AI-driven balance evaluation: a comparative study between blind and non-blind individuals using the mini-BESTest
There are 2.2 billion visually impaired individuals and 285 million blind people worldwide. The vestibular system plays a fundamental role in the balance of a person related to sight and hearing, and thus blind people require physical therapy to improve their balance. Several clinical tests have bee...
Gespeichert in:
| Veröffentlicht in: | PeerJ. Computer science Jg. 11; S. e2695 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
PeerJ. Ltd
14.03.2025
PeerJ Inc |
| Schlagworte: | |
| ISSN: | 2376-5992, 2376-5992 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | There are 2.2 billion visually impaired individuals and 285 million blind people worldwide. The vestibular system plays a fundamental role in the balance of a person related to sight and hearing, and thus blind people require physical therapy to improve their balance. Several clinical tests have been developed to evaluate balance, such as the mini-BESTest. This test has been used to evaluate the balance of people with neurological diseases, but there have been no studies that evaluate the balance of blind individuals before. Furthermore, despite the scoring of these tests being not subjective, the performance of some activities are subject to the physiotherapist’s bias. Tele-rehabilitation is a growing field that aims to provide physical therapy to people with disabilities. Among the technologies used in tele-rehabilitation are inertial measurement units that can be used to monitor the balance of individuals. The amount of data collected by these devices is large and the use of deep learning models can help in analyzing these data. Therefore, the objective of this study is to analyze for the first time the balance of blind individuals using the mini-BESTest and inertial measurement units and to identify the activities that best differentiate between blind and sighted individuals. We use the OpenSense RT monitoring device to collect data from the inertial measurement unit, and we develop machine learning and deep learning models to predict the score of the most relevant mini-BESTest activities. In this study 29 blind and sighted individuals participated. The one-legged stance is the activity that best differentiates between blind and sighted individuals. An analysis on the acceleration data suggests that the evaluation of physiotherapists is not completely adjusted to the test criterion. Cluster analysis suggests that inertial data are not able to distinguish between three levels of evaluation. However, the performance of our models shows an F1-score of 85.6% in predicting the score evaluated by the mini-BESTest in a binary classification problem. The results of this study can help physiotherapists have a more objective evaluation of the balance of their patients and to develop tele-rehabilitation systems for blind individuals. |
|---|---|
| AbstractList | There are 2.2 billion visually impaired individuals and 285 million blind people worldwide. The vestibular system plays a fundamental role in the balance of a person related to sight and hearing, and thus blind people require physical therapy to improve their balance. Several clinical tests have been developed to evaluate balance, such as the mini-BESTest. This test has been used to evaluate the balance of people with neurological diseases, but there have been no studies that evaluate the balance of blind individuals before. Furthermore, despite the scoring of these tests being not subjective, the performance of some activities are subject to the physiotherapist’s bias. Tele-rehabilitation is a growing field that aims to provide physical therapy to people with disabilities. Among the technologies used in tele-rehabilitation are inertial measurement units that can be used to monitor the balance of individuals. The amount of data collected by these devices is large and the use of deep learning models can help in analyzing these data. Therefore, the objective of this study is to analyze for the first time the balance of blind individuals using the mini-BESTest and inertial measurement units and to identify the activities that best differentiate between blind