOK3weZe7X02tm11sHHIiiLlEtmMvn2C3sUhhfF7auqaQVPzKdGbPxP9jvJY8QjADJgUc07WKeP7sbU4BfStQlDTimpaUf1acZScPZE8uv4Txhn-4Vt7-A-pVsuPt7PmHuyjrP4 |
| CitedBy_id | crossref_primary_10_1016_j_ajhg_2020_04_002 crossref_primary_10_1038_s42003_022_03812_z crossref_primary_10_1038_s41588_022_01054_7 crossref_primary_10_1016_j_jaci_2025_03_012 crossref_primary_10_1017_S096318012400046X crossref_primary_10_1038_s42003_023_05352_6 crossref_primary_10_1161_CIRCRESAHA_120_315893 crossref_primary_10_1186_s13195_023_01298_3 crossref_primary_10_1016_j_cell_2020_06_045 crossref_primary_10_1186_s12920_023_01598_5 crossref_primary_10_1038_s41588_021_00961_5 crossref_primary_10_3389_fgene_2023_1099541 crossref_primary_10_1371_journal_pgen_1010443 crossref_primary_10_1016_j_jpsychires_2020_10_026 crossref_primary_10_1093_bib_bbac459 crossref_primary_10_1186_s12881_020_01068_0 crossref_primary_10_1146_annurev_biodatasci_020722_014310 crossref_primary_10_1038_s42003_024_06742_0 crossref_primary_10_1002_gepi_22495 crossref_primary_10_3390_ijms241311209 crossref_primary_10_3390_jpm12020166 crossref_primary_10_1186_s13073_020_00742_5 crossref_primary_10_1007_s13311_021_01014_9 crossref_primary_10_1016_j_xhgg_2025_100486 crossref_primary_10_1038_s41467_023_41819_0 crossref_primary_10_1038_s41467_020_17719_y crossref_primary_10_3390_genes12010055 crossref_primary_10_1016_j_ajhg_2019_08_012 crossref_primary_10_1080_08927014_2020_1856821 crossref_primary_10_1038_s41467_023_38990_9 crossref_primary_10_3389_fgene_2021_720750 crossref_primary_10_1002_jcv2_12105 crossref_primary_10_1016_j_biopsych_2018_12_015 crossref_primary_10_3389_fgene_2025_1556907 crossref_primary_10_1038_s41588_022_01036_9 crossref_primary_10_1186_s40478_020_01038_w crossref_primary_10_1016_j_procs_2021_01_015 crossref_primary_10_1016_j_lana_2025_101198 crossref_primary_10_1038_s41467_022_31080_2 crossref_primary_10_1016_j_xhgg_2025_100451 crossref_primary_10_3389_fnagi_2022_853695 crossref_primary_10_1038_s41467_021_21287_0 crossref_primary_10_3389_fgene_2021_642327 crossref_primary_10_1007_s10519_019_09982_7 crossref_primary_10_1016_j_cell_2019_08_051 crossref_primary_10_1007_s00439_024_02710_0 crossref_primary_10_1007_s00784_019_03146_x crossref_primary_10_1017_S0140525X22002266 crossref_primary_10_1038_s41398_020_00930_2 crossref_primary_10_3390_ijms20164004 crossref_primary_10_1038_s41467_019_11112_0 crossref_primary_10_1016_j_pnpbp_2023_110932 crossref_primary_10_1007_s13571_023_00310_y crossref_primary_10_12688_f1000research_76218_2 crossref_primary_10_12688_f1000research_76218_1 crossref_primary_10_1038_s41391_022_00497_7 crossref_primary_10_1371_journal_pgen_1009670 crossref_primary_10_1038_s41431_023_01517_3 crossref_primary_10_1038_s41598_024_62945_9 crossref_primary_10_1007_s00251_022_01290_5 crossref_primary_10_1038_s41467_023_38930_7 crossref_primary_10_3389_fpubh_2023_1111321 crossref_primary_10_1002_gepi_22382 crossref_primary_10_1038_s41398_022_02029_2 |
| Cites_doi | 10.1371/journal.pone.0036473 10.1164/rccm.201707-1493OC 10.1038/nature04226 10.1038/nature10405 10.1002/gepi.22083 10.1016/j.ajhg.2015.09.001 10.1371/journal.pgen.1006493 10.1086/321275 10.1038/nature14177 10.1371/journal.pone.0179238 10.1371/journal.pmed.1001383 10.1016/j.ajhg.2015.12.001 10.1093/hmg/ddx024 10.1038/nature14132 10.1016/j.ajhg.2016.05.005 10.1016/j.ajhg.2012.07.023 10.1038/s41598-017-09019-1 10.1093/aje/kwm060 10.1056/NEJMoa1203039 10.1002/gepi.21981 10.1016/j.ajhg.2016.05.003 10.1038/ng.922 10.1016/j.ajhg.2017.03.004 10.1080/19485565.2013.774628 10.1038/s41467-018-04191-y 10.1186/s12944-017-0591-6 10.1016/S1047-2797(03)00042-5 10.1371/journal.pgen.1003348 10.1093/hmg/ddx082 10.1016/S0140-6736(12)60312-2 10.1038/nrg2361 10.1016/j.ajhg.2017.06.015 10.1086/519795 10.1016/j.annepidem.2010.03.015 10.1002/gepi.22117 10.1101/287136 10.1002/gepi.22029 10.1016/j.annepidem.2010.05.006 10.1016/j.ajhg.2015.12.003 10.1038/ng.3097 10.1038/nature11632 10.1016/j.ajhg.2016.05.007 10.1371/journal.pgen.1006760 |
| ContentType | Journal Article |
| Copyright | 2018 Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
| DOI | 10.1002/gepi.22166 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef Genetics Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology |
| EISSN | 1098-2272 |
| EndPage | 62 |
| ExternalDocumentID | PMC6330129 30368908 10_1002_gepi_22166 GEPI22166 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institute of Diabetes and Digestive and Kidney Diseases – fundername: University of Illinois at Chicago funderid: HHSN268201300003I/N01‐HC‐65236 – fundername: San Diego State University funderid: HHSN268201300005I/N01‐HC‐65237 – fundername: National Institute of Neurological Disorders and Stroke – fundername: National Heart, Lung, and Blood Institute (NHLBI) funderid: HHSN268201300001I/N01‐HC‐65233; HHSN268201300005C; AM03 and MOD03; HL120393‐03S1; 1R35HL135818 HHSN268201100046C; HHSN268201100001C; HHSN268201100002C; HHSN268201100003C; HHSN268201100004C; HHSC271201100004C – fundername: NIH Institution‐Office of Dietary Supplements – fundername: National Institute of Dental and Craniofacial Research – fundername: National Science Foundation funderid: DGE‐1256082 – fundername: University of Miami funderid: HHSN268201300004I/N01‐HC‐65234 – fundername: U.S. Department of Health and Human Services – fundername: NHLBI NIH HHS grantid: HL120393-03S1 – fundername: NHLBI NIH HHS grantid: HHSN268201100003C – fundername: NIDCD NIH HHS – fundername: NIDDK NIH HHS – fundername: NIDCR NIH HHS – fundername: NHLBI NIH HHS grantid: R01 HL120393 – fundername: NHLBI NIH HHS grantid: HHSN268201300003I – fundername: NIMHD NIH HHS – fundername: NHLBI NIH HHS grantid: N01 HC065236 – fundername: NHGRI NIH HHS grantid: R01 HG005827 |
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DVXWH EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M66 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWV RX1 RYL SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WTM WXSBR WYISQ XG1 XV2 ZGI ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c5146-76c39a71d26a2f155f65cfc37eb7b718ac9768f45fd7112b22f907f96064c0f23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455511900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0741-0395 1098-2272 |
| IngestDate | Tue Nov 04 01:39:51 EST 2025 Thu Oct 02 07:09:46 EDT 2025 Tue Oct 07 05:44:10 EDT 2025 Mon Jul 21 06:08:12 EDT 2025 Tue Nov 18 21:52:59 EST 2025 Sat Nov 29 06:32:59 EST 2025 Wed Jan 22 16:27:51 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | genetic diversity admixed populations linkage disequilibrium |
| Language | English |
| License | 2018 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5146-76c39a71d26a2f155f65cfc37eb7b718ac9768f45fd7112b22f907f96064c0f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8520-8860 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6330129 |
| PMID | 30368908 |
| PQID | 2166308562 |
| PQPubID | 105460 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6330129 proquest_miscellaneous_2126913129 proquest_journals_2166308562 pubmed_primary_30368908 crossref_citationtrail_10_1002_gepi_22166 crossref_primary_10_1002_gepi_22166 wiley_primary_10_1002_gepi_22166_GEPI22166 |
| PublicationCentury | 2000 |
| PublicationDate | February 2019 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Genetic epidemiology |
| PublicationTitleAlternate | Genet Epidemiol |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | e_1_2_7_1_10_1 e_1_2_7_1_33_1 e_1_2_7_1_11_1 e_1_2_7_1_32_1 e_1_2_7_1_12_1 e_1_2_7_1_35_1 e_1_2_7_1_13_1 e_1_2_7_1_34_1 e_1_2_7_1_30_1 e_1_2_7_1_31_1 e_1_2_7_1_5_1 e_1_2_7_1_29_1 e_1_2_7_1_6_1 e_1_2_7_1_7_1 e_1_2_7_1_8_1 e_1_2_7_1_25_1 e_1_2_7_1_2_1 e_1_2_7_1_26_1 e_1_2_7_1_3_1 e_1_2_7_1_27_1 e_1_2_7_1_4_1 e_1_2_7_1_21_1 e_1_2_7_1_44_1 e_1_2_7_1_22_1 e_1_2_7_1_43_1 e_1_2_7_1_23_1 e_1_2_7_1_46_1 e_1_2_7_1_24_1 e_1_2_7_1_45_1 e_1_2_7_1_9_1 e_1_2_7_1_40_1 e_1_2_7_1_42_1 e_1_2_7_1_20_1 e_1_2_7_1_41_1 e_1_2_7_1_18_1 e_1_2_7_1_19_1 Qi Q. (e_1_2_7_1_28_1) 2017 e_1_2_7_1_14_1 e_1_2_7_1_37_1 e_1_2_7_1_15_1 e_1_2_7_1_36_1 e_1_2_7_1_16_1 e_1_2_7_1_39_1 e_1_2_7_1_17_1 e_1_2_7_1_38_1 |
| References_xml | – ident: e_1_2_7_1_24_1 doi: 10.1371/journal.pone.0036473 – ident: e_1_2_7_1_5_1 doi: 10.1164/rccm.201707-1493OC – ident: e_1_2_7_1_41_1 doi: 10.1038/nature04226 – ident: e_1_2_7_1_17_1 doi: 10.1038/nature10405 – ident: e_1_2_7_1_21_1 doi: 10.1002/gepi.22083 – ident: e_1_2_7_1_42_1 doi: 10.1016/j.ajhg.2015.09.001 – ident: e_1_2_7_1_33_1 doi: 10.1371/journal.pgen.1006493 – ident: e_1_2_7_1_25_1 doi: 10.1086/321275 – ident: e_1_2_7_1_20_1 doi: 10.1038/nature14177 – ident: e_1_2_7_1_31_1 doi: 10.1371/journal.pone.0179238 – ident: e_1_2_7_1_43_1 doi: 10.1371/journal.pmed.1001383 – ident: e_1_2_7_1_7_1 doi: 10.1016/j.ajhg.2015.12.001 – ident: e_1_2_7_1_18_1 doi: 10.1093/hmg/ddx024 – ident: e_1_2_7_1_34_1 doi: 10.1038/nature14132 – ident: e_1_2_7_1_12_1 doi: 10.1016/j.ajhg.2016.05.005 – ident: e_1_2_7_1_30_1 doi: 10.1016/j.ajhg.2012.07.023 – ident: e_1_2_7_1_38_1 doi: 10.1038/s41598-017-09019-1 – ident: e_1_2_7_1_23_1 doi: 10.1093/aje/kwm060 – ident: e_1_2_7_1_27_1 doi: 10.1056/NEJMoa1203039 – ident: e_1_2_7_1_37_1 doi: 10.1002/gepi.21981 – ident: e_1_2_7_1_40_1 doi: 10.1016/j.ajhg.2016.05.003 – ident: e_1_2_7_1_45_1 doi: 10.1038/ng.922 – ident: e_1_2_7_1_22_1 doi: 10.1016/j.ajhg.2017.03.004 – ident: e_1_2_7_1_4_1 doi: 10.1080/19485565.2013.774628 – ident: e_1_2_7_1_14_1 doi: 10.1038/s41467-018-04191-y – ident: e_1_2_7_1_10_1 – ident: e_1_2_7_1_13_1 doi: 10.1186/s12944-017-0591-6 – ident: e_1_2_7_1_15_1 doi: 10.1016/S1047-2797(03)00042-5 – ident: e_1_2_7_1_11_1 doi: 10.1371/journal.pgen.1003348 – ident: e_1_2_7_1_29_1 doi: 10.1093/hmg/ddx082 – ident: e_1_2_7_1_44_1 doi: 10.1016/S0140-6736(12)60312-2 – ident: e_1_2_7_1_35_1 doi: 10.1038/nrg2361 – ident: e_1_2_7_1_8_1 doi: 10.1016/j.ajhg.2017.06.015 – ident: e_1_2_7_1_26_1 doi: 10.1086/519795 – ident: e_1_2_7_1_39_1 doi: 10.1016/j.annepidem.2010.03.015 – ident: e_1_2_7_1_3_1 doi: 10.1002/gepi.22117 – ident: e_1_2_7_1_9_1 doi: 10.1101/287136 – ident: e_1_2_7_1_36_1 doi: 10.1002/gepi.22029 – ident: e_1_2_7_1_19_1 doi: 10.1016/j.annepidem.2010.05.006 – ident: e_1_2_7_1_32_1 doi: 10.1016/j.ajhg.2015.12.003 – ident: e_1_2_7_1_46_1 doi: 10.1038/ng.3097 – ident: e_1_2_7_1_2_1 doi: 10.1038/nature11632 – ident: e_1_2_7_1_6_1 doi: 10.1016/j.ajhg.2016.05.007 – ident: e_1_2_7_1_16_1 doi: 10.1371/journal.pgen.1006760 – start-page: db161150 year: 2017 ident: e_1_2_7_1_28_1 article-title: Genetics of type 2 diabetes in US Hispanic/Latino individuals: Results from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) publication-title: Diabetes |
| SSID | ssj0011495 |
| Score | 2.5114138 |
| Snippet | Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single‐nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are... Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single-nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are... Polygenic risk scores (PRSs) are typically constructed as weighted sums of risk allele counts of single nucleotide polymorphisms (SNPs) associated with a... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 50 |
| SubjectTerms | admixed populations Alleles Blood pressure Computer Simulation Gene frequency genetic diversity Genome-wide association studies Genome-Wide Association Study Genomes Hispanic Americans Hispanic or Latino - genetics Humans Linkage disequilibrium Linkage Disequilibrium - genetics Models, Genetic Multifactorial Inheritance - genetics Polygenic inheritance Polymorphism, Single Nucleotide - genetics Population genetics Risk Factors Single-nucleotide polymorphism Studies White People - genetics |
| Title | Generalizing polygenic risk scores from Europeans to Hispanics/Latinos |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.22166 https://www.ncbi.nlm.nih.gov/pubmed/30368908 https://www.proquest.com/docview/2166308562 https://www.proquest.com/docview/2126913129 https://pubmed.ncbi.nlm.nih.gov/PMC6330129 |
| Volume | 43 |
| WOSCitedRecordID | wos000455511900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1098-2272 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011495 issn: 0741-0395 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED7adINC2br-WL12RaN72cBNIlmSBX0ZW7MWSillhbwZW5ZaQ7FDnQyyv34ny3EXOgZlb4Y720K6032STt8BfNTcylwOdJhxxcPIShUq6tw9zYdWRFYrbptiE_LyMh6P1dUKnCzuwnh-iG7DzXlGM187B0-zuv9IGnprJsUxpUMhVmGNouFGPVj7dj26uehOERz69zScLm1I8Y6elPYf314OSE9Q5tNkyT9BbBOFRq__r_2b8KpFn-SLN5c3sGLKLXjp61HOt2DDb-IRfzdpG0YtKXXxCwMcmVT3czQ3lLt8dFI7AsyauPspZLGnX5NpRc4KnKVQre5f4LCXVb0DN6PTH1_PwrbwQqgRP4lQCs1UKoc5FSm1iDis4NpqJk0mMwxmqUYQE9uI21wiXssotbjGtm4xFOmBpWwXemVVmj0gWhuNkILHNDIR1yxGhEcZV1SrKJMmD-DTovcT3bKSu-IY94nnU6aJ66ek6acAjjrdiefi-KvWwWIQk9Yf68QJGKJLQQP40InRk9zxSFqaauZ0qFBDhq0N4K0f8-43LtDHahAHIJesoVNwLN3LkrK4a9i6BWOD5pufG2v4R8uT76dX583Tu-co78M6ojjlU8kPoDd9mJn38EL_nBb1wyGsynF82HrGb-N6ELI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BB9qkiY_xFRhgBC8ghbZ2bMePCFY6UaoJbdLeosSJWaQpqZZu0vjrdxenGdUQEuItki9f9p3v5_P5dwDvrHQ61yMbZtLIMHLahIaTuaf52KnIWSNdW2xCz-fx8bE56HJz6CyM54foA25kGe18TQZOAenhNWvoz2JRfuR8rNRt2IhQj-QANr78mBzN-m0Egv-eh5Pyhozs-Un58PrudY90A2bezJb8HcW2bmhy_z9_4AHc6_An--QV5iHcKqoduOsrUl7uwLYP4zF_OukRTDpa6vIXuji2qE8vUeGwnTLSWUMUmA2jEypsFdVv2LJm0xLnKRRrhjMc-KpuHsPRZO_w8zTsSi-EFhGUCrWywqR6nHOVcoeYwylpnRW6yHSG7iy1CGNiF0mXa0RsGecOV9mOlkORHTkunsCgqqviGTBrC4ugQsY8KiJpRYwYjwtpuDVRpos8gPer7k9sx0tO5TFOE8-ozBPqp6TtpwDe9rILz8bxR6nd1SgmnUU2CTUIxJeKB_Cmb0Zbog2StCrqc5LhyowFfm0AT_2g968hVx-bURyAXlOHXoB4utdbqvKk5etWQozaZ35o1eEvX5583TvYb6-e_4vwa9icHn6fJbP9-bcXsIWYzvjE8l0YLM_Oi5dwx14sy-bsVWcgV78ZE7o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_a9QwFH_opkMYU6dz3aZG9JcJ9e6SJml-FLe64XEc4mC_lTZNtsJoj_U22P76vTS9zmMiiL8V3uu35L28T5KXzwP4pLmVhRzqMOeKh5GVKlTUuXtWjKyIrFbctsUm5GQSn56qaZeb487CeH6IfsHNeUY7XjsHN7PCDu5ZQ8_MrPxC6UiIx7AacSXQL1cPfiYn434bwcF_z8Pp8oYU7_lJ6eD-7uWI9ABmPsyW_B3FtmEoef6fP_ACNjr8Sb56g3kJj0y1CU99RcqbTVj3y3jEn056BUlHS13eYogjs_riBg0O5S4jnTSOArMh7oQKWazqN2Rek6MSxylUawZj7Piqbl7DSXL469tR2JVeCDUiKBFKoZnK5KigIqMWMYcVXFvNpMlljuEs0whjYhtxW0hEbDmlFmfZ1k2HIj20lG3BSlVXZhuI1kYjqOAxjUzENYsR41HGFdUqyqUpAthfNH-qO15yVx7jIvWMyjR17ZS27RTAx1535tk4_qi1t-jFtPPIJnUChvhS0AA-9GL0JbdBklWmvnI6VKgRw68N4I3v9P41LtTHahgHIJfMoVdwPN3Lkqo8b_m6BWPD9pmfW3P4y5en3w-nx-3Vzr8ov4e16UGSjo8nP3bhGUI65fPK92Blfnll3sITfT0vm8t3nX_cAS7lEzU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalizing+Polygenic+Risk+Scores+from+Europeans+to+Hispanics%2FLatinos&rft.jtitle=Genetic+epidemiology&rft.au=Grinde%2C+Kelsey+E.&rft.au=Qi%2C+Qibin&rft.au=Thornton%2C+Timothy+A.&rft.au=Liu%2C+Simin&rft.date=2019-02-01&rft.issn=0741-0395&rft.eissn=1098-2272&rft.volume=43&rft.issue=1&rft.spage=50&rft.epage=62&rft_id=info:doi/10.1002%2Fgepi.22166&rft_id=info%3Apmid%2F30368908&rft.externalDocID=PMC6330129 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon |