Transportation-information inequalities for Markov processes

In this paper, one investigates the transportation-information T c I inequalities: α ( T c ( ν, μ )) ≤ I ( ν | μ ) for all probability measures ν on a metric space , where  μ is a given probability measure, T c ( ν, μ ) is the transportation cost from ν to  μ with respect to the cost function c ( x...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Probability theory and related fields Ročník 144; číslo 3-4; s. 669 - 695
Hlavní autoři: Guillin, Arnaud, Léonard, Christian, Wu, Liming, Yao, Nian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.07.2009
Springer
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0178-8051, 1432-2064
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, one investigates the transportation-information T c I inequalities: α ( T c ( ν, μ )) ≤ I ( ν | μ ) for all probability measures ν on a metric space , where  μ is a given probability measure, T c ( ν, μ ) is the transportation cost from ν to  μ with respect to the cost function c ( x , y ) on , I ( ν | μ ) is the Fisher–Donsker–Varadhan information of ν with respect to  μ and α : [0, ∞) → [0, ∞] is a left continuous increasing function. Using large deviation techniques, it is shown that T c I is equivalent to some concentration inequality for the occupation measure of a  μ -reversible ergodic Markov process related to I (·| μ ). The tensorization property of T c I and comparisons of T c I with Poincaré and log-Sobolev inequalities are investigated. Several easy-to-check sufficient conditions are provided for special important cases of T c I and several examples are worked out.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-008-0159-5