and sighted individuals. We use the OpenSense RT monitoring device to collect data from the inertial measurement unit, and we develop machine learning and deep learning models to predict the score of the most relevant mini-BESTest activities. In this study 29 blind and sighted individuals participated. The one-legged stance is the activity that best differentiates between blind and sighted individuals. An analysis on the acceleration data suggests that the evaluation of physiotherapists is not completely adjusted to the test criterion. Cluster analysis suggests that inertial data are not able to distinguish between three levels of evaluation. However, the performance of our models shows an F1-score of 85.6% in predicting the score evaluated by the mini-BESTest in a binary classification problem. The results of this study can help physiotherapists have a more objective evaluation of the balance of their patients and to develop tele-rehabilitation systems for blind individuals. There are 2.2 billion visually impaired individuals and 285 million blind people worldwide. The vestibular system plays a fundamental role in the balance of a person related to sight and hearing, and thus blind people require physical therapy to improve their balance. Several clinical tests have been developed to evaluate balance, such as the mini-BESTest. This test has been used to evaluate the balance of people with neurological diseases, but there have been no studies that evaluate the balance of blind individuals before. Furthermore, despite the scoring of these tests being not subjective, the performance of some activities are subject to the physiotherapist's bias. Tele-rehabilitation is a growing field that aims to provide physical therapy to people with disabilities. Among the technologies used in tele-rehabilitation are inertial measurement units that can be used to monitor the balance of individuals. The amount of data collected by these devices is large and the use of deep learning models can help in analyzing these data. Therefore, the objective of this study is to analyze for the first time the balance of blind individuals using the mini-BESTest and inertial measurement units and to identify the activities that best differentiate between blind and sighted individuals. We use the OpenSense RT monitoring device to collect data from the inertial measurement unit, and we develop machine learning and deep learning models to predict the score of the most relevant mini-BESTest activities. In this study 29 blind and sighted individuals participated. The one-legged stance is the activity that best differentiates between blind and sighted individuals. An analysis on the acceleration data suggests that the evaluation of physiotherapists is not completely adjusted to the test criterion. Cluster analysis suggests that inertial data are not able to distinguish between three levels of evaluation. However, the performance of our models shows an F1-score of 85.6% in predicting the score evaluated by the mini-BESTest in a binary classification problem. The results of this study can help physiotherapists have a more objective evaluation of the balance of their patients and to develop tele-rehabilitation systems for blind individuals.There are 2.2 billion visually impaired individuals and 285 million blind people worldwide. The vestibular system plays a fundamental role in the balance of a person related to sight and hearing, and thus blind people require physical therapy to improve their balance. Several clinical tests have been developed to evaluate balance, such as the mini-BESTest. This test has been used to evaluate the balance of people with neurological diseases, but there have been no studies that evaluate the balance of blind individuals before. Furthermore, despite the scoring of these tests being not subjective, the performance of some activities are subject to the physiotherapist's bias. Tele-rehabilitation is a growing field that aims to provide physical therapy to people with disabilities. Among the technologies used in tele-rehabilitation are inertial measurement units that can be used to monitor the balance of individuals. The amount of data collected by these devices is large and the use of deep learning models can help in analyzing these data. Therefore, the objective of this study is to analyze for the first time the balance of blind individuals using the mini-BESTest and inertial measurement units and to identify the activities that best differentiate between blind and sighted individuals. We use the OpenSense RT monitoring device to collect data from the inertial measurement unit, and we develop machine learning and deep learning models to predict the score of the most relevant mini-BESTest activities. In this study 29 blind and sighted individuals participated. The one-legged stance is the activity that best differentiates between blind and sighted individuals. An analysis on the acceleration data suggests that the evaluation of physiotherapists is not completely adjusted to the test criterion. Cluster analysis suggests that inertial data are not able to distinguish between three levels of evaluation. However, the performance of our models shows an F1-score of 85.6% in predicting the score evaluated by the mini-BESTest in a binary classification problem. The results of this study can help physiotherapists have a more objective evaluation of the balance of their patients and to develop tele-rehabilitation systems for blind individuals. |
| ArticleNumber | e2695 |
| Audience | Academic |
| Author | Codina-Casals, Benito Abi Zeid Daou, Roy Trujillo-Guerrero, María Fernanda Sansò, Alessio Pagán, Josué Kazemi, Niloufar Serrano Olmedo, Jose Javier Jaén-Vargas, Milagros Li, Shiyang |
| Author_xml | – sequence: 1 givenname: Milagros orcidid: 0000-0001-6350-401X surname: Jaén-Vargas fullname: Jaén-Vargas, Milagros organization: Bioinstrumentation and Nanomedicine Laboratory, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain, Instituto Nacional de Investigaciones Científicas Avanzadas en Tecnologías de Información y Comunicación (INDICATIC AIP), Panama City, Panama – sequence: 2 givenname: Josué orcidid: 0000-0002-8357-7950 surname: Pagán fullname: Pagán, Josué organization: Department of Electronic Engineering, Universidad Politécnica de Madrid, Madrid, Spain, Center for Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain – sequence: 3 givenname: Shiyang orcidid: 0000-0002-9453-1069 surname: Li fullname: Li, Shiyang organization: Bioinstrumentation and Nanomedicine Laboratory, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain – sequence: 4 givenname: María Fernanda orcidid: 0000-0002-7250-6479 surname: Trujillo-Guerrero fullname: Trujillo-Guerrero, María Fernanda organization: Bioinstrumentation and Nanomedicine Laboratory, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain – sequence: 5 givenname: Niloufar surname: Kazemi fullname: Kazemi, Niloufar organization: Bioinstrumentation and Nanomedicine Laboratory, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain – sequence: 6 givenname: Alessio surname: Sansò fullname: Sansò, Alessio organization: Bioinstrumentation and Nanomedicine Laboratory, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain – sequence: 7 givenname: Benito surname: Codina-Casals fullname: Codina-Casals, Benito organization: Didactic and Educational Research Department, Universidad de La Laguna, San Cristóbal de La Laguna, Spain, Spanish Blind Organization (ONCE), Santa Cruz de Tenerife, Spain – sequence: 8 givenname: Roy orcidid: 0000-0002-0614-3438 surname: Abi Zeid Daou fullname: Abi Zeid Daou, Roy organization: Faculty of Engineering–Polytech, Biomedical Engineering Department, Université La Sagesse, Furn El Chebbak, Lebanon – sequence: 9 givenname: Jose Javier surname: Serrano Olmedo fullname: Serrano Olmedo, Jose Javier organization: Bioinstrumentation and Nanomedicine Laboratory, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain, CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40134862$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1v1DAQhiNUREvpkSuKxAUOWezYjm0uaKkKrFQJiZazNbEnW1eJs9jJQv893m6puhK2LH_MM6_Go_dlcRTGgEXxmpKFlFR-2CDG28qmRd1o8aw4qZlsKqF1ffTkfFycpXRLCKGC5qFfFMecUMZVU58Um-WqctFvMZQt9BAslriFfobJj-FjCaUdhw3EfN1imabZ3ZUtTr9xx_c-uBLyylVV-1tefuvdDH0q5-TDupxusBx88NXni6trTNOr4nmXo3j2sJ8WP79cXJ9_qy6_f12dLy8rKyibKoYNktYR0nSOCCUFKqCgBHNOaqY6UBKIdcCxU6LmgneWKe0UdIiKtYydFqu9rhvh1myiHyDemRG8uX8Y49pAnLzt0WiuCBBeMwc111K2AptaK8Y0UMeZzlqf9lqbuR3QWQxThP5A9DAS_I1Zj1uTu82EVDQrvHtQiOOvObfBDD5Z7HPHcZyTYTRDjZacZ_TtHl1Drs2HbsySdoebpWJEN1Q1JFOL_1B5Ohy8zS7pfH4_SHh_kJCZCf9Ma5hTMqurH4fsm6f_ffzoP9tkoNoDNo4pReweEUrMzpnm3pnGJrNzJvsL5gTV6A |
| Cites_doi | 10.2478/rehab-2014-0019 10.1109/TNSRE.2019.2891000 10.1002/brb3.1436 10.3390/s23229194 10.3390/s21227628 10.1016/j.bjpt.2019.07.006 10.1589/jpts.25.693 10.2522/ptj.20080071 10.32385/rpmgf.v33i2.12039 10.1186/s12883-023-03403-3 10.1177/0264619620935937 10.32598/ptj.9.4.227 10.1080/14038190701395671 10.1016/j.jbmt.2022.02.017 10.3390/s23125564 10.1186/s12938-020-00762-7 10.1097/NPT.0000000000000401 10.6061/clinics/2013(04)13 10.1111/jgs.17094 10.32598/ptj.11.1.430.2 10.1109/ACCESS.2020.2997341 10.5220/0006079400150024 10.1007/s40279-016-0515-z 10.1002/oto2.58 10.1145/3161416 10.1097/MRR.0000000000000153 10.1109/JSEN.2022.3200986 10.3390/ijerph18052696 10.3389/fresc.2023.1308706 10.1186/s12984-021-00894-4 10.32598/biomechanics.7.3.321.1 10.2522/ptj.20120454 10.1080/09638288.2023.2288935 10.1109/TBME.2021.3103201 10.1016/j.medengphy.2019.10.018 10.3390/s21217110 10.1515/hukin-2015-0096 10.3389/fneur.2023.1228302 10.1080/10400435.2020.1809553 10.3390/s21134438 10.1589/jpts.28.1374 10.2340/16501977-0537 10.1016/j.jfma.2015.07.012 |
| ContentType | Journal Article |
| Copyright | 2025 Jaén-Vargas et al. COPYRIGHT 2025 PeerJ. Ltd. 2025 Jaén-Vargas et al. 2025 Jaén-Vargas et al. |
| Copyright_xml | – notice: 2025 Jaén-Vargas et al. – notice: COPYRIGHT 2025 PeerJ. Ltd. – notice: 2025 Jaén-Vargas et al. 2025 Jaén-Vargas et al. |
| DBID | AAYXX CITATION NPM ISR 7X8 5PM DOA |
| DOI | 10.7717/peerj-cs.2695 |
| DatabaseName | CrossRef PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Physical Therapy |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_9480a0423da24977b5e6298339a1d439 PMC11935781 A830961860 40134862 10_7717_peerj_cs_2695 |
| Genre | Journal Article |
| GeographicLocations | Spain |
| GeographicLocations_xml | – name: Spain |
| GrantInformation_xml | – fundername: Instituto para la Formación y Aprovechamiento de Recursos Humanos and Secretaría Nacional de Ciencia, Tecnología e Innovación (IFARHU-SENACYT) grantid: 270-2018-968 – fundername: China Scholarship Council (CSC) grantid: 202308390098 |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM H13 NPM 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c513t-3e6e0bd006fd05875e8a1a853dd7938fa87a0cda4ef852454fc389d8afee83b33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001479998300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2376-5992 |
| IngestDate | Fri Oct 03 12:51:59 EDT 2025 Tue Nov 04 02:03:18 EST 2025 Fri Sep 05 17:50:45 EDT 2025 Sat Nov 29 13:52:08 EST 2025 Tue Nov 04 18:16:36 EST 2025 Thu Nov 13 15:57:00 EST 2025 Mon Jul 21 05:33:20 EDT 2025 Sat Nov 29 08:11:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | IMU Blind Quaternions mini-BESTest Artificial intelligence Balance OpenSense RT |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2025 Jaén-Vargas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c513t-3e6e0bd006fd05875e8a1a853dd7938fa87a0cda4ef852454fc389d8afee83b33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0614-3438 0000-0002-7250-6479 0000-0001-6350-401X 0000-0002-8357-7950 0000-0002-9453-1069 |
| OpenAccessLink | https://doaj.org/article/9480a0423da24977b5e6298339a1d439 |
| PMID | 40134862 |
| PQID | 3181369744 |
| PQPubID | 23479 |
| PageCount | e2695 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9480a0423da24977b5e6298339a1d439 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11935781 proquest_miscellaneous_3181369744 gale_infotracmisc_A830961860 gale_infotracacademiconefile_A830961860 gale_incontextgauss_ISR_A830961860 pubmed_primary_40134862 crossref_primary_10_7717_peerj_cs_2695 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-14 |
| PublicationDateYYYYMMDD | 2025-03-14 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Diego, USA |
| PublicationTitle | PeerJ. Computer science |
| PublicationTitleAlternate | PeerJ Comput Sci |
| PublicationYear | 2025 |
| Publisher | PeerJ. Ltd PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
| References | Wei (10.7717/peerj-cs.2695/ref-44) 2020; 8 Almeida (10.7717/peerj-cs.2695/ref-3) 2017; 33 Tsang (10.7717/peerj-cs.2695/ref-42) 2013; 93 Alotaibi (10.7717/peerj-cs.2695/ref-4) 2016; 28 Wiszomirska (10.7717/peerj-cs.2695/ref-45) 2013; 27 El Marhraoui (10.7717/peerj-cs.2695/ref-11) 2023; 23 Kelly (10.7717/peerj-cs.2695/ref-22) 2021; 21 Stearns (10.7717/peerj-cs.2695/ref-39) 2018; 1 Kamran (10.7717/peerj-cs.2695/ref-21) 2021; 18 Kim (10.7717/peerj-cs.2695/ref-23) 2021; 21 Pennell (10.7717/peerj-cs.2695/ref-34) 2024; 46 Zarei (10.7717/peerj-cs.2695/ref-48) 2022; 30 Alghadir (10.7717/peerj-cs.2695/ref-2) 2019; 9 Blomqvist (10.7717/peerj-cs.2695/ref-6) 2007; 9 Silva-Batista (10.7717/peerj-cs.2695/ref-37) 2023; 23 Jeon (10.7717/peerj-cs.2695/ref-19) 2013; 25 Noamani (10.7717/peerj-cs.2695/ref-32) 2020; 77 Johnston (10.7717/peerj-cs.2695/ref-20) 2016 Inoue (10.7717/peerj-cs.2695/ref-18) 2024; 4 Kümmel (10.7717/peerj-cs.2695/ref-24) 2016; 46 Milosevic (10.7717/peerj-cs.2695/ref-27) 2020; 19 Lopes (10.7717/peerj-cs.2695/ref-26) 2020; 24 Omidi (10.7717/peerj-cs.2695/ref-33) 2019; 9 Di Carlo (10.7717/peerj-cs.2695/ref-10) 2016; 39 Slade (10.7717/peerj-cs.2695/ref-38) 2021; 69 Tomomitsu (10.7717/peerj-cs.2695/ref-41) 2013; 68 Daneshmandi (10.7717/peerj-cs.2695/ref-9) 2021; 11 Mohammadkhani (10.7717/peerj-cs.2695/ref-30) 2021; 7 Mitchell (10.7717/peerj-cs.2695/ref-29) 2023; 7 Gil-Martín (10.7717/peerj-cs.2695/ref-15) 2021; 21 Franchignoni (10.7717/peerj-cs.2695/ref-14) 2017 Adafruit (10.7717/peerj-cs.2695/ref-1) 2024 Bao (10.7717/peerj-cs.2695/ref-5) 2019; 27 Franchignoni (10.7717/peerj-cs.2695/ref-13) 2010; 42 World Health Organization (10.7717/peerj-cs.2695/ref-46) 2023 Lin (10.7717/peerj-cs.2695/ref-25) 2022; 22 Rutkowska (10.7717/peerj-cs.2695/ref-36) 2015; 48 Yang (10.7717/peerj-cs.2695/ref-47) 2016; 115 Stones (10.7717/peerj-cs.2695/ref-40) 1987; 68 Franchignoni (10.7717/peerj-cs.2695/ref-12) 2022; 46 Horak (10.7717/peerj-cs.2695/ref-17) 2009; 89 Nair (10.7717/peerj-cs.2695/ref-31) 2022; 34 Chen (10.7717/peerj-cs.2695/ref-8) 2021; 18 Wang (10.7717/peerj-cs.2695/ref-43) 2021; 69 Haibach-Beach (10.7717/peerj-cs.2695/ref-16) 2022; 40 Miranda-Cantellops (10.7717/peerj-cs.2695/ref-28) 2022 Reyes Leiva (10.7717/peerj-cs.2695/ref-35) 2023; 23 Caronni (10.7717/peerj-cs.2695/ref-7) 2023; 14 |
| References_xml | – volume: 27 start-page: 29 issue: 3 year: 2013 ident: 10.7717/peerj-cs.2695/ref-45 article-title: Evaluation of static and dynamic postural stability in young, elderly and with vision loss women publication-title: Postepy Rehabilitacji doi: 10.2478/rehab-2014-0019 – volume: 27 start-page: 179 issue: 2 year: 2019 ident: 10.7717/peerj-cs.2695/ref-5 article-title: Automatically evaluating balance: a machine learning approach publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2019.2891000 – volume: 9 start-page: e01436 issue: 11 year: 2019 ident: 10.7717/peerj-cs.2695/ref-2 article-title: Postural stability in people with visual impairment publication-title: Brain and Behavior doi: 10.1002/brb3.1436 – volume: 23 start-page: 1 issue: 22 year: 2023 ident: 10.7717/peerj-cs.2695/ref-11 article-title: CNN-based self-attention weight extraction for fall event prediction using balance test score publication-title: Sensors doi: 10.3390/s23229194 – volume: 21 start-page: 7628 issue: 22 year: 2021 ident: 10.7717/peerj-cs.2695/ref-23 article-title: Wearable imu-based human activity recognition algorithm for clinical balance assessment using 1D-CNN and GRU ensemble model publication-title: Sensors doi: 10.3390/s21227628 – volume: 24 start-page: 433 issue: 5 year: 2020 ident: 10.7717/peerj-cs.2695/ref-26 article-title: The mini-bestest is an independent predictor of falls in parkinson disease publication-title: Brazilian Journal of Physical Therapy doi: 10.1016/j.bjpt.2019.07.006 – volume: 25 start-page: 693 issue: 6 year: 2013 ident: 10.7717/peerj-cs.2695/ref-19 article-title: The effects of balance of low vision patients on activities of daily living publication-title: Journal of Physical Therapy Science doi: 10.1589/jpts.25.693 – year: 2017 ident: 10.7717/peerj-cs.2695/ref-14 article-title: Mini-bestest: test de evaluación de los sistemas de equilibrio. Translated and adapted by Dominguez-Olivan, P., Serrano-Del-Rio, P., Fernandez-Simon, F., Bengoetxea, A., Bolea-Moll, D – volume: 89 start-page: 484 issue: 5 year: 2009 ident: 10.7717/peerj-cs.2695/ref-17 article-title: The balance evaluation systems test (BESTest) to differentiate balance deficits publication-title: Physical Therapy doi: 10.2522/ptj.20080071 – volume: 33 start-page: 106 issue: 2 year: 2017 ident: 10.7717/peerj-cs.2695/ref-3 article-title: Valores normativos do balance evaluation system Test(BESTest), mini-bestest, brief-bestest, timed up and go test e usual gait speed em pessoas idosas portuguesas saudáveis publication-title: Revista Portuguesa de Medicina Geral e Familiar doi: 10.32385/rpmgf.v33i2.12039 – volume: 23 start-page: 368 year: 2023 ident: 10.7717/peerj-cs.2695/ref-37 article-title: Balance telerehabilitation and wearable technology for people with Parkinson’s disease (TelePD trial) publication-title: BMC Neurology doi: 10.1186/s12883-023-03403-3 – volume: 40 start-page: 145 issue: 2 year: 2022 ident: 10.7717/peerj-cs.2695/ref-16 article-title: Home-based balance pilot intervention for adults with visual impairments publication-title: British Journal of Visual Impairment doi: 10.1177/0264619620935937 – volume: 9 start-page: 227 issue: 4 year: 2019 ident: 10.7717/peerj-cs.2695/ref-33 article-title: The effect of a 6-week core stability exercises on the risk of falling and quality of life in blind people publication-title: Physical Treatments-Specific Physical Therapy Journal doi: 10.32598/ptj.9.4.227 – volume: 9 start-page: 129 issue: 3 year: 2007 ident: 10.7717/peerj-cs.2695/ref-6 article-title: Validity and reliability of the dynamic one leg stance (DOLS) in people with vision loss publication-title: Advances in Physiotherapy doi: 10.1080/14038190701395671 – volume: 30 start-page: 187 issue: 4 year: 2022 ident: 10.7717/peerj-cs.2695/ref-48 article-title: Effects of exercise training programs on balance of blind children and adolescents: a systematic review and meta-analysis publication-title: Journal of Bodywork and Movement Therapies doi: 10.1016/j.jbmt.2022.02.017 – volume: 23 start-page: 1 issue: 12 year: 2023 ident: 10.7717/peerj-cs.2695/ref-35 article-title: Estimation of spatio-temporal parameters of gait and posture of visually impaired people using wearable sensors † publication-title: Sensors doi: 10.3390/s23125564 – volume: 19 start-page: 1 issue: 1 year: 2020 ident: 10.7717/peerj-cs.2695/ref-27 article-title: Kinect and wearable inertial sensors for motor rehabilitation programs at home: state of the art and an experimental comparison publication-title: Biomedical Engineering Online doi: 10.1186/s12938-020-00762-7 – volume: 46 start-page: 219 issue: 3 year: 2022 ident: 10.7717/peerj-cs.2695/ref-12 article-title: Rasch validation of the mini-bestest in people with parkinson disease publication-title: Journal of Neurologic Physical Therapy doi: 10.1097/NPT.0000000000000401 – volume: 68 start-page: 517 issue: 4 year: 2013 ident: 10.7717/peerj-cs.2695/ref-41 article-title: Static and dynamic postural control in low-vision and normal-vision adults publication-title: Clinics doi: 10.6061/clinics/2013(04)13 – volume: 69 start-page: 2000 issue: 7 year: 2021 ident: 10.7717/peerj-cs.2695/ref-43 article-title: Optimal exercise parameters of tai chi for balance performance in older adults: a meta-analysis publication-title: Journal of the American Geriatrics Society doi: 10.1111/jgs.17094 – year: 2023 ident: 10.7717/peerj-cs.2695/ref-46 article-title: Blindness and vision impairment – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.7717/peerj-cs.2695/ref-9 article-title: Balance in the blind: a systematic review publication-title: Physical Treatments-Specific Physical Therapy Journal doi: 10.32598/ptj.11.1.430.2 – volume: 8 start-page: 99889 year: 2020 ident: 10.7717/peerj-cs.2695/ref-44 article-title: Using sensors and deep learning to enable on-demand balance evaluation for effective physical therapy publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997341 – start-page: 15 year: 2016 ident: 10.7717/peerj-cs.2695/ref-20 article-title: Objective classification of dynamic balance using a single wearable sensor doi: 10.5220/0006079400150024 – volume: 46 start-page: 1261 issue: 9 year: 2016 ident: 10.7717/peerj-cs.2695/ref-24 article-title: Specificity of balance training in healthy individuals: a systematic review and meta-analysis publication-title: Sports Medicine doi: 10.1007/s40279-016-0515-z – volume: 7 start-page: e58 issue: 2 year: 2023 ident: 10.7717/peerj-cs.2695/ref-29 article-title: Balance disorder trends in us adults 2008–2016: epidemiology and functional impact publication-title: OTO Open doi: 10.1002/oto2.58 – volume: 1 start-page: 1 issue: 4 year: 2018 ident: 10.7717/peerj-cs.2695/ref-39 article-title: TouchCam publication-title: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies doi: 10.1145/3161416 – volume: 68 start-page: 85 issue: 2 year: 1987 ident: 10.7717/peerj-cs.2695/ref-40 article-title: Balance and age in the sighted and blind publication-title: Archives of Physical Medicine and Rehabilitation – volume: 39 start-page: 97 issue: 2 year: 2016 ident: 10.7717/peerj-cs.2695/ref-10 article-title: The Mini-BESTest: a review of psychometric properties publication-title: International Journal of Rehabilitation Research doi: 10.1097/MRR.0000000000000153 – volume: 22 start-page: 19919 issue: 20 year: 2022 ident: 10.7717/peerj-cs.2695/ref-25 article-title: Automatic assessment system based on IMUs and machine learning for predicting berg balance scale publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2022.3200986 – volume: 18 start-page: 2696 issue: 5 year: 2021 ident: 10.7717/peerj-cs.2695/ref-8 article-title: Review of the upright balance assessment based on the force plate publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph18052696 – volume: 4 start-page: 1308706 year: 2024 ident: 10.7717/peerj-cs.2695/ref-18 article-title: Comparison of usefulness between the mini-balance evaluation systems test and the berg balance scale for measuring balance in patients with subacute stroke: a prospective cohort study publication-title: Frontiers in Rehabilitation Sciences doi: 10.3389/fresc.2023.1308706 – volume: 18 start-page: 1 issue: 1 year: 2021 ident: 10.7717/peerj-cs.2695/ref-21 article-title: Automatically evaluating balance using machine learning and data from a single inertial measurement unit publication-title: Journal of NeuroEngineering and Rehabilitation doi: 10.1186/s12984-021-00894-4 – volume: 7 start-page: 202 issue: 3 year: 2021 ident: 10.7717/peerj-cs.2695/ref-30 article-title: Comparison of the effect and durability of foot massage methods on the balance of the blindness publication-title: Journal of Sport Biomechanics doi: 10.32598/biomechanics.7.3.321.1 – volume: 93 start-page: 1102 issue: 8 year: 2013 ident: 10.7717/peerj-cs.2695/ref-42 article-title: Psychometric properties of the mini-balance evaluation systems test (mini-bestest) in community-dwelling individuals with chronic stroke publication-title: Physical Therapy doi: 10.2522/ptj.20120454 – volume: 46 start-page: 4797 issue: 20 year: 2024 ident: 10.7717/peerj-cs.2695/ref-34 article-title: Measurement properties of Brief-BESTest scores from children, adolescents, and youth with visual impairments publication-title: Disability and Rehabilitation doi: 10.1080/09638288.2023.2288935 – year: 2022 ident: 10.7717/peerj-cs.2695/ref-28 article-title: Berg balance testing – volume: 69 start-page: 1 issue: 2 year: 2021 ident: 10.7717/peerj-cs.2695/ref-38 article-title: An open-source and wearable system for measuring 3D human motion in real-time publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2021.3103201 – year: 2024 ident: 10.7717/peerj-cs.2695/ref-1 article-title: Adafruit ISM330DLC 6-DoF accelerometer and gyroscope – volume: 77 start-page: 53 issue: 24 year: 2020 ident: 10.7717/peerj-cs.2695/ref-32 article-title: Validity of using wearable inertial sensors for assessing the dynamics of standing balance publication-title: Medical Engineering & Physics doi: 10.1016/j.medengphy.2019.10.018 – volume: 21 start-page: 7110 issue: 21 year: 2021 ident: 10.7717/peerj-cs.2695/ref-15 article-title: Scoring performance on the y-balance test using a deep learning approach publication-title: Sensors doi: 10.3390/s21217110 – volume: 48 start-page: 99 issue: 1 year: 2015 ident: 10.7717/peerj-cs.2695/ref-36 article-title: Balance functional assessment in people with visual impairment publication-title: Journal of Human Kinetics doi: 10.1515/hukin-2015-0096 – volume: 14 start-page: 1228302 year: 2023 ident: 10.7717/peerj-cs.2695/ref-7 article-title: Pay attention: you can fall! the mini-bestest scale and the turning duration of the tug test provide valid balance measures in neurological patients: a prospective study with falls as the balance criterion publication-title: Frontiers in Neurology doi: 10.3389/fneur.2023.1228302 – volume: 34 start-page: 289 issue: 3 year: 2022 ident: 10.7717/peerj-cs.2695/ref-31 article-title: ASSIST: evaluating the usability and performance of an indoor navigation assistant for blind and visually impaired people publication-title: Assistive Technology doi: 10.1080/10400435.2020.1809553 – volume: 21 start-page: 4438 issue: 13 year: 2021 ident: 10.7717/peerj-cs.2695/ref-22 article-title: Feasibility of sensor technology for balance assessment in home rehabilitation settings publication-title: Sensors (Basel) doi: 10.3390/s21134438 – volume: 28 start-page: 1374 issue: 4 year: 2016 ident: 10.7717/peerj-cs.2695/ref-4 article-title: Effect of absence of vision on posture publication-title: Journal of Physical Therapy Science doi: 10.1589/jpts.28.1374 – volume: 42 start-page: 323 issue: 4 year: 2010 ident: 10.7717/peerj-cs.2695/ref-13 article-title: Using psychometric techniques to improve the balance evaluation systems test: the mini-bestest publication-title: Journal of Rehabilitation Medicine doi: 10.2340/16501977-0537 – volume: 115 start-page: 734 issue: 9 year: 2016 ident: 10.7717/peerj-cs.2695/ref-47 article-title: Home-based virtual reality balance training and conventional balance training in parkinson’s disease: a randomized controlled trial publication-title: Journal of the Formosan Medical Association doi: 10.1016/j.jfma.2015.07.012 |
| SSID | ssj0001511119 |
| Score | 2.285743 |
| Snippet | There are 2.2 billion visually impaired individuals and 285 million blind people worldwide. The vestibular system plays a fundamental role in the balance of a... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e2695 |
| SubjectTerms | Algorithms and Analysis of Algorithms Artificial Intelligence Balance Blind Care and treatment Data Mining and Machine Learning IMU Machine learning Methods mini-BESTest Neural Networks OpenSense RT Physical therapy Quaternions Rehabilitation Technology application Therapeutics, Physiological |
| Title | AI-driven balance evaluation: a comparative study between blind and non-blind individuals using the mini-BESTest |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40134862 https://www.proquest.com/docview/3181369744 https://pubmed.ncbi.nlm.nih.gov/PMC11935781 https://doaj.org/article/9480a0423da24977b5e6298339a1d439 |
| Volume | 11 |
| WOSCitedRecordID | wos001479998300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: P5Z dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: K7- dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: PIMPY dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29j9MwFLfgYGDhmyNwVAYhmMzFcRI7bC3qiQpdFd0dUmGxHNs5ypBWTcvI3857SdpLxMDCEEuJPcR-nz_p-fcIeVt4nrpEpYzbomSxtIYVxnMWOR556zxPlGuaTcj5XC0WWd5r9YU1YS09cHtwp1msQoPFG84AUpCySHwaZUqIzHAH0RS9L2Q9PTDV3g9GV5C1pJoSIMvp2vvNT2brD1GKvSR6Qajh6v_bI_dC0rBcshd_zh6S-13iSMftDz8it3z1mDzYN2WgnY0-IevxjLkN-jBaYNmi9fSG0fsjNdTe8H3ThlyWdrVatICU01EDT7WqWPu2PFzYqinWyF9TyBgpEpKwyfTyCnbwlHw9m159-sy6tgrMJlxsmfCpDwsH5la6MAG84pXhBsK2c2CsqjRKmtA6E_tSJVGcxKWFrMYpU3qvRCHEM3IEv-GfE5pxJ62QAJnKMHalNJYDQJJFEUfWhY4H5N3-nPW6Zc_QgDpQILoRiLa1RoEEZIJSOCxC0uvmA6iC7lRB_0sVAvIGZaiR1qLCuplrs6trPbu80GMlmt42aRiQ992icgXStKa7hgAbQiaswcqTwUqwOzuYfr1XFY1TWKxW-dWu1uAmuUgBqMUBOW5V57AxhLMxoMiAqIFSDXY-nKmWPxrab9BnpCbiL_7HWb0k9yLsZIyVifEJOdpudv4VuWt_bZf1ZkRuy4UakTuT6Ty_GDWmBeMXyWA8_z2FMU--w3w-O8-__QH4JSzo |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-driven+balance+evaluation%3A+a+comparative+study+between+blind+and+non-blind+individuals+using+the+mini-BESTest&rft.jtitle=PeerJ.+Computer+science&rft.au=Ja%C3%A9n-Vargas%2C+Milagros&rft.au=Pag%C3%A1n%2C+Josu%C3%A9&rft.au=Li%2C+Shiyang&rft.au=Trujillo-Guerrero%2C+Mar%C3%ADa+Fernanda&rft.date=2025-03-14&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=11&rft.spage=e2695&rft_id=info:doi/10.7717%2Fpeerj-cs.2695&rft.externalDocID=A830961860 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |