AI-driven balance evaluation: a comparative study between blind and non-blind individuals using the mini-BESTest

There are 2.2 billion visually impaired individuals and 285 million blind people worldwide. The vestibular system plays a fundamental role in the balance of a person related to sight and hearing, and thus blind people require physical therapy to improve their balance. Several clinical tests have bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ. Computer science Jg. 11; S. e2695
Hauptverfasser: Jaén-Vargas, Milagros, Pagán, Josué, Li, Shiyang, Trujillo-Guerrero, María Fernanda, Kazemi, Niloufar, Sansò, Alessio, Codina-Casals, Benito, Abi Zeid Daou, Roy, Serrano Olmedo, Jose Javier
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States PeerJ. Ltd 14.03.2025
PeerJ Inc
Schlagworte:
ISSN:2376-5992, 2376-5992
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract There are 2.2 billion visually impaired individuals and 285 million blind people worldwide. The vestibular system plays a fundamental role in the balance of a person related to sight and hearing, and thus blind people require physical therapy to improve their balance. Several clinical tests have been developed to evaluate balance, such as the mini-BESTest. This test has been used to evaluate the balance of people with neurological diseases, but there have been no studies that evaluate the balance of blind individuals before. Furthermore, despite the scoring of these tests being not subjective, the performance of some activities are subject to the physiotherapist’s bias. Tele-rehabilitation is a growing field that aims to provide physical therapy to people with disabilities. Among the technologies used in tele-rehabilitation are inertial measurement units that can be used to monitor the balance of individuals. The amount of data collected by these devices is large and the use of deep learning models can help in analyzing these data. Therefore, the objective of this study is to analyze for the first time the balance of blind individuals using the mini-BESTest and inertial measurement units and to identify the activities that best differentiate between blind and sighted individuals. We use the OpenSense RT monitoring device to collect data from the inertial measurement unit, and we develop machine learning and deep learning models to predict the score of the most relevant mini-BESTest activities. In this study 29 blind and sighted individuals participated. The one-legged stance is the activity that best differentiates between blind and sighted individuals. An analysis on the acceleration data suggests that the evaluation of physiotherapists is not completely adjusted to the test criterion. Cluster analysis suggests that inertial data are not able to distinguish between three levels of evaluation. However, the performance of our models shows an F1-score of 85.6% in predicting the score evaluated by the mini-BESTest in a binary classification problem. The results of this study can help physiotherapists have a more objective evaluation of the balance of their patients and to develop tele-rehabilitation systems for blind individuals.
AbstractList There are 2.2 billion visually impaired individuals and 285 million blind people worldwide. The vestibular system plays a fundamental role in the balance of a person related to sight and hearing, and thus blind people require physical therapy to improve their balance. Several clinical tests have been developed to evaluate balance, such as the mini-BESTest. This test has been used to evaluate the balance of people with neurological diseases, but there have been no studies that evaluate the balance of blind individuals before. Furthermore, despite the scoring of these tests being not subjective, the performance of some activities are subject to the physiotherapist’s bias. Tele-rehabilitation is a growing field that aims to provide physical therapy to people with disabilities. Among the technologies used in tele-rehabilitation are inertial measurement units that can be used to monitor the balance of individuals. The amount of data collected by these devices is large and the use of deep learning models can help in analyzing these data. Therefore, the objective of this study is to analyze for the first time the balance of blind individuals using the mini-BESTest and inertial measurement units and to identify the activities that best differentiate between blind and sighted individuals. We use the OpenSense RT monitoring device to collect data from the inertial measurement unit, and we develop machine learning and deep learning models to predict the score of the most relevant mini-BESTest activities. In this study 29 blind and sighted individuals participated. The one-legged stance is the activity that best differentiates between blind and sighted individuals. An analysis on the acceleration data suggests that the evaluation of physiotherapists is not completely adjusted to the test criterion. Cluster analysis suggests that inertial data are not able to distinguish between three levels of evaluation. However, the performance of our models shows an F1-score of 85.6% in predicting the score evaluated by the mini-BESTest in a binary classification problem. The results of this study can help physiotherapists have a more objective evaluation of the balance of their patients and to develop tele-rehabilitation systems for blind individuals.
There are 2.2 billion visually impaired individuals and 285 million blind people worldwide. The vestibular system plays a fundamental role in the balance of a person related to sight and hearing, and thus blind people require physical therapy to improve their balance. Several clinical tests have been developed to evaluate balance, such as the mini-BESTest. This test has been used to evaluate the balance of people with neurological diseases, but there have been no studies that evaluate the balance of blind individuals before. Furthermore, despite the scoring of these tests being not subjective, the performance of some activities are subject to the physiotherapist's bias. Tele-rehabilitation is a growing field that aims to provide physical therapy to people with disabilities. Among the technologies used in tele-rehabilitation are inertial measurement units that can be used to monitor the balance of individuals. The amount of data collected by these devices is large and the use of deep learning models can help in analyzing these data. Therefore, the objective of this study is to analyze for the first time the balance of blind individuals using the mini-BESTest and inertial measurement units and to identify the activities that best differentiate between blind and sighted individuals. We use the OpenSense RT monitoring device to collect data from the inertial measurement unit, and we develop machine learning and deep learning models to predict the score of the most relevant mini-BESTest activities. In this study 29 blind and sighted individuals participated. The one-legged stance is the activity that best differentiates between blind and sighted individuals. An analysis on the acceleration data suggests that the evaluation of physiotherapists is not completely adjusted to the test criterion. Cluster analysis suggests that inertial data are not able to distinguish between three levels of evaluation. However, the performance of our models shows an F1-score of 85.6% in predicting the score evaluated by the mini-BESTest in a binary classification problem. The results of this study can help physiotherapists have a more objective evaluation of the balance of their patients and to develop tele-rehabilitation systems for blind individuals.There are 2.2 billion visually impaired individuals and 285 million blind people worldwide. The vestibular system plays a fundamental role in the balance of a person related to sight and hearing, and thus blind people require physical therapy to improve their balance. Several clinical tests have been developed to evaluate balance, such as the mini-BESTest. This test has been used to evaluate the balance of people with neurological diseases, but there have been no studies that evaluate the balance of blind individuals before. Furthermore, despite the scoring of these tests being not subjective, the performance of some activities are subject to the physiotherapist's bias. Tele-rehabilitation is a growing field that aims to provide physical therapy to people with disabilities. Among the technologies used in tele-rehabilitation are inertial measurement units that can be used to monitor the balance of individuals. The amount of data collected by these devices is large and the use of deep learning models can help in analyzing these data. Therefore, the objective of this study is to analyze for the first time the balance of blind individuals using the mini-BESTest and inertial measurement units and to identify the activities that best differentiate between blind and sighted individuals. We use the OpenSense RT monitoring device to collect data from the inertial measurement unit, and we develop machine learning and deep learning models to predict the score of the most relevant mini-BESTest activities. In this study 29 blind and sighted individuals participated. The one-legged stance is the activity that best differentiates between blind and sighted individuals. An analysis on the acceleration data suggests that the evaluation of physiotherapists is not completely adjusted to the test criterion. Cluster analysis suggests that inertial data are not able to distinguish between three levels of evaluation. However, the performance of our models shows an F1-score of 85.6% in predicting the score evaluated by the mini-BESTest in a binary classification problem. The results of this study can help physiotherapists have a more objective evaluation of the balance of their patients and to develop tele-rehabilitation systems for blind individuals.
ArticleNumber e2695
Audience Academic
Author Codina-Casals, Benito
Abi Zeid Daou, Roy
Trujillo-Guerrero, María Fernanda
Sansò, Alessio
Pagán, Josué
Kazemi, Niloufar
Serrano Olmedo, Jose Javier
Jaén-Vargas, Milagros
Li, Shiyang
Author_xml – sequence: 1
  givenname: Milagros
  orcidid: 0000-0001-6350-401X
  surname: Jaén-Vargas
  fullname: Jaén-Vargas, Milagros
  organization: Bioinstrumentation and Nanomedicine Laboratory, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain, Instituto Nacional de Investigaciones Científicas Avanzadas en Tecnologías de Información y Comunicación (INDICATIC AIP), Panama City, Panama
– sequence: 2
  givenname: Josué
  orcidid: 0000-0002-8357-7950
  surname: Pagán
  fullname: Pagán, Josué
  organization: Department of Electronic Engineering, Universidad Politécnica de Madrid, Madrid, Spain, Center for Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain
– sequence: 3
  givenname: Shiyang
  orcidid: 0000-0002-9453-1069
  surname: Li
  fullname: Li, Shiyang
  organization: Bioinstrumentation and Nanomedicine Laboratory, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain
– sequence: 4
  givenname: María Fernanda
  orcidid: 0000-0002-7250-6479
  surname: Trujillo-Guerrero
  fullname: Trujillo-Guerrero, María Fernanda
  organization: Bioinstrumentation and Nanomedicine Laboratory, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain
– sequence: 5
  givenname: Niloufar
  surname: Kazemi
  fullname: Kazemi, Niloufar
  organization: Bioinstrumentation and Nanomedicine Laboratory, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain
– sequence: 6
  givenname: Alessio
  surname: Sansò
  fullname: Sansò, Alessio
  organization: Bioinstrumentation and Nanomedicine Laboratory, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain
– sequence: 7
  givenname: Benito
  surname: Codina-Casals
  fullname: Codina-Casals, Benito
  organization: Didactic and Educational Research Department, Universidad de La Laguna, San Cristóbal de La Laguna, Spain, Spanish Blind Organization (ONCE), Santa Cruz de Tenerife, Spain
– sequence: 8
  givenname: Roy
  orcidid: 0000-0002-0614-3438
  surname: Abi Zeid Daou
  fullname: Abi Zeid Daou, Roy
  organization: Faculty of Engineering–Polytech, Biomedical Engineering Department, Université La Sagesse, Furn El Chebbak, Lebanon
– sequence: 9
  givenname: Jose Javier
  surname: Serrano Olmedo
  fullname: Serrano Olmedo, Jose Javier
  organization: Bioinstrumentation and Nanomedicine Laboratory, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain, CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40134862$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNUREvpkSuKxAUOWezYjm0uaKkKrFQJiZazNbEnW1eJs9jJQv893m6puhK2LH_MM6_Go_dlcRTGgEXxmpKFlFR-2CDG28qmRd1o8aw4qZlsKqF1ffTkfFycpXRLCKGC5qFfFMecUMZVU58Um-WqctFvMZQt9BAslriFfobJj-FjCaUdhw3EfN1imabZ3ZUtTr9xx_c-uBLyylVV-1tefuvdDH0q5-TDupxusBx88NXni6trTNOr4nmXo3j2sJ8WP79cXJ9_qy6_f12dLy8rKyibKoYNktYR0nSOCCUFKqCgBHNOaqY6UBKIdcCxU6LmgneWKe0UdIiKtYydFqu9rhvh1myiHyDemRG8uX8Y49pAnLzt0WiuCBBeMwc111K2AptaK8Y0UMeZzlqf9lqbuR3QWQxThP5A9DAS_I1Zj1uTu82EVDQrvHtQiOOvObfBDD5Z7HPHcZyTYTRDjZacZ_TtHl1Drs2HbsySdoebpWJEN1Q1JFOL_1B5Ohy8zS7pfH4_SHh_kJCZCf9Ma5hTMqurH4fsm6f_ffzoP9tkoNoDNo4pReweEUrMzpnm3pnGJrNzJvsL5gTV6A
Cites_doi 10.2478/rehab-2014-0019
10.1109/TNSRE.2019.2891000
10.1002/brb3.1436
10.3390/s23229194
10.3390/s21227628
10.1016/j.bjpt.2019.07.006
10.1589/jpts.25.693
10.2522/ptj.20080071
10.32385/rpmgf.v33i2.12039
10.1186/s12883-023-03403-3
10.1177/0264619620935937
10.32598/ptj.9.4.227
10.1080/14038190701395671
10.1016/j.jbmt.2022.02.017
10.3390/s23125564
10.1186/s12938-020-00762-7
10.1097/NPT.0000000000000401
10.6061/clinics/2013(04)13
10.1111/jgs.17094
10.32598/ptj.11.1.430.2
10.1109/ACCESS.2020.2997341
10.5220/0006079400150024
10.1007/s40279-016-0515-z
10.1002/oto2.58
10.1145/3161416
10.1097/MRR.0000000000000153
10.1109/JSEN.2022.3200986
10.3390/ijerph18052696
10.3389/fresc.2023.1308706
10.1186/s12984-021-00894-4
10.32598/biomechanics.7.3.321.1
10.2522/ptj.20120454
10.1080/09638288.2023.2288935
10.1109/TBME.2021.3103201
10.1016/j.medengphy.2019.10.018
10.3390/s21217110
10.1515/hukin-2015-0096
10.3389/fneur.2023.1228302
10.1080/10400435.2020.1809553
10.3390/s21134438
10.1589/jpts.28.1374
10.2340/16501977-0537
10.1016/j.jfma.2015.07.012
ContentType Journal Article
Copyright 2025 Jaén-Vargas et al.
COPYRIGHT 2025 PeerJ. Ltd.
2025 Jaén-Vargas et al. 2025 Jaén-Vargas et al.
Copyright_xml – notice: 2025 Jaén-Vargas et al.
– notice: COPYRIGHT 2025 PeerJ. Ltd.
– notice: 2025 Jaén-Vargas et al. 2025 Jaén-Vargas et al.
