Generalizing polygenic risk scores from Europeans to Hispanics/Latinos

Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single‐nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome‐Wide Association Studies (GWASs), and the majority of which has been performed in l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Genetic epidemiology Ročník 43; číslo 1; s. 50 - 62
Hlavní autoři: Grinde, Kelsey E., Qi, Qibin, Thornton, Timothy A., Liu, Simin, Shadyab, Aladdin H., Chan, Kei Hang K., Reiner, Alexander P., Sofer, Tamar
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.02.2019
Témata:
ISSN:0741-0395, 1098-2272, 1098-2272
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single‐nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome‐Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype‐trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n = 12 , 803). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women’s Health Initiative (WHI, n = 3 , 582). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non‐EA GWAS results to estimate weights improved results.
AbstractList Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single-nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome-Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype-trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL, ). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women's Health Initiative (WHI, ). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non-EA GWAS results to estimate weights improved results.
Polygenic risk scores (PRSs) are typically constructed as weighted sums of risk allele counts of single nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome-Wide Association Studies (GWASs), the majority of which have been performed in large populations of European Ancestry (EA) individuals. While many genotype-trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: the Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n = 12,803). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women’s Health Initiative (WHI, n = 3,582). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, use of EA GWASs for weight estimation was suboptimal. Using non-EA GWAS results to estimate weights improved results.
Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single‐nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome‐Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype‐trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n = 12 , 803). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women’s Health Initiative (WHI, n = 3 , 582). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non‐EA GWAS results to estimate weights improved results.
Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single‐nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome‐Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype‐trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n=12,803). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women’s Health Initiative (WHI, n=3,582). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non‐EA GWAS results to estimate weights improved results.
Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single-nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome-Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype-trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n = 12 , 803 ). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women's Health Initiative (WHI, n = 3 , 582 ). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non-EA GWAS results to estimate weights improved results.Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single-nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically constructed based on published results from Genome-Wide Association Studies (GWASs), and the majority of which has been performed in large populations of European ancestry (EA) individuals. Although many genotype-trait associations have generalized across populations, the optimal choice of SNPs and weights for PRSs may differ between populations due to different linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for PRS construction, using GWAS results from both large EA studies and a smaller study in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n = 12 , 803 ). We consider multiple approaches for selecting SNPs and for computing SNP weights. We study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from the Women's Health Initiative (WHI, n = 3 , 582 ). We support our investigation with simulation studies of potential genetic architectures in a single locus. We observed that selecting variants based on EA GWASs generally performs well, except for blood pressure trait. However, the use of EA GWASs for weight estimation was suboptimal. Using non-EA GWAS results to estimate weights improved results.
Author Shadyab, Aladdin H.
Sofer, Tamar
Qi, Qibin
Thornton, Timothy A.
Liu, Simin
Grinde, Kelsey E.
Chan, Kei Hang K.
Reiner, Alexander P.
AuthorAffiliation 6 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
1 Department of Biostatistics, University of Washington, Seattle, WA, USA
3 Department of Epidemiology, Brown University, Providence, RI, USA
5 Departments of Biomedical Sciences and Electronic Engineering, City University of Hong Kong, HKSAR
2 Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
4 Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA, USA
8 Department of Medicine, Harvard Medical School, Boston, MA, USA
7 Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
AuthorAffiliation_xml – name: 1 Department of Biostatistics, University of Washington, Seattle, WA, USA
– name: 7 Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
– name: 2 Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
– name: 4 Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA, USA
– name: 3 Department of Epidemiology, Brown University, Providence, RI, USA
– name: 8 Department of Medicine, Harvard Medical School, Boston, MA, USA
– name: 6 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
– name: 5 Departments of Biomedical Sciences and Electronic Engineering, City University of Hong Kong, HKSAR
Author_xml – sequence: 1
  givenname: Kelsey E.
  surname: Grinde
  fullname: Grinde, Kelsey E.
  organization: University of Washington
– sequence: 2
  givenname: Qibin
  surname: Qi
  fullname: Qi, Qibin
  organization: Albert Einstein College of Medicine
– sequence: 3
  givenname: Timothy A.
  surname: Thornton
  fullname: Thornton, Timothy A.
  organization: University of Washington
– sequence: 4
  givenname: Simin
  surname: Liu
  fullname: Liu, Simin
  organization: Brown University
– sequence: 5
  givenname: Aladdin H.
  surname: Shadyab
  fullname: Shadyab, Aladdin H.
  organization: University of California San Diego
– sequence: 6
  givenname: Kei Hang K.
  surname: Chan
  fullname: Chan, Kei Hang K.
  organization: City University of Hong Kong
– sequence: 7
  givenname: Alexander P.
  surname: Reiner
  fullname: Reiner, Alexander P.
  organization: Fred Hutchinson Cancer Research Center
– sequence: 8
  givenname: Tamar
  orcidid: 0000-0001-8520-8860
  surname: Sofer
  fullname: Sofer, Tamar
  email: tsofer@bwh.harvard.edu
  organization: Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30368908$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAUhC1URLeFCz8AReKCKqV9z07s-IJUVdttpZXgAGfL67UXl6wd7AS0_PompEVQIU4-vG9G45kTchRisIS8RjhHAHqxs50_pxQ5f0YWCLIpKRX0iCxAVFgCk_UxOcn5DgCxkvULcsyA8UZCsyDXKxts0q3_6cOu6GJ72NngTZF8_lpkE5PNhUtxXyyHFDurQy76WNz43OkRyxdr3fsQ80vy3Ok221cP7yn5fL38dHVTrj-sbq8u16WpseKl4IZJLXBLuaYO69rx2jjDhN2IjcBGGyl446rabQUi3VDqJAgnOfDKgKPslLyffbths7dbY0M_hldd8nudDipqr_6-BP9F7eJ3xRkDpHI0ePdgkOK3weZe7X02tm11sHHIiiLlEtmMvn2C3sUhhfF7auqaQVPzKdGbPxP9jvJY8QjADJgUc07WKeP7sbU4BfStQlDTimpaUf1acZScPZE8uv4Txhn-4Vt7-A-pVsuPt7PmHuyjrP4
CitedBy_id crossref_primary_10_1016_j_ajhg_2020_04_002
crossref_primary_10_1038_s42003_022_03812_z
crossref_primary_10_1038_s41588_022_01054_7
crossref_primary_10_1016_j_jaci_2025_03_012
crossref_primary_10_1017_S096318012400046X
crossref_primary_10_1038_s42003_023_05352_6
crossref_primary_10_1161_CIRCRESAHA_120_315893
crossref_primary_10_1186_s13195_023_01298_3
crossref_primary_10_1016_j_cell_2020_06_045
crossref_primary_10_1186_s12920_023_01598_5
crossref_primary_10_1038_s41588_021_00961_5
crossref_primary_10_3389_fgene_2023_1099541
crossref_primary_10_1371_journal_pgen_1010443
crossref_primary_10_1016_j_jpsychires_2020_10_026
crossref_primary_10_1093_bib_bbac459
crossref_primary_10_1186_s12881_020_01068_0
crossref_primary_10_1146_annurev_biodatasci_020722_014310
crossref_primary_10_1038_s42003_024_06742_0
crossref_primary_10_1002_gepi_22495
crossref_primary_10_3390_ijms241311209
crossref_primary_10_3390_jpm12020166
crossref_primary_10_1186_s13073_020_00742_5
crossref_primary_10_1007_s13311_021_01014_9
crossref_primary_10_1016_j_xhgg_2025_100486
crossref_primary_10_1038_s41467_023_41819_0
crossref_primary_10_1038_s41467_020_17719_y
crossref_primary_10_3390_genes12010055
crossref_primary_10_1016_j_ajhg_2019_08_012
crossref_primary_10_1080_08927014_2020_1856821
crossref_primary_10_1038_s41467_023_38990_9
crossref_primary_10_3389_fgene_2021_720750
crossref_primary_10_1002_jcv2_12105
crossref_primary_10_1016_j_biopsych_2018_12_015
crossref_primary_10_3389_fgene_2025_1556907
crossref_primary_10_1038_s41588_022_01036_9
crossref_primary_10_1186_s40478_020_01038_w
crossref_primary_10_1016_j_procs_2021_01_015
crossref_primary_10_1016_j_lana_2025_101198
crossref_primary_10_1038_s41467_022_31080_2
crossref_primary_10_1016_j_xhgg_2025_100451
crossref_primary_10_3389_fnagi_2022_853695
crossref_primary_10_1038_s41467_021_21287_0
crossref_primary_10_3389_fgene_2021_642327
crossref_primary_10_1007_s10519_019_09982_7
crossref_primary_10_1016_j_cell_2019_08_051
crossref_primary_10_1007_s00439_024_02710_0
crossref_primary_10_1007_s00784_019_03146_x
crossref_primary_10_1017_S0140525X22002266
crossref_primary_10_1038_s41398_020_00930_2
crossref_primary_10_3390_ijms20164004
crossref_primary_10_1038_s41467_019_11112_0
crossref_primary_10_1016_j_pnpbp_2023_110932
crossref_primary_10_1007_s13571_023_00310_y
crossref_primary_10_12688_f1000research_76218_2
crossref_primary_10_12688_f1000research_76218_1
crossref_primary_10_1038_s41391_022_00497_7
crossref_primary_10_1371_journal_pgen_1009670
crossref_primary_10_1038_s41431_023_01517_3
crossref_primary_10_1038_s41598_024_62945_9
crossref_primary_10_1007_s00251_022_01290_5
crossref_primary_10_1038_s41467_023_38930_7
crossref_primary_10_3389_fpubh_2023_1111321
crossref_primary_10_1002_gepi_22382
crossref_primary_10_1038_s41398_022_02029_2
Cites_doi 10.1371/journal.pone.0036473
10.1164/rccm.201707-1493OC
10.1038/nature04226
10.1038/nature10405
10.1002/gepi.22083
10.1016/j.ajhg.2015.09.001
10.1371/journal.pgen.1006493
10.1086/321275
10.1038/nature14177
10.1371/journal.pone.0179238
10.1371/journal.pmed.1001383
10.1016/j.ajhg.2015.12.001
10.1093/hmg/ddx024
10.1038/nature14132
10.1016/j.ajhg.2016.05.005
10.1016/j.ajhg.2012.07.023
10.1038/s41598-017-09019-1
10.1093/aje/kwm060
10.1056/NEJMoa1203039
10.1002/gepi.21981
10.1016/j.ajhg.2016.05.003
10.1038/ng.922
10.1016/j.ajhg.2017.03.004
10.1080/19485565.2013.774628
10.1038/s41467-018-04191-y
10.1186/s12944-017-0591-6
10.1016/S1047-2797(03)00042-5
10.1371/journal.pgen.1003348
10.1093/hmg/ddx082
10.1016/S0140-6736(12)60312-2
10.1038/nrg2361
10.1016/j.ajhg.2017.06.015
10.1086/519795
10.1016/j.annepidem.2010.03.015
10.1002/gepi.22117
10.1101/287136
10.1002/gepi.22029
10.1016/j.annepidem.2010.05.006
10.1016/j.ajhg.2015.12.003
10.1038/ng.3097
10.1038/nature11632
10.1016/j.ajhg.2016.05.007
10.1371/journal.pgen.1006760
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/gepi.22166
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
EISSN 1098-2272
EndPage 62
ExternalDocumentID PMC6330129
30368908
10_1002_gepi_22166
GEPI22166
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Diabetes and Digestive and Kidney Diseases
– fundername: University of Illinois at Chicago
  funderid: HHSN268201300003I/N01‐HC‐65236
– fundername: San Diego State University
  funderid: HHSN268201300005I/N01‐HC‐65237
– fundername: National Institute of Neurological Disorders and Stroke
– fundername: National Heart, Lung, and Blood Institute (NHLBI)
  funderid: HHSN268201300001I/N01‐HC‐65233; HHSN268201300005C; AM03 and MOD03; HL120393‐03S1; 1R35HL135818 HHSN268201100046C; HHSN268201100001C; HHSN268201100002C; HHSN268201100003C; HHSN268201100004C; HHSC271201100004C
– fundername: NIH Institution‐Office of Dietary Supplements
– fundername: National Institute of Dental and Craniofacial Research
– fundername: National Science Foundation
  funderid: DGE‐1256082
– fundername: University of Miami
  funderid: HHSN268201300004I/N01‐HC‐65234
– fundername: U.S. Department of Health and Human Services
– fundername: NHLBI NIH HHS
  grantid: HL120393-03S1
– fundername: NHLBI NIH HHS
  grantid: HHSN268201100003C
– fundername: NIDCD NIH HHS
– fundername: NIDDK NIH HHS
– fundername: NIDCR NIH HHS
– fundername: NHLBI NIH HHS
  grantid: R01 HL120393
– fundername: NHLBI NIH HHS
  grantid: HHSN268201300003I
– fundername: NIMHD NIH HHS
– fundername: NHLBI NIH HHS
  grantid: N01 HC065236
– fundername: NHGRI NIH HHS
  grantid: R01 HG005827
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M66
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
XG1
XV2
ZGI
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5146-76c39a71d26a2f155f65cfc37eb7b718ac9768f45fd7112b22f907f96064c0f23
IEDL.DBID DRFUL
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455511900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0741-0395
1098-2272
IngestDate Tue Nov 04 01:39:51 EST 2025
Thu Oct 02 07:09:46 EDT 2025
Tue Oct 07 05:44:10 EDT 2025
Mon Jul 21 06:08:12 EDT 2025
Tue Nov 18 21:52:59 EST 2025
Sat Nov 29 06:32:59 EST 2025
Wed Jan 22 16:27:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords genetic diversity
admixed populations
linkage disequilibrium
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5146-76c39a71d26a2f155f65cfc37eb7b718ac9768f45fd7112b22f907f96064c0f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8520-8860
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6330129
PMID 30368908
PQID 2166308562
PQPubID 105460
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6330129
proquest_miscellaneous_2126913129
proquest_journals_2166308562
pubmed_primary_30368908
crossref_citationtrail_10_1002_gepi_22166
crossref_primary_10_1002_gepi_22166
wiley_primary_10_1002_gepi_22166_GEPI22166
PublicationCentury 2000
PublicationDate February 2019
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Genetic epidemiology
PublicationTitleAlternate Genet Epidemiol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_1_10_1
e_1_2_7_1_33_1
e_1_2_7_1_11_1
e_1_2_7_1_32_1
e_1_2_7_1_12_1
e_1_2_7_1_35_1
e_1_2_7_1_13_1
e_1_2_7_1_34_1
e_1_2_7_1_30_1
e_1_2_7_1_31_1
e_1_2_7_1_5_1
e_1_2_7_1_29_1
e_1_2_7_1_6_1
e_1_2_7_1_7_1
e_1_2_7_1_8_1
e_1_2_7_1_25_1
e_1_2_7_1_2_1
e_1_2_7_1_26_1
e_1_2_7_1_3_1
e_1_2_7_1_27_1
e_1_2_7_1_4_1
e_1_2_7_1_21_1
e_1_2_7_1_44_1
e_1_2_7_1_22_1
e_1_2_7_1_43_1
e_1_2_7_1_23_1
e_1_2_7_1_46_1
e_1_2_7_1_24_1
e_1_2_7_1_45_1
e_1_2_7_1_9_1
e_1_2_7_1_40_1
e_1_2_7_1_42_1
e_1_2_7_1_20_1
e_1_2_7_1_41_1
e_1_2_7_1_18_1
e_1_2_7_1_19_1
Qi Q. (e_1_2_7_1_28_1) 2017
e_1_2_7_1_14_1
e_1_2_7_1_37_1
e_1_2_7_1_15_1
e_1_2_7_1_36_1
e_1_2_7_1_16_1
e_1_2_7_1_39_1
e_1_2_7_1_17_1
e_1_2_7_1_38_1
References_xml – ident: e_1_2_7_1_24_1
  doi: 10.1371/journal.pone.0036473
– ident: e_1_2_7_1_5_1
  doi: 10.1164/rccm.201707-1493OC
– ident: e_1_2_7_1_41_1
  doi: 10.1038/nature04226
– ident: e_1_2_7_1_17_1
  doi: 10.1038/nature10405
– ident: e_1_2_7_1_21_1
  doi: 10.1002/gepi.22083
– ident: e_1_2_7_1_42_1
  doi: 10.1016/j.ajhg.2015.09.001
– ident: e_1_2_7_1_33_1
  doi: 10.1371/journal.pgen.1006493
– ident: e_1_2_7_1_25_1
  doi: 10.1086/321275
– ident: e_1_2_7_1_20_1
  doi: 10.1038/nature14177
– ident: e_1_2_7_1_31_1
  doi: 10.1371/journal.pone.0179238
– ident: e_1_2_7_1_43_1
  doi: 10.1371/journal.pmed.1001383
– ident: e_1_2_7_1_7_1
  doi: 10.1016/j.ajhg.2015.12.001
– ident: e_1_2_7_1_18_1
  doi: 10.1093/hmg/ddx024
– ident: e_1_2_7_1_34_1
  doi: 10.1038/nature14132
– ident: e_1_2_7_1_12_1
  doi: 10.1016/j.ajhg.2016.05.005
– ident: e_1_2_7_1_30_1
  doi: 10.1016/j.ajhg.2012.07.023
– ident: e_1_2_7_1_38_1
  doi: 10.1038/s41598-017-09019-1
– ident: e_1_2_7_1_23_1
  doi: 10.1093/aje/kwm060
– ident: e_1_2_7_1_27_1
  doi: 10.1056/NEJMoa1203039
– ident: e_1_2_7_1_37_1
  doi: 10.1002/gepi.21981
– ident: e_1_2_7_1_40_1
  doi: 10.1016/j.ajhg.2016.05.003
– ident: e_1_2_7_1_45_1
  doi: 10.1038/ng.922
– ident: e_1_2_7_1_22_1
  doi: 10.1016/j.ajhg.2017.03.004
– ident: e_1_2_7_1_4_1
  doi: 10.1080/19485565.2013.774628
– ident: e_1_2_7_1_14_1
  doi: 10.1038/s41467-018-04191-y
– ident: e_1_2_7_1_10_1
– ident: e_1_2_7_1_13_1
  doi: 10.1186/s12944-017-0591-6
– ident: e_1_2_7_1_15_1
  doi: 10.1016/S1047-2797(03)00042-5
– ident: e_1_2_7_1_11_1
  doi: 10.1371/journal.pgen.1003348
– ident: e_1_2_7_1_29_1
  doi: 10.1093/hmg/ddx082
– ident: e_1_2_7_1_44_1
  doi: 10.1016/S0140-6736(12)60312-2
– ident: e_1_2_7_1_35_1
  doi: 10.1038/nrg2361
– ident: e_1_2_7_1_8_1
  doi: 10.1016/j.ajhg.2017.06.015
– ident: e_1_2_7_1_26_1
  doi: 10.1086/519795
– ident: e_1_2_7_1_39_1
  doi: 10.1016/j.annepidem.2010.03.015
– ident: e_1_2_7_1_3_1
  doi: 10.1002/gepi.22117
– ident: e_1_2_7_1_9_1
  doi: 10.1101/287136
– ident: e_1_2_7_1_36_1
  doi: 10.1002/gepi.22029
– ident: e_1_2_7_1_19_1
  doi: 10.1016/j.annepidem.2010.05.006
– ident: e_1_2_7_1_32_1
  doi: 10.1016/j.ajhg.2015.12.003
– ident: e_1_2_7_1_46_1
  doi: 10.1038/ng.3097
– ident: e_1_2_7_1_2_1
  doi: 10.1038/nature11632
– ident: e_1_2_7_1_6_1
  doi: 10.1016/j.ajhg.2016.05.007
– ident: e_1_2_7_1_16_1
  doi: 10.1371/journal.pgen.1006760
– start-page: db161150
  year: 2017
  ident: e_1_2_7_1_28_1
  article-title: Genetics of type 2 diabetes in US Hispanic/Latino individuals: Results from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL)
  publication-title: Diabetes
SSID ssj0011495
Score 2.5114138
Snippet Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single‐nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are...
Polygenic risk scores (PRSs) are weighted sums of risk allele counts of single-nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are...
Polygenic risk scores (PRSs) are typically constructed as weighted sums of risk allele counts of single nucleotide polymorphisms (SNPs) associated with a...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 50
SubjectTerms admixed populations
Alleles
Blood pressure
Computer Simulation
Gene frequency
genetic diversity
Genome-wide association studies
Genome-Wide Association Study
Genomes
Hispanic Americans
Hispanic or Latino - genetics
Humans
Linkage disequilibrium
Linkage Disequilibrium - genetics
Models, Genetic
Multifactorial Inheritance - genetics
Polygenic inheritance
Polymorphism, Single Nucleotide - genetics
Population genetics
Risk Factors
Single-nucleotide polymorphism
Studies
White People - genetics
Title Generalizing polygenic risk scores from Europeans to Hispanics/Latinos
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.22166
https://www.ncbi.nlm.nih.gov/pubmed/30368908
https://www.proquest.com/docview/2166308562
https://www.proquest.com/docview/2126913129
https://pubmed.ncbi.nlm.nih.gov/PMC6330129
Volume 43
WOSCitedRecordID wos000455511900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1098-2272
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011495
  issn: 0741-0395
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED7adINC2br-WL12RaN72cBNIlmSBX0ZW7MWSillhbwZW5ZaQ7FDnQyyv34ny3EXOgZlb4Y720K6032STt8BfNTcylwOdJhxxcPIShUq6tw9zYdWRFYrbptiE_LyMh6P1dUKnCzuwnh-iG7DzXlGM187B0-zuv9IGnprJsUxpUMhVmGNouFGPVj7dj26uehOERz69zScLm1I8Y6elPYf314OSE9Q5tNkyT9BbBOFRq__r_2b8KpFn-SLN5c3sGLKLXjp61HOt2DDb-IRfzdpG0YtKXXxCwMcmVT3czQ3lLt8dFI7AsyauPspZLGnX5NpRc4KnKVQre5f4LCXVb0DN6PTH1_PwrbwQqgRP4lQCs1UKoc5FSm1iDis4NpqJk0mMwxmqUYQE9uI21wiXssotbjGtm4xFOmBpWwXemVVmj0gWhuNkILHNDIR1yxGhEcZV1SrKJMmD-DTovcT3bKSu-IY94nnU6aJ66ek6acAjjrdiefi-KvWwWIQk9Yf68QJGKJLQQP40InRk9zxSFqaauZ0qFBDhq0N4K0f8-43LtDHahAHIJesoVNwLN3LkrK4a9i6BWOD5pufG2v4R8uT76dX583Tu-co78M6ojjlU8kPoDd9mJn38EL_nBb1wyGsynF82HrGb-N6ELI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BB9qkiY_xFRhgBC8ghbZ2bMePCFY6UaoJbdLeosSJWaQpqZZu0vjrdxenGdUQEuItki9f9p3v5_P5dwDvrHQ61yMbZtLIMHLahIaTuaf52KnIWSNdW2xCz-fx8bE56HJz6CyM54foA25kGe18TQZOAenhNWvoz2JRfuR8rNRt2IhQj-QANr78mBzN-m0Egv-eh5Pyhozs-Un58PrudY90A2bezJb8HcW2bmhy_z9_4AHc6_An--QV5iHcKqoduOsrUl7uwLYP4zF_OukRTDpa6vIXuji2qE8vUeGwnTLSWUMUmA2jEypsFdVv2LJm0xLnKRRrhjMc-KpuHsPRZO_w8zTsSi-EFhGUCrWywqR6nHOVcoeYwylpnRW6yHSG7iy1CGNiF0mXa0RsGecOV9mOlkORHTkunsCgqqviGTBrC4ugQsY8KiJpRYwYjwtpuDVRpos8gPer7k9sx0tO5TFOE8-ozBPqp6TtpwDe9rILz8bxR6nd1SgmnUU2CTUIxJeKB_Cmb0Zbog2StCrqc5LhyowFfm0AT_2g968hVx-bURyAXlOHXoB4utdbqvKk5etWQozaZ35o1eEvX5583TvYb6-e_4vwa9icHn6fJbP9-bcXsIWYzvjE8l0YLM_Oi5dwx14sy-bsVWcgV78ZE7o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_a9QwFH_opkMYU6dz3aZG9JcJ9e6SJml-FLe64XEc4mC_lTZNtsJoj_U22P76vTS9zmMiiL8V3uu35L28T5KXzwP4pLmVhRzqMOeKh5GVKlTUuXtWjKyIrFbctsUm5GQSn56qaZeb487CeH6IfsHNeUY7XjsHN7PCDu5ZQ8_MrPxC6UiIx7AacSXQL1cPfiYn434bwcF_z8Pp8oYU7_lJ6eD-7uWI9ABmPsyW_B3FtmEoef6fP_ACNjr8Sb56g3kJj0y1CU99RcqbTVj3y3jEn056BUlHS13eYogjs_riBg0O5S4jnTSOArMh7oQKWazqN2Rek6MSxylUawZj7Piqbl7DSXL469tR2JVeCDUiKBFKoZnK5KigIqMWMYcVXFvNpMlljuEs0whjYhtxW0hEbDmlFmfZ1k2HIj20lG3BSlVXZhuI1kYjqOAxjUzENYsR41HGFdUqyqUpAthfNH-qO15yVx7jIvWMyjR17ZS27RTAx1535tk4_qi1t-jFtPPIJnUChvhS0AA-9GL0JbdBklWmvnI6VKgRw68N4I3v9P41LtTHahgHIJfMoVdwPN3Lkqo8b_m6BWPD9pmfW3P4y5en3w-nx-3Vzr8ov4e16UGSjo8nP3bhGUI65fPK92Blfnll3sITfT0vm8t3nX_cAS7lEzU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalizing+Polygenic+Risk+Scores+from+Europeans+to+Hispanics%2FLatinos&rft.jtitle=Genetic+epidemiology&rft.au=Grinde%2C+Kelsey+E.&rft.au=Qi%2C+Qibin&rft.au=Thornton%2C+Timothy+A.&rft.au=Liu%2C+Simin&rft.date=2019-02-01&rft.issn=0741-0395&rft.eissn=1098-2272&rft.volume=43&rft.issue=1&rft.spage=50&rft.epage=62&rft_id=info:doi/10.1002%2Fgepi.22166&rft_id=info%3Apmid%2F30368908&rft.externalDocID=PMC6330129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon