FUS is phosphorylated by DNA-PK and accumulates in the cytoplasm after DNA damage
Abnormal cytoplasmic accumulation of Fused in Sarcoma (FUS) in neurons defines subtypes of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). FUS is a member of the FET protein family that includes Ewing's sarcoma (EWS) and TATA-binding protein-associated factor 2...
Saved in:
| Published in: | The Journal of neuroscience Vol. 34; no. 23; p. 7802 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
04.06.2014
|
| Subjects: | |
| ISSN: | 1529-2401, 1529-2401 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Abnormal cytoplasmic accumulation of Fused in Sarcoma (FUS) in neurons defines subtypes of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). FUS is a member of the FET protein family that includes Ewing's sarcoma (EWS) and TATA-binding protein-associated factor 2N (TAF15). FET proteins are predominantly localized to the nucleus, where they bind RNA and DNA to modulate transcription, mRNA splicing, and DNA repair. In ALS cases with FUS inclusions (ALS-FUS), mutations in the FUS gene cause disease, whereas FTLD cases with FUS inclusions (FTLD-FUS) do not harbor FUS mutations. Notably, in FTLD-FUS, all FET proteins accumulate with their nuclear import receptor Transportin 1 (TRN1), in contrast ALS-FUS inclusions are exclusively positive for FUS. In the present study, we show that induction of DNA damage replicates several pathologic hallmarks of FTLD-FUS in immortalized human cells and primary human neurons and astrocytes. Treatment with the antibiotic calicheamicin γ1, which causes DNA double-strand breaks, leads to the cytoplasmic accumulation of FUS, TAF15, EWS, and TRN1. Moreover, cytoplasmic translocation of FUS is mediated by phosphorylation of its N terminus by the DNA-dependent protein kinase. Finally, we observed elevated levels of phospho-H2AX in FTLD-FUS brains, indicating that DNA damage occurs in patients. Together, our data reveal a novel regulatory mechanism for FUS localization in cells and suggest that DNA damage may contribute to the accumulation of FET proteins observed in human FTLD-FUS cases, but not in ALS-FUS. |
|---|---|
| AbstractList | Abnormal cytoplasmic accumulation of Fused in Sarcoma (FUS) in neurons defines subtypes of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). FUS is a member of the FET protein family that includes Ewing's sarcoma (EWS) and TATA-binding protein-associated factor 2N (TAF15). FET proteins are predominantly localized to the nucleus, where they bind RNA and DNA to modulate transcription, mRNA splicing, and DNA repair. In ALS cases with FUS inclusions (ALS-FUS), mutations in the FUS gene cause disease, whereas FTLD cases with FUS inclusions (FTLD-FUS) do not harbor FUS mutations. Notably, in FTLD-FUS, all FET proteins accumulate with their nuclear import receptor Transportin 1 (TRN1), in contrast ALS-FUS inclusions are exclusively positive for FUS. In the present study, we show that induction of DNA damage replicates several pathologic hallmarks of FTLD-FUS in immortalized human cells and primary human neurons and astrocytes. Treatment with the antibiotic calicheamicin γ1, which causes DNA double-strand breaks, leads to the cytoplasmic accumulation of FUS, TAF15, EWS, and TRN1. Moreover, cytoplasmic translocation of FUS is mediated by phosphorylation of its N terminus by the DNA-dependent protein kinase. Finally, we observed elevated levels of phospho-H2AX in FTLD-FUS brains, indicating that DNA damage occurs in patients. Together, our data reveal a novel regulatory mechanism for FUS localization in cells and suggest that DNA damage may contribute to the accumulation of FET proteins observed in human FTLD-FUS cases, but not in ALS-FUS. Abnormal cytoplasmic accumulation of Fused in Sarcoma (FUS) in neurons defines subtypes of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). FUS is a member of the FET protein family that includes Ewing's sarcoma (EWS) and TATA-binding protein-associated factor 2N (TAF15). FET proteins are predominantly localized to the nucleus, where they bind RNA and DNA to modulate transcription, mRNA splicing, and DNA repair. In ALS cases with FUS inclusions (ALS-FUS), mutations in the FUS gene cause disease, whereas FTLD cases with FUS inclusions (FTLD-FUS) do not harbor FUS mutations. Notably, in FTLD-FUS, all FET proteins accumulate with their nuclear import receptor Transportin 1 (TRN1), in contrast ALS-FUS inclusions are exclusively positive for FUS. In the present study, we show that induction of DNA damage replicates several pathologic hallmarks of FTLD-FUS in immortalized human cells and primary human neurons and astrocytes. Treatment with the antibiotic calicheamicin γ1, which causes DNA double-strand breaks, leads to the cytoplasmic accumulation of FUS, TAF15, EWS, and TRN1. Moreover, cytoplasmic translocation of FUS is mediated by phosphorylation of its N terminus by the DNA-dependent protein kinase. Finally, we observed elevated levels of phospho-H2AX in FTLD-FUS brains, indicating that DNA damage occurs in patients. Together, our data reveal a novel regulatory mechanism for FUS localization in cells and suggest that DNA damage may contribute to the accumulation of FET proteins observed in human FTLD-FUS cases, but not in ALS-FUS.Abnormal cytoplasmic accumulation of Fused in Sarcoma (FUS) in neurons defines subtypes of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). FUS is a member of the FET protein family that includes Ewing's sarcoma (EWS) and TATA-binding protein-associated factor 2N (TAF15). FET proteins are predominantly localized to the nucleus, where they bind RNA and DNA to modulate transcription, mRNA splicing, and DNA repair. In ALS cases with FUS inclusions (ALS-FUS), mutations in the FUS gene cause disease, whereas FTLD cases with FUS inclusions (FTLD-FUS) do not harbor FUS mutations. Notably, in FTLD-FUS, all FET proteins accumulate with their nuclear import receptor Transportin 1 (TRN1), in contrast ALS-FUS inclusions are exclusively positive for FUS. In the present study, we show that induction of DNA damage replicates several pathologic hallmarks of FTLD-FUS in immortalized human cells and primary human neurons and astrocytes. Treatment with the antibiotic calicheamicin γ1, which causes DNA double-strand breaks, leads to the cytoplasmic accumulation of FUS, TAF15, EWS, and TRN1. Moreover, cytoplasmic translocation of FUS is mediated by phosphorylation of its N terminus by the DNA-dependent protein kinase. Finally, we observed elevated levels of phospho-H2AX in FTLD-FUS brains, indicating that DNA damage occurs in patients. Together, our data reveal a novel regulatory mechanism for FUS localization in cells and suggest that DNA damage may contribute to the accumulation of FET proteins observed in human FTLD-FUS cases, but not in ALS-FUS. |
| Author | Deng, Qiudong Seyfried, Nicholas T Watkins, William Taylor, Georgia Ito, Daisuke Murray, Melissa E Dickson, Dennis W Hudson, Kathryn F Gearing, Marla Holler, Christopher J Kukar, Thomas |
| Author_xml | – sequence: 1 givenname: Qiudong surname: Deng fullname: Deng, Qiudong organization: Department of Pharmacology – sequence: 2 givenname: Christopher J surname: Holler fullname: Holler, Christopher J organization: Department of Pharmacology – sequence: 3 givenname: Georgia surname: Taylor fullname: Taylor, Georgia organization: Department of Pharmacology – sequence: 4 givenname: Kathryn F surname: Hudson fullname: Hudson, Kathryn F organization: Department of Pharmacology – sequence: 5 givenname: William surname: Watkins fullname: Watkins, William organization: Department of Pharmacology – sequence: 6 givenname: Marla surname: Gearing fullname: Gearing, Marla organization: Department of Pathology, Center for Neurodegenerative Disease – sequence: 7 givenname: Daisuke surname: Ito fullname: Ito, Daisuke organization: Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan, and – sequence: 8 givenname: Melissa E surname: Murray fullname: Murray, Melissa E organization: Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224 – sequence: 9 givenname: Dennis W surname: Dickson fullname: Dickson, Dennis W organization: Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224 – sequence: 10 givenname: Nicholas T surname: Seyfried fullname: Seyfried, Nicholas T organization: Center for Neurodegenerative Disease, Department of Biochemistry, and Department of Neurology, Emory University, School of Medicine, Atlanta, Georgia 30322 – sequence: 11 givenname: Thomas surname: Kukar fullname: Kukar, Thomas email: Thomas.Kukar@emory.edu organization: Department of Pharmacology, Center for Neurodegenerative Disease, Department of Neurology, Emory University, School of Medicine, Atlanta, Georgia 30322, Thomas.Kukar@emory.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24899704$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtKw0AUhgep2Iu-Qpmlm8S5ZpJlqW2tllatWYfJ5MRGcjOTLPL2pljBxeE_8H0cOP8UjcqqBITmlLhUMv7wvF-F74fjcusSqphDhcsIFVdoMtDAYYLQ0b99jKbWfhFC1GDfoDETfhAoIibobR0ecWZxfarsME2f6xYSHPf4cb9wXl-wLhOsjemK7kwszkrcngCbvq3qXNsC67SF5mzjRBf6E27RdapzC3eXnKFwvfpYPjm7w2a7XOwcIylvHc4BDCjuG98EBoRiApQHIGVMEqq456dx4CeGaQpcxdIoJlPpDR8p5XkM2Azd_96tm-q7A9tGRWYN5LkuoepsRCUXlLBAikGdX9QuLiCJ6iYrdNNHfzWwH9XbYPg |
| CitedBy_id | crossref_primary_10_1016_j_semcdb_2019_07_010 crossref_primary_10_1186_s40478_020_01037_x crossref_primary_10_1016_j_tibs_2016_05_010 crossref_primary_10_3390_ijms251810187 crossref_primary_10_1038_s41467_017_02299_1 crossref_primary_10_1080_09168451_2016_1263148 crossref_primary_10_1016_j_bbadis_2016_07_015 crossref_primary_10_3390_antiox13030266 crossref_primary_10_3390_antiox13080883 crossref_primary_10_1186_s40478_016_0358_8 crossref_primary_10_1038_s41467_018_06111_6 crossref_primary_10_1016_j_arr_2024_102413 crossref_primary_10_1074_jbc_TM118_001189 crossref_primary_10_1083_jcb_202001120 crossref_primary_10_1038_s42003_020_01517_9 crossref_primary_10_1083_jcb_202008030 crossref_primary_10_1016_j_brainres_2016_03_036 crossref_primary_10_1016_j_nbd_2020_105085 crossref_primary_10_15252_embr_202154217 crossref_primary_10_1016_j_isci_2021_103701 crossref_primary_10_1016_j_mad_2016_09_005 crossref_primary_10_1016_j_devcel_2020_09_014 crossref_primary_10_1016_j_dnarep_2024_103785 crossref_primary_10_1091_mbc_E17_12_0735 crossref_primary_10_1186_s13024_025_00839_8 crossref_primary_10_3390_molecules26237198 crossref_primary_10_3390_cells9081907 crossref_primary_10_1002_appl_202300071 crossref_primary_10_1093_mutage_gez035 crossref_primary_10_1016_j_jbc_2022_102191 crossref_primary_10_3390_ijms23052484 crossref_primary_10_1038_s41580_021_00394_2 crossref_primary_10_3390_ijms252413693 crossref_primary_10_3389_fnagi_2021_786897 crossref_primary_10_1016_j_jbc_2024_107846 crossref_primary_10_1016_j_molcel_2015_09_006 crossref_primary_10_1038_s41556_023_01309_3 crossref_primary_10_1016_j_tig_2024_10_008 crossref_primary_10_1371_journal_pone_0181131 crossref_primary_10_1016_j_mad_2016_03_001 crossref_primary_10_1016_j_jmb_2019_11_017 crossref_primary_10_1016_j_dnarep_2021_103179 crossref_primary_10_3389_fncel_2016_00290 crossref_primary_10_1016_j_nbd_2021_105364 crossref_primary_10_1038_s41467_024_45978_6 crossref_primary_10_1111_tra_12704 crossref_primary_10_3109_21678421_2015_1040994 crossref_primary_10_1186_s11658_020_0199_0 crossref_primary_10_1016_j_devcel_2022_02_022 crossref_primary_10_1038_s41598_018_36374_4 crossref_primary_10_1007_s10577_019_09617_x crossref_primary_10_1093_brain_awaa022 crossref_primary_10_1038_s41392_022_01076_x crossref_primary_10_1093_brain_awad130 crossref_primary_10_3390_cells13110888 crossref_primary_10_1101_gr_218438_116 crossref_primary_10_1146_annurev_biochem_061516_044700 crossref_primary_10_3389_fmicb_2016_01941 crossref_primary_10_1016_j_dnarep_2025_103846 crossref_primary_10_1016_j_tibs_2021_07_004 crossref_primary_10_1038_s41467_020_19512_3 crossref_primary_10_1074_jbc_RA120_013801 crossref_primary_10_1016_j_bbagrm_2023_194989 crossref_primary_10_1038_s41419_017_0125_1 crossref_primary_10_1038_s41598_021_94225_1 crossref_primary_10_26508_lsa_201800222 crossref_primary_10_1016_j_jbc_2022_102135 crossref_primary_10_3390_ijms24065828 crossref_primary_10_1016_j_jbc_2021_101049 crossref_primary_10_1073_pnas_2401531121 crossref_primary_10_26508_lsa_202101327 crossref_primary_10_3390_cells13030248 crossref_primary_10_1016_j_celrep_2019_04_031 crossref_primary_10_3390_ncrna6030026 crossref_primary_10_15252_embj_201696394 crossref_primary_10_1016_j_brainres_2016_05_022 crossref_primary_10_1016_j_tig_2020_09_006 crossref_primary_10_1155_2020_5021694 crossref_primary_10_3389_fncel_2015_00448 crossref_primary_10_1186_s12964_023_01380_1 crossref_primary_10_3389_fnmol_2021_784361 crossref_primary_10_1038_s41594_018_0050_8 crossref_primary_10_3390_molecules24081622 crossref_primary_10_1038_s41598_023_34558_1 crossref_primary_10_1038_s41598_022_12098_4 crossref_primary_10_1038_ncomms9088 crossref_primary_10_3390_ijms19030886 crossref_primary_10_1093_hmg_ddz162 crossref_primary_10_1007_s00401_024_02689_y crossref_primary_10_1096_fj_202200468RR crossref_primary_10_3389_fnmol_2022_953365 crossref_primary_10_3390_ijms21197020 crossref_primary_10_1016_j_brainres_2018_04_036 crossref_primary_10_1007_s00401_016_1544_2 crossref_primary_10_1016_j_abb_2021_108977 crossref_primary_10_1134_S0026893317020091 crossref_primary_10_3389_fnmol_2017_00089 crossref_primary_10_1093_hmg_ddad125 crossref_primary_10_15252_embj_201797568 crossref_primary_10_3389_fnmol_2021_686995 crossref_primary_10_3390_ijms21186650 crossref_primary_10_1016_j_cell_2017_08_048 crossref_primary_10_1016_j_pneurobio_2016_09_004 crossref_primary_10_1146_annurev_pathmechdis_012418_012955 crossref_primary_10_3389_fnmol_2023_1242925 crossref_primary_10_3390_ijms19103137 crossref_primary_10_1007_s00018_024_05204_4 crossref_primary_10_4103_1673_5374_286963 crossref_primary_10_3390_ijms25063526 crossref_primary_10_1091_mbc_E20_05_0290 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 the authors 0270-6474/14/347802-12$15.00/0. |
| Copyright_xml | – notice: Copyright © 2014 the authors 0270-6474/14/347802-12$15.00/0. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1523/JNEUROSCI.0172-14.2014 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1529-2401 |
| ExternalDocumentID | 24899704 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: K99 AG032362 – fundername: NINDS NIH HHS grantid: P30 NS069289 – fundername: NIA NIH HHS grantid: P50 AG025688 – fundername: NIA NIH HHS grantid: R00AG032362 – fundername: NINDS NIH HHS grantid: 2T32 NS 007480 – fundername: NIA NIH HHS grantid: R00 AG032362 – fundername: NIA NIH HHS grantid: P50AG032362 – fundername: NINDS NIH HHS grantid: T32 NS007480 – fundername: NINDS NIH HHS grantid: P30NS069289 |
| GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P GX1 H13 HYE H~9 KQ8 L7B NPM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK 7X8 |
| ID | FETCH-LOGICAL-c513t-33eece738c8c9ce4724e76ee55b0d17368fb98dc2a1e37b5c725f5652977662e2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337630700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1529-2401 |
| IngestDate | Fri Sep 05 10:05:19 EDT 2025 Thu Apr 03 07:00:44 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | Fused in Sarcoma (FUS) amyotrophic lateral sclerosis (ALS) phosphorylation DNA damage frontotemporal lobar degeneration (FTLD) cytoplasmic translocation |
| Language | English |
| License | Copyright © 2014 the authors 0270-6474/14/347802-12$15.00/0. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c513t-33eece738c8c9ce4724e76ee55b0d17368fb98dc2a1e37b5c725f5652977662e2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.jneurosci.org/content/jneuro/34/23/7802.full.pdf |
| PMID | 24899704 |
| PQID | 1534102954 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1534102954 pubmed_primary_24899704 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-06-04 |
| PublicationDateYYYYMMDD | 2014-06-04 |
| PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of neuroscience |
| PublicationTitleAlternate | J Neurosci |
| PublicationYear | 2014 |
| SSID | ssj0007017 |
| Score | 2.494548 |
| Snippet | Abnormal cytoplasmic accumulation of Fused in Sarcoma (FUS) in neurons defines subtypes of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 7802 |
| SubjectTerms | Aminoglycosides - pharmacology Antibiotics, Antineoplastic - pharmacology Astrocytes - drug effects Astrocytes - metabolism Cells, Cultured Cytoplasm - drug effects Cytoplasm - metabolism DNA Damage - drug effects DNA Damage - physiology DNA-Activated Protein Kinase - metabolism Enediynes - pharmacology Frontotemporal Lobar Degeneration - metabolism Frontotemporal Lobar Degeneration - pathology Humans Immunoprecipitation Mutagens - pharmacology Mutation - genetics Neurons Nuclear Proteins - metabolism Phosphorylation - drug effects Receptors, Cytoplasmic and Nuclear - metabolism RNA-Binding Protein EWS - metabolism RNA-Binding Protein FUS - metabolism TATA-Binding Protein Associated Factors - metabolism |
| Title | FUS is phosphorylated by DNA-PK and accumulates in the cytoplasm after DNA damage |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24899704 https://www.proquest.com/docview/1534102954 |
| Volume | 34 |
| WOSCitedRecordID | wos000337630700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFA7eHnzxsrpedpUsLPuWddqkTfMkgzp42zKLuszb0Jyc4oDTjnYU5t97kqn4JCz40EJDC-Xk5OQ7l5yPsZ9QZgQUgKxf7LRQxoIwNlVCWVVapyIDId7x71rneTYYmH4bcGvasso3mxgMtavBx8iPaGUq2gxNoo4nj8KzRvnsakuhsciWJUEZr9V68N4tXHcC4y5tUSGLELUnhMn3OrrMfaXczcnFb-8EiciHV_xJno9gZthueuuf_dENttYCTd6da8YmW8DqC9vqVuRkj2f8Fw-lnyGmvsX-9u5u-Kjhk_u6oetp9kAI1HE746d5V_SveFE5XgA8jz3ZFzZ8VHECjhxm03pC8HvMA9W4f5u7Ykwmapvd9c5uT85Fy7UgIInkVEiJCKhlBhkYQKVjhTpFTBLbcZGWaVZakzmIiwiltjS7cVISGIwJP6ZpjPFXtlTVFe4y7iApLCEf39xVgUVDz2g0DadpiVLusR9vghuSLvsERVFh_dwM30W3x3bm0h9O5k03hrEiz1B31P5_fP2NrfrZDBVd6jtbLmkl4wFbgZfpqHk6DEpC97z_5xVhm8TE |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FUS+is+phosphorylated+by+DNA-PK+and+accumulates+in+the+cytoplasm+after+DNA+damage&rft.jtitle=The+Journal+of+neuroscience&rft.au=Deng%2C+Qiudong&rft.au=Holler%2C+Christopher+J&rft.au=Taylor%2C+Georgia&rft.au=Hudson%2C+Kathryn+F&rft.date=2014-06-04&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=34&rft.issue=23&rft.spage=7802&rft_id=info:doi/10.1523%2FJNEUROSCI.0172-14.2014&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2401&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2401&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2401&client=summon |