DBID AAYXX
CITATION
NPM
ISR
7X8
5PM
DOA
DOI 10.7717/peerj-cs.2695
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Physical Therapy
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_9480a0423da24977b5e6298339a1d439
PMC11935781
A830961860
40134862
10_7717_peerj_cs_2695
Genre Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: Instituto para la Formación y Aprovechamiento de Recursos Humanos and Secretaría Nacional de Ciencia, Tecnología e Innovación (IFARHU-SENACYT)
  grantid: 270-2018-968
– fundername: China Scholarship Council (CSC)
  grantid: 202308390098
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
H13
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c513t-3e6e0bd006fd05875e8a1a853dd7938fa87a0cda4ef852454fc389d8afee83b33
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001479998300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Fri Oct 03 12:51:59 EDT 2025
Tue Nov 04 02:03:18 EST 2025
Fri Sep 05 17:50:45 EDT 2025
Sat Nov 29 13:52:08 EST 2025
Tue Nov 04 18:16:36 EST 2025
Thu Nov 13 15:57:00 EST 2025
Mon Jul 21 05:33:20 EDT 2025
Sat Nov 29 08:11:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords IMU
Blind
Quaternions
mini-BESTest
Artificial intelligence
Balance
OpenSense RT
Language English
License https://creativecommons.org/licenses/by/4.0
2025 Jaén-Vargas et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-3e6e0bd006fd05875e8a1a853dd7938fa87a0cda4ef852454fc389d8afee83b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0614-3438
0000-0002-7250-6479
0000-0001-6350-401X
0000-0002-8357-7950
0000-0002-9453-1069
OpenAccessLink https://doaj.org/article/9480a0423da24977b5e6298339a1d439
PMID 40134862
PQID 3181369744
PQPubID 23479
PageCount e2695
ParticipantIDs doaj_primary_oai_doaj_org_article_9480a0423da24977b5e6298339a1d439
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11935781
proquest_miscellaneous_3181369744
gale_infotracmisc_A830961860
gale_infotracacademiconefile_A830961860
gale_incontextgauss_ISR_A830961860
pubmed_primary_40134862
crossref_primary_10_7717_peerj_cs_2695
PublicationCentury 2000
PublicationDate 2025-03-14
PublicationDateYYYYMMDD 2025-03-14
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2025
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Wei (10.7717/peerj-cs.2695/ref-44) 2020; 8
Almeida (10.7717/peerj-cs.2695/ref-3) 2017; 33
Tsang (10.7717/peerj-cs.2695/ref-42) 2013; 93
Alotaibi (10.7717/peerj-cs.2695/ref-4) 2016; 28
Wiszomirska (10.7717/peerj-cs.2695/ref-45) 2013; 27
El Marhraoui (10.7717/peerj-cs.2695/ref-11) 2023; 23
Kelly (10.7717/peerj-cs.2695/ref-22) 2021; 21
Stearns (10.7717/peerj-cs.2695/ref-39) 2018; 1
Kamran (10.7717/peerj-cs.2695/ref-21) 2021; 18
Kim (10.7717/peerj-cs.2695/ref-23) 2021; 21
Pennell (10.7717/peerj-cs.2695/ref-34) 2024; 46
Zarei (10.7717/peerj-cs.2695/ref-48) 2022; 30
Alghadir (10.7717/peerj-cs.2695/ref-2) 2019; 9
Blomqvist (10.7717/peerj-cs.2695/ref-6) 2007; 9
Silva-Batista (10.7717/peerj-cs.2695/ref-37) 2023; 23
Jeon (10.7717/peerj-cs.2695/ref-19) 2013; 25
Noamani (10.7717/peerj-cs.2695/ref-32) 2020; 77
Johnston (10.7717/peerj-cs.2695/ref-20) 2016
Inoue (10.7717/peerj-cs.2695/ref-18) 2024; 4
Kümmel (10.7717/peerj-cs.2695/ref-24) 2016; 46
Milosevic (10.7717/peerj-cs.2695/ref-27) 2020; 19
Lopes (10.7717/peerj-cs.2695/ref-26) 2020; 24
Omidi (10.7717/peerj-cs.2695/ref-33) 2019; 9
Di Carlo (10.7717/peerj-cs.2695/ref-10) 2016; 39
Slade (10.7717/peerj-cs.2695/ref-38) 2021; 69
Tomomitsu (10.7717/peerj-cs.2695/ref-41) 2013; 68
Daneshmandi (10.7717/peerj-cs.2695/ref-9) 2021; 11
Mohammadkhani (10.7717/peerj-cs.2695/ref-30) 2021; 7
Mitchell (10.7717/peerj-cs.2695/ref-29) 2023; 7
Gil-Martín (10.7717/peerj-cs.2695/ref-15) 2021; 21
Franchignoni (10.7717/peerj-cs.2695/ref-14) 2017
Adafruit (10.7717/peerj-cs.2695/ref-1) 2024
Bao (10.7717/peerj-cs.2695/ref-5) 2019; 27
Franchignoni (10.7717/peerj-cs.2695/ref-13) 2010; 42
World Health Organization (10.7717/peerj-cs.2695/ref-46) 2023
Lin (10.7717/peerj-cs.2695/ref-25) 2022; 22
Rutkowska (10.7717/peerj-cs.2695/ref-36) 2015; 48
Yang (10.7717/peerj-cs.2695/ref-47) 2016; 115
Stones (10.7717/peerj-cs.2695/ref-40) 1987; 68
Franchignoni (10.7717/peerj-cs.2695/ref-12) 2022; 46
Horak (10.7717/peerj-cs.2695/ref-17) 2009; 89
Nair (10.7717/peerj-cs.2695/ref-31) 2022; 34
Chen (10.7717/peerj-cs.2695/ref-8) 2021; 18
Wang (10.7717/peerj-cs.2695/ref-43) 2021; 69
Haibach-Beach (10.7717/peerj-cs.2695/ref-16) 2022; 40
Miranda-Cantellops (10.7717/peerj-cs.2695/ref-28) 2022
Reyes Leiva (10.7717/peerj-cs.2695/ref-35) 2023; 23
Caronni (10.7717/peerj-cs.2695/ref-7) 2023; 14
References_xml – volume: 27
  start-page: 29
  issue: 3
  year: 2013
  ident: 10.7717/peerj-cs.2695/ref-45
  article-title: Evaluation of static and dynamic postural stability in young, elderly and with vision loss women
  publication-title: Postepy Rehabilitacji
  doi: 10.2478/rehab-2014-0019
– volume: 27
  start-page: 179
  issue: 2
  year: 2019
  ident: 10.7717/peerj-cs.2695/ref-5
  article-title: Automatically evaluating balance: a machine learning approach
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2019.2891000
– volume: 9
  start-page: e01436
  issue: 11
  year: 2019
  ident: 10.7717/peerj-cs.2695/ref-2
  article-title: Postural stability in people with visual impairment
  publication-title: Brain and Behavior
  doi: 10.1002/brb3.1436
– volume: 23
  start-page: 1
  issue: 22
  year: 2023
  ident: 10.7717/peerj-cs.2695/ref-11
  article-title: CNN-based self-attention weight extraction for fall event prediction using balance test score
  publication-title: Sensors
  doi: 10.3390/s23229194
– volume: 21
  start-page: 7628
  issue: 22
  year: 2021
  ident: 10.7717/peerj-cs.2695/ref-23
  article-title: Wearable imu-based human activity recognition algorithm for clinical balance assessment using 1D-CNN and GRU ensemble model
  publication-title: Sensors
  doi: 10.3390/s21227628
– volume: 24
  start-page: 433
  issue: 5
  year: 2020
  ident: 10.7717/peerj-cs.2695/ref-26
  article-title: The mini-bestest is an independent predictor of falls in parkinson disease
  publication-title: Brazilian Journal of Physical Therapy
  doi: 10.1016/j.bjpt.2019.07.006
– volume: 25
  start-page: 693
  issue: 6
  year: 2013
  ident: 10.7717/peerj-cs.2695/ref-19
  article-title: The effects of balance of low vision patients on activities of daily living
  publication-title: Journal of Physical Therapy Science
  doi: 10.1589/jpts.25.693
– year: 2017
  ident: 10.7717/peerj-cs.2695/ref-14
  article-title: Mini-bestest: test de evaluación de los sistemas de equilibrio. Translated and adapted by Dominguez-Olivan, P., Serrano-Del-Rio, P., Fernandez-Simon, F., Bengoetxea, A., Bolea-Moll, D
– volume: 89
  start-page: 484
  issue: 5
  year: 2009
  ident: 10.7717/peerj-cs.2695/ref-17
  article-title: The balance evaluation systems test (BESTest) to differentiate balance deficits
  publication-title: Physical Therapy
  doi: 10.2522/ptj.20080071
– volume: 33
  start-page: 106
  issue: 2
  year: 2017
  ident: 10.7717/peerj-cs.2695/ref-3
  article-title: Valores normativos do balance evaluation system Test(BESTest), mini-bestest, brief-bestest, timed up and go test e usual gait speed em pessoas idosas portuguesas saudáveis
  publication-title: Revista Portuguesa de Medicina Geral e Familiar
  doi: 10.32385/rpmgf.v33i2.12039
– volume: 23
  start-page: 368
  year: 2023
  ident: 10.7717/peerj-cs.2695/ref-37
  article-title: Balance telerehabilitation and wearable technology for people with Parkinson’s disease (TelePD trial)
  publication-title: BMC Neurology
  doi: 10.1186/s12883-023-03403-3
– volume: 40
  start-page: 145
  issue: 2
  year: 2022
  ident: 10.7717/peerj-cs.2695/ref-16
  article-title: Home-based balance pilot intervention for adults with visual impairments
  publication-title: British Journal of Visual Impairment
  doi: 10.1177/0264619620935937
– volume: 9
  start-page: 227
  issue: 4
  year: 2019
  ident: 10.7717/peerj-cs.2695/ref-33
  article-title: The effect of a 6-week core stability exercises on the risk of falling and quality of life in blind people
  publication-title: Physical Treatments-Specific Physical Therapy Journal
  doi: 10.32598/ptj.9.4.227
– volume: 9
  start-page: 129
  issue: 3
  year: 2007
  ident: 10.7717/peerj-cs.2695/ref-6
  article-title: Validity and reliability of the dynamic one leg stance (DOLS) in people with vision loss
  publication-title: Advances in Physiotherapy
  doi: 10.1080/14038190701395671
– volume: 30
  start-page: 187
  issue: 4
  year: 2022
  ident: 10.7717/peerj-cs.2695/ref-48
  article-title: Effects of exercise training programs on balance of blind children and adolescents: a systematic review and meta-analysis
  publication-title: Journal of Bodywork and Movement Therapies
  doi: 10.1016/j.jbmt.2022.02.017
– volume: 23
  start-page: 1
  issue: 12
  year: 2023
  ident: 10.7717/peerj-cs.2695/ref-35
  article-title: Estimation of spatio-temporal parameters of gait and posture of visually impaired people using wearable sensors †
  publication-title: Sensors
  doi: 10.3390/s23125564
– volume: 19
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.2695/ref-27
  article-title: Kinect and wearable inertial sensors for motor rehabilitation programs at home: state of the art and an experimental comparison
  publication-title: Biomedical Engineering Online
  doi: 10.1186/s12938-020-00762-7
– volume: 46
  start-page: 219
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.2695/ref-12
  article-title: Rasch validation of the mini-bestest in people with parkinson disease
  publication-title: Journal of Neurologic Physical Therapy
  doi: 10.1097/NPT.0000000000000401
– volume: 68
  start-page: 517
  issue: 4
  year: 2013
  ident: 10.7717/peerj-cs.2695/ref-41
  article-title: Static and dynamic postural control in low-vision and normal-vision adults
  publication-title: Clinics
  doi: 10.6061/clinics/2013(04)13
– volume: 69
  start-page: 2000
  issue: 7
  year: 2021
  ident: 10.7717/peerj-cs.2695/ref-43
  article-title: Optimal exercise parameters of tai chi for balance performance in older adults: a meta-analysis
  publication-title: Journal of the American Geriatrics Society
  doi: 10.1111/jgs.17094
– year: 2023
  ident: 10.7717/peerj-cs.2695/ref-46
  article-title: Blindness and vision impairment
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.2695/ref-9
  article-title: Balance in the blind: a systematic review
  publication-title: Physical Treatments-Specific Physical Therapy Journal
  doi: 10.32598/ptj.11.1.430.2
– volume: 8
  start-page: 99889
  year: 2020
  ident: 10.7717/peerj-cs.2695/ref-44
  article-title: Using sensors and deep learning to enable on-demand balance evaluation for effective physical therapy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997341
– start-page: 15
  year: 2016
  ident: 10.7717/peerj-cs.2695/ref-20
  article-title: Objective classification of dynamic balance using a single wearable sensor
  doi: 10.5220/0006079400150024
– volume: 46
  start-page: 1261
  issue: 9
  year: 2016
  ident: 10.7717/peerj-cs.2695/ref-24
  article-title: Specificity of balance training in healthy individuals: a systematic review and meta-analysis
  publication-title: Sports Medicine
  doi: 10.1007/s40279-016-0515-z
– volume: 7
  start-page: e58
  issue: 2
  year: 2023
  ident: 10.7717/peerj-cs.2695/ref-29
  article-title: Balance disorder trends in us adults 2008–2016: epidemiology and functional impact
  publication-title: OTO Open
  doi: 10.1002/oto2.58
– volume: 1
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.7717/peerj-cs.2695/ref-39
  article-title: TouchCam
  publication-title: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
  doi: 10.1145/3161416
– volume: 68
  start-page: 85
  issue: 2
  year: 1987
  ident: 10.7717/peerj-cs.2695/ref-40
  article-title: Balance and age in the sighted and blind
  publication-title: Archives of Physical Medicine and Rehabilitation
– volume: 39
  start-page: 97
  issue: 2
  year: 2016
  ident: 10.7717/peerj-cs.2695/ref-10
  article-title: The Mini-BESTest: a review of psychometric properties
  publication-title: International Journal of Rehabilitation Research
  doi: 10.1097/MRR.0000000000000153
– volume: 22
  start-page: 19919
  issue: 20
  year: 2022
  ident: 10.7717/peerj-cs.2695/ref-25
  article-title: Automatic assessment system based on IMUs and machine learning for predicting berg balance scale
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2022.3200986
– volume: 18
  start-page: 2696
  issue: 5
  year: 2021
  ident: 10.7717/peerj-cs.2695/ref-8
  article-title: Review of the upright balance assessment based on the force plate
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph18052696
– volume: 4
  start-page: 1308706
  year: 2024
  ident: 10.7717/peerj-cs.2695/ref-18
  article-title: Comparison of usefulness between the mini-balance evaluation systems test and the berg balance scale for measuring balance in patients with subacute stroke: a prospective cohort study
  publication-title: Frontiers in Rehabilitation Sciences
  doi: 10.3389/fresc.2023.1308706
– volume: 18
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.2695/ref-21
  article-title: Automatically evaluating balance using machine learning and data from a single inertial measurement unit
  publication-title: Journal of NeuroEngineering and Rehabilitation
  doi: 10.1186/s12984-021-00894-4
– volume: 7
  start-page: 202
  issue: 3
  year: 2021
  ident: 10.7717/peerj-cs.2695/ref-30
  article-title: Comparison of the effect and durability of foot massage methods on the balance of the blindness
  publication-title: Journal of Sport Biomechanics
  doi: 10.32598/biomechanics.7.3.321.1
– volume: 93
  start-page: 1102
  issue: 8
  year: 2013
  ident: 10.7717/peerj-cs.2695/ref-42
  article-title: Psychometric properties of the mini-balance evaluation systems test (mini-bestest) in community-dwelling individuals with chronic stroke
  publication-title: Physical Therapy
  doi: 10.2522/ptj.20120454
– volume: 46
  start-page: 4797
  issue: 20
  year: 2024
  ident: 10.7717/peerj-cs.2695/ref-34
  article-title: Measurement properties of Brief-BESTest scores from children, adolescents, and youth with visual impairments
  publication-title: Disability and Rehabilitation
  doi: 10.1080/09638288.2023.2288935
– year: 2022
  ident: 10.7717/peerj-cs.2695/ref-28
  article-title: Berg balance testing
– volume: 69
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.2695/ref-38
  article-title: An open-source and wearable system for measuring 3D human motion in real-time
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2021.3103201
– year: 2024
  ident: 10.7717/peerj-cs.2695/ref-1
  article-title: Adafruit ISM330DLC 6-DoF accelerometer and gyroscope
– volume: 77
  start-page: 53
  issue: 24
  year: 2020
  ident: 10.7717/peerj-cs.2695/ref-32
  article-title: Validity of using wearable inertial sensors for assessing the dynamics of standing balance
  publication-title: Medical Engineering & Physics
  doi: 10.1016/j.medengphy.2019.10.018
– volume: 21
  start-page: 7110
  issue: 21
  year: 2021
  ident: 10.7717/peerj-cs.2695/ref-15
  article-title: Scoring performance on the y-balance test using a deep learning approach
  publication-title: Sensors
  doi: 10.3390/s21217110
– volume: 48
  start-page: 99
  issue: 1
  year: 2015
  ident: 10.7717/peerj-cs.2695/ref-36
  article-title: Balance functional assessment in people with visual impairment
  publication-title: Journal of Human Kinetics
  doi: 10.1515/hukin-2015-0096
– volume: 14
  start-page: 1228302
  year: 2023
  ident: 10.7717/peerj-cs.2695/ref-7
  article-title: Pay attention: you can fall! the mini-bestest scale and the turning duration of the tug test provide valid balance measures in neurological patients: a prospective study with falls as the balance criterion
  publication-title: Frontiers in Neurology
  doi: 10.3389/fneur.2023.1228302
– volume: 34
  start-page: 289
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.2695/ref-31
  article-title: ASSIST: evaluating the usability and performance of an indoor navigation assistant for blind and visually impaired people
  publication-title: Assistive Technology
  doi: 10.1080/10400435.2020.1809553
– volume: 21
  start-page: 4438
  issue: 13
  year: 2021
  ident: 10.7717/peerj-cs.2695/ref-22
  article-title: Feasibility of sensor technology for balance assessment in home rehabilitation settings
  publication-title: Sensors (Basel)
  doi: 10.3390/s21134438
– volume: 28
  start-page: 1374
  issue: 4
  year: 2016
  ident: 10.7717/peerj-cs.2695/ref-4
  article-title: Effect of absence of vision on posture
  publication-title: Journal of Physical Therapy Science
  doi: 10.1589/jpts.28.1374
– volume: 42
  start-page: 323
  issue: 4
  year: 2010
  ident: 10.7717/peerj-cs.2695/ref-13
  article-title: Using psychometric techniques to improve the balance evaluation systems test: the mini-bestest
  publication-title: Journal of Rehabilitation Medicine
  doi: 10.2340/16501977-0537
– volume: 115
  start-page: 734
  issue: 9
  year: 2016
  ident: 10.7717/peerj-cs.2695/ref-47
  article-title: Home-based virtual reality balance training and conventional balance training in parkinson’s disease: a randomized controlled trial
  publication-title: Journal of the Formosan Medical Association
  doi: 10.1016/j.jfma.2015.07.012
SSID ssj0001511119
Score 2.285743
Snippet There are 2.2 billion visually impaired individuals and 285 million blind people worldwide. The vestibular system plays a fundamental role in the balance of a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e2695
SubjectTerms Algorithms and Analysis of Algorithms
Artificial Intelligence
Balance
Blind
Care and treatment
Data Mining and Machine Learning
IMU
Machine learning
Methods
mini-BESTest
Neural Networks
OpenSense RT
Physical therapy
Quaternions
Rehabilitation
Technology application
Therapeutics, Physiological
Title AI-driven balance evaluation: a comparative study between blind and non-blind individuals using the mini-BESTest
URI https://www.ncbi.nlm.nih.gov/pubmed/40134862
https://www.proquest.com/docview/3181369744
https://pubmed.ncbi.nlm.nih.gov/PMC11935781
https://doaj.org/article/9480a0423da24977b5e6298339a1d439
Volume 11
WOSCitedRecordID wos001479998300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29j9MwFLfgYGDhmyNwVAYhmMzFcRI7bC3qiQpdFd0dUmGxHNs5ypBWTcvI3857SdpLxMDCEEuJPcR-nz_p-fcIeVt4nrpEpYzbomSxtIYVxnMWOR556zxPlGuaTcj5XC0WWd5r9YU1YS09cHtwp1msQoPFG84AUpCySHwaZUqIzHAH0RS9L2Q9PTDV3g9GV5C1pJoSIMvp2vvNT2brD1GKvSR6Qajh6v_bI_dC0rBcshd_zh6S-13iSMftDz8it3z1mDzYN2WgnY0-IevxjLkN-jBaYNmi9fSG0fsjNdTe8H3ThlyWdrVatICU01EDT7WqWPu2PFzYqinWyF9TyBgpEpKwyfTyCnbwlHw9m159-sy6tgrMJlxsmfCpDwsH5la6MAG84pXhBsK2c2CsqjRKmtA6E_tSJVGcxKWFrMYpU3qvRCHEM3IEv-GfE5pxJ62QAJnKMHalNJYDQJJFEUfWhY4H5N3-nPW6Zc_QgDpQILoRiLa1RoEEZIJSOCxC0uvmA6iC7lRB_0sVAvIGZaiR1qLCuplrs6trPbu80GMlmt42aRiQ992icgXStKa7hgAbQiaswcqTwUqwOzuYfr1XFY1TWKxW-dWu1uAmuUgBqMUBOW5V57AxhLMxoMiAqIFSDXY-nKmWPxrab9BnpCbiL_7HWb0k9yLsZIyVifEJOdpudv4VuWt_bZf1ZkRuy4UakTuT6Ty_GDWmBeMXyWA8_z2FMU--w3w-O8-__QH4JSzo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-driven+balance+evaluation%3A+a+comparative+study+between+blind+and+non-blind+individuals+using+the+mini-BESTest&rft.jtitle=PeerJ.+Computer+science&rft.au=Ja%C3%A9n-Vargas%2C+Milagros&rft.au=Pag%C3%A1n%2C+Josu%C3%A9&rft.au=Li%2C+Shiyang&rft.au=Trujillo-Guerrero%2C+Mar%C3%ADa+Fernanda&rft.date=2025-03-14&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=11&rft.spage=e2695&rft_id=info:doi/10.7717%2Fpeerj-cs.2695&rft.externalDocID=A830961860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon