A model of supply‐chain decisions for resource sharing with an application to ventilator allocation to combat COVID‐19

We present a stochastic optimization model for allocating and sharing a critical resource in the case of a pandemic. The demand for different entities peaks at different times, and an initial inventory for a central agency are to be allocated. The entities (states) may share the critical resource wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Naval research logistics Jg. 67; H. 5; S. 303 - 320
Hauptverfasser: Mehrotra, Sanjay, Rahimian, Hamed, Barah, Masoud, Luo, Fengqiao, Schantz, Karolina
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.08.2020
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0894-069X, 1520-6750, 1520-6750
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present a stochastic optimization model for allocating and sharing a critical resource in the case of a pandemic. The demand for different entities peaks at different times, and an initial inventory for a central agency are to be allocated. The entities (states) may share the critical resource with a different state under a risk‐averse condition. The model is applied to study the allocation of ventilator inventory in the COVID‐19 pandemic by FEMA to different U.S. states. Findings suggest that if less than 60% of the ventilator inventory is available for non‐COVID‐19 patients, FEMA's stockpile of 20 000 ventilators (as of March 23, 2020) would be nearly adequate to meet the projected needs in slightly above average demand scenarios. However, when more than 75% of the available ventilator inventory must be reserved for non‐COVID‐19 patients, various degrees of shortfall are expected. In a severe case, where the demand is concentrated in the top‐most quartile of the forecast confidence interval and states are not willing to share their stockpile of ventilators, the total shortfall over the planning horizon (until May 31, 2020) is about 232 000 ventilator days, with a peak shortfall of 17 200 ventilators on April 19, 2020. Results are also reported for a worst‐case where the demand is at the upper limit of the 95% confidence interval. An important finding of this study is that a central agency (FEMA) can act as a coordinator for sharing critical resources that are in short supply over time to add efficiency in the system. Moreover, through properly managing risk‐aversion of different entities (states) additional efficiency can be gained. An additional implication is that ramping up production early in the planning cycle allows to reduce shortfall significantly. An optimal timing of this production ramp‐up consideration can be based on a cost‐benefit analysis.
AbstractList We present a stochastic optimization model for allocating and sharing a critical resource in the case of a pandemic. The demand for different entities peaks at different times, and an initial inventory for a central agency are to be allocated. The entities (states) may share the critical resource with a different state under a risk‐averse condition. The model is applied to study the allocation of ventilator inventory in the COVID‐19 pandemic by FEMA to different U.S. states. Findings suggest that if less than 60% of the ventilator inventory is available for non‐COVID‐19 patients, FEMA's stockpile of 20 000 ventilators (as of March 23, 2020) would be nearly adequate to meet the projected needs in slightly above average demand scenarios. However, when more than 75% of the available ventilator inventory must be reserved for non‐COVID‐19 patients, various degrees of shortfall are expected. In a severe case, where the demand is concentrated in the top‐most quartile of the forecast confidence interval and states are not willing to share their stockpile of ventilators, the total shortfall over the planning horizon (until May 31, 2020) is about 232 000 ventilator days, with a peak shortfall of 17 200 ventilators on April 19, 2020. Results are also reported for a worst‐case where the demand is at the upper limit of the 95% confidence interval. An important finding of this study is that a central agency (FEMA) can act as a coordinator for sharing critical resources that are in short supply over time to add efficiency in the system. Moreover, through properly managing risk‐aversion of different entities (states) additional efficiency can be gained. An additional implication is that ramping up production early in the planning cycle allows to reduce shortfall significantly. An optimal timing of this production ramp‐up consideration can be based on a cost‐benefit analysis.
We present a stochastic optimization model for allocating and sharing a critical resource in the case of a pandemic. The demand for different entities peaks at different times, and an initial inventory for a central agency are to be allocated. The entities (states) may share the critical resource with a different state under a risk-averse condition. The model is applied to study the allocation of ventilator inventory in the COVID-19 pandemic by FEMA to different U.S. states. Findings suggest that if less than 60% of the ventilator inventory is available for non-COVID-19 patients, FEMA's stockpile of 20 000 ventilators (as of March 23, 2020) would be nearly adequate to meet the projected needs in slightly above average demand scenarios. However, when more than 75% of the available ventilator inventory must be reserved for non-COVID-19 patients, various degrees of shortfall are expected. In a severe case, where the demand is concentrated in the top-most quartile of the forecast confidence interval and states are not willing to share their stockpile of ventilators, the total shortfall over the planning horizon (until May 31, 2020) is about 232 000 ventilator days, with a peak shortfall of 17 200 ventilators on April 19, 2020. Results are also reported for a worst-case where the demand is at the upper limit of the 95% confidence interval. An important finding of this study is that a central agency (FEMA) can act as a coordinator for sharing critical resources that are in short supply over time to add efficiency in the system. Moreover, through properly managing risk-aversion of different entities (states) additional efficiency can be gained. An additional implication is that ramping up production early in the planning cycle allows to reduce shortfall significantly. An optimal timing of this production ramp-up consideration can be based on a cost-benefit analysis.We present a stochastic optimization model for allocating and sharing a critical resource in the case of a pandemic. The demand for different entities peaks at different times, and an initial inventory for a central agency are to be allocated. The entities (states) may share the critical resource with a different state under a risk-averse condition. The model is applied to study the allocation of ventilator inventory in the COVID-19 pandemic by FEMA to different U.S. states. Findings suggest that if less than 60% of the ventilator inventory is available for non-COVID-19 patients, FEMA's stockpile of 20 000 ventilators (as of March 23, 2020) would be nearly adequate to meet the projected needs in slightly above average demand scenarios. However, when more than 75% of the available ventilator inventory must be reserved for non-COVID-19 patients, various degrees of shortfall are expected. In a severe case, where the demand is concentrated in the top-most quartile of the forecast confidence interval and states are not willing to share their stockpile of ventilators, the total shortfall over the planning horizon (until May 31, 2020) is about 232 000 ventilator days, with a peak shortfall of 17 200 ventilators on April 19, 2020. Results are also reported for a worst-case where the demand is at the upper limit of the 95% confidence interval. An important finding of this study is that a central agency (FEMA) can act as a coordinator for sharing critical resources that are in short supply over time to add efficiency in the system. Moreover, through properly managing risk-aversion of different entities (states) additional efficiency can be gained. An additional implication is that ramping up production early in the planning cycle allows to reduce shortfall significantly. An optimal timing of this production ramp-up consideration can be based on a cost-benefit analysis.
Author Barah, Masoud
Schantz, Karolina
Mehrotra, Sanjay
Luo, Fengqiao
Rahimian, Hamed
AuthorAffiliation 1 Department of Industrial Engineering and Management Sciences Northwestern University Evanston Illinois USA
AuthorAffiliation_xml – name: 1 Department of Industrial Engineering and Management Sciences Northwestern University Evanston Illinois USA
Author_xml – sequence: 1
  givenname: Sanjay
  orcidid: 0000-0003-1106-1901
  surname: Mehrotra
  fullname: Mehrotra, Sanjay
  email: mehrotra@northwestern.edu
  organization: Northwestern University
– sequence: 2
  givenname: Hamed
  surname: Rahimian
  fullname: Rahimian, Hamed
  organization: Northwestern University
– sequence: 3
  givenname: Masoud
  surname: Barah
  fullname: Barah, Masoud
  organization: Northwestern University
– sequence: 4
  givenname: Fengqiao
  surname: Luo
  fullname: Luo, Fengqiao
  organization: Northwestern University
– sequence: 5
  givenname: Karolina
  surname: Schantz
  fullname: Schantz, Karolina
  organization: Northwestern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38607793$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS1URKeFBS-ALLGBRdrrxHGSDdJo-KtU0Q1U7CzHuem4cuzBTqYaVjwCz8iT4OlM-alg5cX9zvG59xyRA-cdEvKUwQkDyE-dWp_krIHyAZmxModMVCUckBnUDc9ANJ8PyVGM1wAgOJSPyGFRC6iqppiRr3M6-A4t9T2N02plNz--fddLZRztUJtovIu094EGjH4KGmlcqmDcFb0x45IqR1USGa3GRNLR0zW60Vg1Jomy1v8eaD-0aqSLi8uz1-kP1jwmD3tlIz7Zv8fk09s3Hxfvs_OLd2eL-XmmS8bLjDHBsO5R9z3TkLe1btN2jClUoAXjnGFbd9BUHBqV99B1GoWqOi14hVw0xTF5tfNdTe2AaerGoKxcBTOosJFeGfn3xJmlvPJrWeWiKuo8GbzYGwT_ZcI4ysFEjdYqh36KsoCi5gkUW_T5PfQ6Xc2l9WTOWVPkJZTbRM_-TPQryl0tCTjdATr4GAP2Upvx9pIpoLGSgdwWL1Px8rb4pHh5T3Fn-i92735jLG7-D8oP88ud4iccOMBy
CitedBy_id crossref_primary_10_1108_IJLM_12_2022_0497
crossref_primary_10_1007_s12063_021_00208_w
crossref_primary_10_3390_su13169407
crossref_primary_10_1016_j_tre_2023_103139
crossref_primary_10_1287_opre_2023_0308
crossref_primary_10_1016_j_cie_2025_111094
crossref_primary_10_1097_JOM_0000000000002611
crossref_primary_10_1016_j_ejor_2021_11_052
crossref_primary_10_1287_mnsc_2023_02958
crossref_primary_10_1108_BIJ_10_2023_0703
crossref_primary_10_3390_ijerph19105930
crossref_primary_10_1007_s11846_025_00883_0
crossref_primary_10_1007_s10729_021_09548_2
crossref_primary_10_1108_IJPDLM_12_2021_0511
crossref_primary_10_1007_s12063_022_00330_3
crossref_primary_10_1016_j_cie_2023_109694
crossref_primary_10_1016_j_ejor_2022_03_052
crossref_primary_10_1002_nav_22117
crossref_primary_10_1016_j_sca_2023_100010
crossref_primary_10_1080_00207543_2020_1792000
crossref_primary_10_1007_s10668_022_02793_7
crossref_primary_10_1108_IJLM_04_2021_0232
crossref_primary_10_1016_j_jbusres_2022_113417
crossref_primary_10_1016_j_seps_2023_101535
crossref_primary_10_1016_j_tre_2022_102854
crossref_primary_10_1108_IJLM_04_2021_0238
crossref_primary_10_1155_2023_8841451
crossref_primary_10_1016_j_cor_2022_106028
crossref_primary_10_1016_j_tre_2021_102271
crossref_primary_10_1016_j_cie_2025_111476
crossref_primary_10_1186_s12879_024_09007_7
crossref_primary_10_1016_j_ijpe_2021_108370
crossref_primary_10_1080_23311975_2022_2026188
crossref_primary_10_1080_00207543_2022_2118890
crossref_primary_10_1007_s43069_023_00209_4
crossref_primary_10_1007_s11750_022_00643_3
crossref_primary_10_1002_nav_22098
crossref_primary_10_1007_s10479_022_04926_7
crossref_primary_10_1016_j_pursup_2022_100748
crossref_primary_10_1016_j_sca_2023_100025
crossref_primary_10_1016_j_tre_2021_102464
crossref_primary_10_1111_emre_12449
crossref_primary_10_1080_24725854_2023_2217248
crossref_primary_10_3389_fpubh_2023_1115650
crossref_primary_10_1080_24725854_2024_2324080
crossref_primary_10_1016_j_ejor_2022_01_023
crossref_primary_10_1007_s10479_024_06072_8
crossref_primary_10_1016_j_clscn_2022_100049
crossref_primary_10_1002_nav_22262
crossref_primary_10_1080_24725854_2023_2253881
crossref_primary_10_2139_ssrn_3810240
crossref_primary_10_1016_j_ejor_2021_10_039
crossref_primary_10_1007_s10479_022_04963_2
crossref_primary_10_1109_TEM_2021_3095193
crossref_primary_10_1007_s10479_021_04047_7
crossref_primary_10_1007_s12063_022_00327_y
crossref_primary_10_1016_j_omega_2024_103158
crossref_primary_10_1007_s42524_022_0235_z
crossref_primary_10_1080_23302674_2023_2249815
crossref_primary_10_1080_13675567_2021_1988909
crossref_primary_10_1080_09537287_2023_2173104
crossref_primary_10_1111_1467_8551_12441
crossref_primary_10_1007_s12652_022_03865_2
crossref_primary_10_1080_00207543_2021_1890852
crossref_primary_10_1007_s12046_023_02332_8
crossref_primary_10_1016_j_ejor_2021_11_016
crossref_primary_10_1016_j_omega_2021_102451
crossref_primary_10_3389_fpubh_2021_753048
crossref_primary_10_1016_j_omega_2023_102909
crossref_primary_10_1371_journal_pone_0297748
crossref_primary_10_1108_IJOPM_09_2022_0573
crossref_primary_10_1108_MSCRA_10_2024_0041
crossref_primary_10_1108_IJPDLM_10_2022_0305
crossref_primary_10_1080_00207543_2021_1976431
crossref_primary_10_3390_healthcare13182338
crossref_primary_10_1111_poms_13885
crossref_primary_10_1111_poms_13887
crossref_primary_10_1016_j_omega_2025_103318
crossref_primary_10_1080_24725854_2025_2561560
crossref_primary_10_14232_actacyb_292146
crossref_primary_10_1002_nav_22203
crossref_primary_10_1007_s11356_021_16077_6
crossref_primary_10_1016_j_cie_2022_108051
crossref_primary_10_1016_j_compchemeng_2023_108527
crossref_primary_10_1016_j_omega_2022_102720
crossref_primary_10_3390_ijerph18168814
crossref_primary_10_1007_s10479_022_04650_2
crossref_primary_10_1016_j_cie_2023_109243
crossref_primary_10_1016_j_cie_2022_108811
crossref_primary_10_1109_TASE_2021_3119930
crossref_primary_10_1109_ACCESS_2020_3020829
crossref_primary_10_2139_ssrn_3801183
crossref_primary_10_3917_re1_108_0061
crossref_primary_10_1080_00207543_2021_1884310
crossref_primary_10_1111_poms_13684
crossref_primary_10_1155_2022_5166100
crossref_primary_10_1007_s41685_022_00253_8
crossref_primary_10_1109_TASE_2021_3102491
crossref_primary_10_1007_s12046_024_02541_9
crossref_primary_10_1016_j_ins_2024_120384
crossref_primary_10_1007_s12063_024_00487_z
crossref_primary_10_1016_j_pdisas_2023_100276
crossref_primary_10_1016_j_omega_2022_102596
crossref_primary_10_1016_j_omega_2022_102750
crossref_primary_10_1002_nav_22185
crossref_primary_10_1186_s12245_024_00626_0
crossref_primary_10_3390_healthcare10010163
crossref_primary_10_1002_nav_22181
crossref_primary_10_1016_j_jbusres_2022_113398
crossref_primary_10_1007_s10479_023_05320_7
crossref_primary_10_1007_s10479_024_06116_z
crossref_primary_10_1108_JABS_05_2021_0200
crossref_primary_10_3390_su16177628
crossref_primary_10_1109_ACCESS_2021_3113812
crossref_primary_10_1016_j_fmre_2022_04_019
crossref_primary_10_1111_poms_13709
crossref_primary_10_1080_13675567_2021_1902487
crossref_primary_10_2139_ssrn_3799367
crossref_primary_10_1108_IJPHM_06_2024_0061
Cites_doi 10.1001/jama.2020.2648
10.1089/hs.2015.0043
10.1023/A:1019053710258
10.1007/s10479-014-1716-1
10.1177/0272989X12437247
10.1007/s10729-020-09504-6
10.1056/NEJMp2005492
10.1007/s10729-012-9199-6
10.1007/978-1-4614-0237-4
10.1001/dmp.2010.18
10.3201/eid2306.161417
10.1023/A:1009649615548
10.1016/j.ijid.2020.01.009
10.1007/s10729-007-9017-8
10.1007/s10729-007-9027-6
10.1023/A:1020342509099
10.1007/s10729-015-9335-1
ContentType Journal Article
Copyright 2020 Wiley Periodicals, Inc.
2020 Wiley Periodicals LLC
Copyright_xml – notice: 2020 Wiley Periodicals, Inc.
– notice: 2020 Wiley Periodicals LLC
DBID AAYXX
CITATION
NPM
7SC
7TB
7TN
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
7X8
5PM
DOI 10.1002/nav.21905
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Civil Engineering Abstracts

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
DocumentTitleAlternate Mehrotra et al
EISSN 1520-6750
EndPage 320
ExternalDocumentID PMC7267382
38607793
10_1002_nav_21905
NAV21905
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: CMMI‐1763035
– fundername: ;
  grantid: CMMI‐1763035
GroupedDBID --Z
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
186
1L6
1OB
1OC
1OL
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBA
EBR
EBS
EBU
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TH9
TN5
UAO
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADXHL
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
7SC
7TB
7TN
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c5145-1161e8fecff1c02b8cb75011aea0c61441eb8d097409a2f0ddce6a7dc647e4693
IEDL.DBID DRFUL
ISICitedReferencesCount 131
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529753800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0894-069X
1520-6750
IngestDate Tue Nov 04 02:05:26 EST 2025
Sun Nov 09 10:32:41 EST 2025
Sun Jul 13 03:24:49 EDT 2025
Mon Jul 21 05:58:33 EDT 2025
Tue Nov 18 22:32:16 EST 2025
Sat Nov 29 02:13:00 EST 2025
Wed Jan 22 16:33:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords mixed‐integer programming
COVID‐19
ventilator allocation
resource sharing
stochastic programming
emergency management
Language English
License 2020 Wiley Periodicals, Inc.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5145-1161e8fecff1c02b8cb75011aea0c61441eb8d097409a2f0ddce6a7dc647e4693
Notes Funding information
National Science Foundation, CMMI‐1763035
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information National Science Foundation, CMMI‐1763035
ORCID 0000-0003-1106-1901
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7267382
PMID 38607793
PQID 2419325059
PQPubID 1016414
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7267382
proquest_miscellaneous_3038438262
proquest_journals_2419325059
pubmed_primary_38607793
crossref_citationtrail_10_1002_nav_21905
crossref_primary_10_1002_nav_21905
wiley_primary_10_1002_nav_21905_NAV21905
PublicationCentury 2000
PublicationDate August 2020
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Naval research logistics
PublicationTitleAlternate Nav Res Logist
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 20
2015; 60
2011
2020
2000; 3
2001; 4
2002; 5
2020; 91
2017; 23
2015
2014
2020; 323
2016; 236
2012; 15
2007; 10
2010; 4
2012; 32
2016; 14
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_27_1
Meltzer M. I. (e_1_2_8_21_1) 2015; 60
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Shapiro A. (e_1_2_8_25_1) 2014
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – year: 2011
– volume: 23
  issue: 6
  year: 2017
  article-title: Stockpiling ventilators for influenza pandemics
  publication-title: Emerging Infectious Diseases
– year: 2020
  article-title: Containing 2019‐nCoV (Wuhan) coronavirus
  publication-title: Health Care Management Science
– volume: 3
  start-page: 249
  year: 2000
  end-page: 267
  article-title: Where efficiency saves lives: A linear program for the optimal allocation of health care resources in developing countries
  publication-title: Health Care Management Science
– volume: 14
  start-page: 88
  issue: 1
  year: 2016
  end-page: 94
  article-title: A conceptual framework for allocation of federally stockpiled ventilators during large‐scale public health emergencies
  publication-title: Health Security
– volume: 20
  start-page: 55
  year: 2017
  end-page: 75
  article-title: Stochastic resource allocation in emergency departments with a multi‐objective simulation optimization algorithm
  publication-title: Health Care Management Science
– volume: 10
  start-page: 341
  year: 2007
  end-page: 355
  article-title: Contact tracing to control infectious disease: When enough is enough
  publication-title: Health Care Management Science
– volume: 15
  start-page: 175
  year: 2012
  end-page: 187
  article-title: Geographic prioritization of distributing pandemic influenza vaccines
  publication-title: Health Care Management Science
– volume: 4
  start-page: 199
  issue: 3
  year: 2010
  end-page: 206
  article-title: Mechanical ventilators in US acute care hospitals
  publication-title: Disaster Medicine and Public Health Preparedness
– volume: 32
  start-page: 470
  issue: 3
  year: 2012
  end-page: 476
  article-title: Principles of scarce medical resource allocation in natural disaster relief: A simulation approach
  publication-title: Medical Decision Making
– year: 2020
– volume: 323
  start-page: 1239
  year: 2020
  end-page: 1242
  article-title: Characteristics of and important lessons from the coronavirus disease 2019 (COVID‐19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention
  publication-title: JAMA
– volume: 91
  start-page: 264
  issue: 1
  year: 2020
  end-page: 266
  article-title: The continuing 2019‐nCoV epidemic threat of novel coronaviruses to global health – The latest 2019 novel coronavirus outbreak in Wuhan, China
  publication-title: International Journal of Infectious Disease
– volume: 236
  start-page: 177
  issue: 1
  year: 2016
  end-page: 196
  article-title: A medical resource allocation model for serving emergency victims with deteriorating health conditions
  publication-title: Annals of Operations Research
– volume: 4
  start-page: 31
  year: 2001
  end-page: 36
  article-title: A simulation study of the winter bed crisis
  publication-title: Health Care Management Science
– volume: 5
  start-page: 307
  year: 2002
  end-page: 312
  article-title: Using a queueing model to help plan bed allocation in a department of geriatric medicine
  publication-title: Health Care Management Science
– year: 2014
– year: 2015
– volume: 10
  start-page: 239
  year: 2007
  end-page: 252
  article-title: A linear programming model for allocating HIV prevention funds with state agencies: a pilot study
  publication-title: Health Care Management Science
– volume: 60
  start-page: 88
  issue: Suppl. 1:S52–S57
  year: 2015
  end-page: 94
  article-title: Estimates of the demand for mechanical ventilation in the United States during an influenza pandemic
  publication-title: Clinical Infectious Diseases
– year: 2020
  article-title: Facing COVID‐19 in Italy – Ethics logistics and therapeutics on the epidemic's front line
  publication-title: New England Journal of Medicine
– ident: e_1_2_8_29_1
  doi: 10.1001/jama.2020.2648
– volume-title: MPS‐SIAM series on optimization
  year: 2014
  ident: e_1_2_8_25_1
– ident: e_1_2_8_31_1
  doi: 10.1089/hs.2015.0043
– ident: e_1_2_8_20_1
– ident: e_1_2_8_17_1
– ident: e_1_2_8_22_1
– ident: e_1_2_8_11_1
  doi: 10.1023/A:1019053710258
– ident: e_1_2_8_30_1
  doi: 10.1007/s10479-014-1716-1
– ident: e_1_2_8_6_1
  doi: 10.1177/0272989X12437247
– ident: e_1_2_8_4_1
– ident: e_1_2_8_7_1
– ident: e_1_2_8_18_1
  doi: 10.1007/s10729-020-09504-6
– ident: e_1_2_8_23_1
  doi: 10.1056/NEJMp2005492
– ident: e_1_2_8_2_1
  doi: 10.1007/s10729-012-9199-6
– ident: e_1_2_8_27_1
– ident: e_1_2_8_16_1
– ident: e_1_2_8_5_1
  doi: 10.1007/978-1-4614-0237-4
– ident: e_1_2_8_24_1
  doi: 10.1001/dmp.2010.18
– ident: e_1_2_8_19_1
– ident: e_1_2_8_8_1
– ident: e_1_2_8_13_1
  doi: 10.3201/eid2306.161417
– ident: e_1_2_8_15_1
– volume: 60
  start-page: 88
  issue: 1
  year: 2015
  ident: e_1_2_8_21_1
  article-title: Estimates of the demand for mechanical ventilation in the United States during an influenza pandemic
  publication-title: Clinical Infectious Diseases
– ident: e_1_2_8_28_1
  doi: 10.1023/A:1009649615548
– ident: e_1_2_8_14_1
  doi: 10.1016/j.ijid.2020.01.009
– ident: e_1_2_8_9_1
  doi: 10.1007/s10729-007-9017-8
– ident: e_1_2_8_3_1
  doi: 10.1007/s10729-007-9027-6
– ident: e_1_2_8_12_1
  doi: 10.1023/A:1020342509099
– ident: e_1_2_8_10_1
  doi: 10.1007/s10729-015-9335-1
– ident: e_1_2_8_26_1
SSID ssj0006405
Score 2.6002264
Snippet We present a stochastic optimization model for allocating and sharing a critical resource in the case of a pandemic. The demand for different entities peaks at...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 303
SubjectTerms Confidence intervals
Cost benefit analysis
COVID-19
Demand
Economic forecasting
emergency management
mixed‐integer programming
Optimization
Pandemics
resource sharing
Risk management
stochastic programming
Stockpiling
ventilator allocation
Ventilators
Title A model of supply‐chain decisions for resource sharing with an application to ventilator allocation to combat COVID‐19
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnav.21905
https://www.ncbi.nlm.nih.gov/pubmed/38607793
https://www.proquest.com/docview/2419325059
https://www.proquest.com/docview/3038438262
https://pubmed.ncbi.nlm.nih.gov/PMC7267382
Volume 67
WOSCitedRecordID wos000529753800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1520-6750
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006405
  issn: 0894-069X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLQculN82pVQGIdRLaOwk_hGnVcsKJFgQotXeIttxtCtVWbTZVionHoFn5EkYO9mwq4KExC2SJ7Flz9ifZybfALwwZa4ynrtYpc7GWYWmqI2xMaWWSa1SXskqFJsQ47GcTNSnLXi9-hem5YfoHW7eMsJ-7Q1cm-Z4jTRUX71Cc_P8pdsM9TYfwPbp59HZ-34j5lmbwSg9-y1XkxWxUMKO-5c3j6MbGPNmquQ6hA1n0Gjnv0Z_D-520JMMW125D1uufgB7HwJN9-KavCRjjWpHOmt_CN-GJNTJIfOKNL745_XP7z_sVM9qUnaVeRqCmJcsuhAAaabauwmJd-4SXZO16DhZzklIrbzwt3ziw_2_G3DwRi_Jycfzd6fYB1WP4Gz05svJ27gr1RBbRFw5Li2nTlbOVhW1CTPSGoQilGqnE-vvnNQZWSZ4eUmUZlVS4oRyLUrLM-Hwhp4-hkE9r90ekEQrXmkrSsd0Rq0wvLRlSY3KRcqE4hEcrVassB2PuS-ncVG0DMyswLktwtxG8LwX_dqSd_xJ6GC17EVnv02BuAaBLaJDFcGzvhktz4dTdO3ml02Bh7_0YVTOIthttaTvJZU8Ebj1RSA29KcX8Kzemy31bBrYvQXzhVjxm0dBf_4-8GI8PA8P-_8u-gTuMO8wCBmMBzBYLi7dU7htr5azZnEIt8REHnZm9AvtliSZ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9NGxK88B8WGHAghPaSLXZTO5Z4qTaqTXQBoW3qW-Q4jlppSlHTTRpPfAQ-I5-Es5OGVgMJibdIvsSWfWf_fHf5HcDbvOirWPRtqHrWhHFJpqjz3ISMGZ5o1RNlUvpiEzJNk_FYfd6A98t_YRp-iM7h5izD79fOwJ1Den-FNVRf7ZG9OQLTrZjUiPR76_DL8GzU7cQiblIYE0d_K9R4ySwU8f3u5fXz6AbIvJkruYph_SE0vPd_w78Pd1vwiYNGWx7Ahq0ewvaJJ-qeX-M7TDUpHrb2_gi-DdBXysFZibUr_3n98_sPM9HTCou2Nk-NhHpx3gYBsJ5o5yhE595FXeFKfBwXM_TJlRfuno8u4P-7gUaf6wUefDo_PqQ-mHoMZ8MPpwdHYVusITSEufq0uILZpLSmLJmJeJ6YnMAIY9rqyLhbJ7N5UkR0fYmU5mVU0IwKLQsjYmnpjt57ApvVrLLbgJFWotRGFpbrmBmZi8IUBctVX_a4VCKA3eWSZaZlMncFNS6yhoOZZzS3mZ_bAN50ol8b-o4_Ce0s1z1rLbjOCNkQtCV8qAJ43TWT7bmAiq7s7LLO6PhPXCBV8ACeNmrS9UL6GEna_AKQawrUCThe7_WWajrx_N6Su1Ks9M1dr0B_H3iWDs79w7N_F30Ft49OT0bZ6Dj9-BzucOc-8PmMO7C5mF_aF3DLXC2m9fxla02_AG71J6E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9NHUK88B8WGGAQQnsJi53UjiVeqpWKiVEmxKa-RY7_qJWmdGq6SeOJj8Bn5JNwdtLQaiAh8RbJl9iy7-yf7y6_A3hdmr7MeN_GMrU6zhyaoipLHVOqWa5kyl3uQrEJMR7nk4k83oJ3q39hGn6IzuHmLSPs197A7blx-2usoeryLdqbJzDdznwRmR5sD7-MTo66nZhnTQpj7ulvuZysmIUStt-9vHkeXQOZ13Ml1zFsOIRGd_5v-Hfhdgs-yaDRlnuwZav7sPMpEHUvrsgbMlaoeKS19wfwbUBCpRwyd6T25T-vfn7_oadqVhHT1uapCaJesmiDAKSeKu8oJN69S1RF1uLjZDknIbnyzN_ziQ_4_27A0ZdqSQ4-nx4OsQ8qH8LJ6P3Xgw9xW6wh1oi5-ri4nNrcWe0c1Qkrc10iGKFUWZVof-uktsxNgteXRCrmEoMzypUwmmfC4h09fQS9al7ZHSCJktwpLYxlKqNalNxoY2gp-yJlQvII9lZLVuiWydwX1DgrGg5mVuDcFmFuI3jViZ439B1_EtpdrXvRWnBdILJBaIv4UEbwsmtG2_MBFVXZ-UVd4PGf-0AqZxE8btSk6yXNeSJw84tAbChQJ-B5vTdbqtk08HsL5kux4jf3ggL9feDFeHAaHp78u-gLuHk8HBVHh-OPT-EW896DkM64C73l4sI-gxv6cjmrF89bY_oFw5QnHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+of+supply%E2%80%90chain+decisions+for+resource+sharing+with+an+application+to+ventilator+allocation+to+combat+COVID%E2%80%9019&rft.jtitle=Naval+research+logistics&rft.au=Mehrotra%2C+Sanjay&rft.au=Rahimian%2C+Hamed&rft.au=Barah%2C+Masoud&rft.au=Luo%2C+Fengqiao&rft.date=2020-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0894-069X&rft.eissn=1520-6750&rft.volume=67&rft.issue=5&rft.spage=303&rft.epage=320&rft_id=info:doi/10.1002%2Fnav.21905&rft.externalDocID=PMC7267382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-069X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-069X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-069X&client=summon