Big data and machine learning algorithms for health-care delivery

Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However, to effectively use machine learning tools in health care, several limitations must be addressed and key issues considered, such as its clinic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The lancet oncology Ročník 20; číslo 5; s. e262 - e273
Hlavní autoři: Ngiam, Kee Yuan, Khor, Ing Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.05.2019
Elsevier Limited
Témata:
ISSN:1470-2045, 1474-5488, 1474-5488
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However, to effectively use machine learning tools in health care, several limitations must be addressed and key issues considered, such as its clinical implementation and ethics in health-care delivery. Advantages of machine learning include flexibility and scalability compared with traditional biostatistical methods, which makes it deployable for many tasks, such as risk stratification, diagnosis and classification, and survival predictions. Another advantage of machine learning algorithms is the ability to analyse diverse data types (eg, demographic data, laboratory findings, imaging data, and doctors' free-text notes) and incorporate them into predictions for disease risk, diagnosis, prognosis, and appropriate treatments. Despite these advantages, the application of machine learning in health-care delivery also presents unique challenges that require data pre-processing, model training, and refinement of the system with respect to the actual clinical problem. Also crucial are ethical considerations, which include medico-legal implications, doctors' understanding of machine learning tools, and data privacy and security. In this Review, we discuss some of the benefits and challenges of big data and machine learning in health care.
AbstractList Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However, to effectively use machine learning tools in health care, several limitations must be addressed and key issues considered, such as its clinical implementation and ethics in health-care delivery. Advantages of machine learning include flexibility and scalability compared with traditional biostatistical methods, which makes it deployable for many tasks, such as risk stratification, diagnosis and classification, and survival predictions. Another advantage of machine learning algorithms is the ability to analyse diverse data types (eg, demographic data, laboratory findings, imaging data, and doctors' free-text notes) and incorporate them into predictions for disease risk, diagnosis, prognosis, and appropriate treatments. Despite these advantages, the application of machine learning in health-care delivery also presents unique challenges that require data pre-processing, model training, and refinement of the system with respect to the actual clinical problem. Also crucial are ethical considerations, which include medico-legal implications, doctors' understanding of machine learning tools, and data privacy and security. In this Review, we discuss some of the benefits and challenges of big data and machine learning in health care.
Summary Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However, to effectively use machine learning tools in health care, several limitations must be addressed and key issues considered, such as its clinical implementation and ethics in health-care delivery. Advantages of machine learning include flexibility and scalability compared with traditional biostatistical methods, which makes it deployable for many tasks, such as risk stratification, diagnosis and classification, and survival predictions. Another advantage of machine learning algorithms is the ability to analyse diverse data types (eg, demographic data, laboratory findings, imaging data, and doctors' free-text notes) and incorporate them into predictions for disease risk, diagnosis, prognosis, and appropriate treatments. Despite these advantages, the application of machine learning in health-care delivery also presents unique challenges that require data pre-processing, model training, and refinement of the system with respect to the actual clinical problem. Also crucial are ethical considerations, which include medico-legal implications, doctors' understanding of machine learning tools, and data privacy and security. In this Review, we discuss some of the benefits and challenges of big data and machine learning in health care.
Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However, to effectively use machine learning tools in health care, several limitations must be addressed and key issues considered, such as its clinical implementation and ethics in health-care delivery. Advantages of machine learning include flexibility and scalability compared with traditional biostatistical methods, which makes it deployable for many tasks, such as risk stratification, diagnosis and classification, and survival predictions. Another advantage of machine learning algorithms is the ability to analyse diverse data types (eg, demographic data, laboratory findings, imaging data, and doctors' free-text notes) and incorporate them into predictions for disease risk, diagnosis, prognosis, and appropriate treatments. Despite these advantages, the application of machine learning in health-care delivery also presents unique challenges that require data pre-processing, model training, and refinement of the system with respect to the actual clinical problem. Also crucial are ethical considerations, which include medico-legal implications, doctors' understanding of machine learning tools, and data privacy and security. In this Review, we discuss some of the benefits and challenges of big data and machine learning in health care.Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However, to effectively use machine learning tools in health care, several limitations must be addressed and key issues considered, such as its clinical implementation and ethics in health-care delivery. Advantages of machine learning include flexibility and scalability compared with traditional biostatistical methods, which makes it deployable for many tasks, such as risk stratification, diagnosis and classification, and survival predictions. Another advantage of machine learning algorithms is the ability to analyse diverse data types (eg, demographic data, laboratory findings, imaging data, and doctors' free-text notes) and incorporate them into predictions for disease risk, diagnosis, prognosis, and appropriate treatments. Despite these advantages, the application of machine learning in health-care delivery also presents unique challenges that require data pre-processing, model training, and refinement of the system with respect to the actual clinical problem. Also crucial are ethical considerations, which include medico-legal implications, doctors' understanding of machine learning tools, and data privacy and security. In this Review, we discuss some of the benefits and challenges of big data and machine learning in health care.
Author Khor, Ing Wei
Ngiam, Kee Yuan
Author_xml – sequence: 1
  givenname: Kee Yuan
  surname: Ngiam
  fullname: Ngiam, Kee Yuan
  email: kee_yuan_ngiam@nuhs.edu.sg
  organization: Department of Surgery, National University of Singapore, Singapore
– sequence: 2
  givenname: Ing Wei
  surname: Khor
  fullname: Khor, Ing Wei
  organization: Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31044724$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAURS1URD_gJ4AisSmLgF_sOIkQQqVqaaVKLGjXlvPyPOPi2MXOVJp_T2amsJhNWdmyzrmy7j1mByEGYuwt8I_AQX36CbLhZcVlfQrdB8FBdqV8wY7mZ1nWsm0PtvcdcsiOc77nHBrg9St2KIBL2VTyiJ19c4tiMJMpTBiK0eDSBSo8mRRcWBTGL2Jy03LMhY2pWJLx07JEk6gYyLtHSuvX7KU1PtObp_OE3V1e3J5flTc_vl-fn92UWIOYSsFbNLYmQCUqtH2r-gqaWqi2h2YAKaqOKmixt7Lng1UdCou2UYhCmK6W4oSd7nIfUvy9ojzp0WUk702guMq6qqDjfI6AGX2_h97HVQrz7zZUI0EqpWbq3RO16kca9ENyo0lr_becGah3AKaYcyL7DwGuNyPo7Qh607CGTm9H0Bvv856HbjKTi2FKxvln7a87m-YyHx0lndFRQBpcIpz0EN2zCV_2EtC74ND4X7T-D_8PZcmxJQ
CitedBy_id crossref_primary_10_1186_s12893_024_02427_x
crossref_primary_10_3389_fendo_2020_577537
crossref_primary_10_1007_s42044_024_00206_8
crossref_primary_10_1002_acm2_14500
crossref_primary_10_3389_fmed_2021_617486
crossref_primary_10_1007_s10554_022_02649_1
crossref_primary_10_1016_j_ijnurstu_2025_105094
crossref_primary_10_1016_j_jvoice_2025_03_015
crossref_primary_10_1515_med_2023_0874
crossref_primary_10_1002_cam4_5137
crossref_primary_10_3390_biomedicines12030606
crossref_primary_10_1016_j_healun_2023_12_009
crossref_primary_10_1016_j_eswa_2023_119638
crossref_primary_10_1016_j_ijmedinf_2023_105177
crossref_primary_10_1016_j_gexplo_2024_107441
crossref_primary_10_1016_j_socscimed_2020_113172
crossref_primary_10_1016_j_compbiomed_2020_104171
crossref_primary_10_1038_s43856_022_00071_1
crossref_primary_10_3389_fonc_2022_852746
crossref_primary_10_1016_j_artmed_2021_102060
crossref_primary_10_1109_ACCESS_2023_3305965
crossref_primary_10_1177_2045894019890549
crossref_primary_10_1016_j_jvsv_2024_102162
crossref_primary_10_3389_fpubh_2023_1196397
crossref_primary_10_1109_TSC_2023_3332102
crossref_primary_10_3390_electronics11040593
crossref_primary_10_1080_02701367_2024_2343815
crossref_primary_10_1177_19322968211056917
crossref_primary_10_1016_j_cities_2022_103941
crossref_primary_10_1513_AnnalsATS_201908_608ED
crossref_primary_10_1007_s13312_021_2228_0
crossref_primary_10_3390_brainsci13081148
crossref_primary_10_3389_frai_2020_561802
crossref_primary_10_1111_jems_12572
crossref_primary_10_1186_s12910_025_01236_y
crossref_primary_10_3389_fonc_2021_692322
crossref_primary_10_1016_j_cmpb_2022_107093
crossref_primary_10_3390_jpm11100991
crossref_primary_10_3390_jcm12041580
crossref_primary_10_3390_bioengineering11080762
crossref_primary_10_1016_j_compbiomed_2023_107295
crossref_primary_10_1111_jcpe_13739
crossref_primary_10_2196_49605
crossref_primary_10_1007_s12265_020_10008_5
crossref_primary_10_1007_s11655_021_3453_z
crossref_primary_10_1155_2020_6795392
crossref_primary_10_1093_cid_ciaf149
crossref_primary_10_3390_math11051192
crossref_primary_10_1007_s00125_024_06339_6
crossref_primary_10_1016_j_artmed_2020_101912
crossref_primary_10_3389_fpubh_2022_949377
crossref_primary_10_1016_j_chbah_2025_100127
crossref_primary_10_2196_28916
crossref_primary_10_3389_fsurg_2021_606038
crossref_primary_10_3389_fpubh_2022_1008137
crossref_primary_10_2196_69423
crossref_primary_10_1007_s11416_023_00479_w
crossref_primary_10_3390_axioms12020097
crossref_primary_10_3390_healthcare10040674
crossref_primary_10_1155_2022_1977446
crossref_primary_10_1186_s12913_024_10894_4
crossref_primary_10_3389_fonc_2020_00743
crossref_primary_10_3389_fgene_2022_961142
crossref_primary_10_4240_wjgs_v17_i9_107977
crossref_primary_10_1097_AIA_0000000000000294
crossref_primary_10_1007_s00192_025_06057_6
crossref_primary_10_1016_j_media_2023_102845
crossref_primary_10_3390_app13031772
crossref_primary_10_1093_asjof_ojad099
crossref_primary_10_1162_dint_a_00197
crossref_primary_10_1016_j_jss_2024_112093
crossref_primary_10_1038_s41598_025_07406_7
crossref_primary_10_1016_j_eclinm_2025_103098
crossref_primary_10_1007_s12553_024_00825_y
crossref_primary_10_3389_fnagi_2023_1216163
crossref_primary_10_1016_j_apmr_2022_01_154
crossref_primary_10_20517_ais_2025_02
crossref_primary_10_3390_s20092533
crossref_primary_10_1080_21681163_2023_2299093
crossref_primary_10_1007_s41019_024_00262_x
crossref_primary_10_3389_fnins_2021_670475
crossref_primary_10_1371_journal_pone_0263940
crossref_primary_10_2196_25759
crossref_primary_10_1007_s40744_022_00481_6
crossref_primary_10_1038_s41598_020_68383_7
crossref_primary_10_3390_jpm12101682
crossref_primary_10_1016_j_jad_2023_02_028
crossref_primary_10_1186_s12967_024_05005_0
crossref_primary_10_3389_fcvm_2021_812182
crossref_primary_10_2147_TCRM_S482662
crossref_primary_10_3389_fcimb_2023_1206393
crossref_primary_10_3389_fpubh_2021_782203
crossref_primary_10_3390_su14052497
crossref_primary_10_1038_s41746_021_00438_z
crossref_primary_10_1016_j_compbiomed_2022_105741
crossref_primary_10_1080_09638288_2023_2175919
crossref_primary_10_1097_CIN_0000000000000765
crossref_primary_10_1186_s42492_025_00204_y
crossref_primary_10_1186_s12911_021_01730_4
crossref_primary_10_1038_s41746_024_01117_5
crossref_primary_10_3389_fmed_2025_1554579
crossref_primary_10_3389_fmed_2022_807382
crossref_primary_10_3390_ai5040095
crossref_primary_10_3390_s21165526
crossref_primary_10_1016_j_jormas_2022_01_010
crossref_primary_10_3389_feduc_2025_1518909
crossref_primary_10_1016_j_cmpb_2022_106929
crossref_primary_10_1038_s42256_023_00760_z
crossref_primary_10_2196_26634
crossref_primary_10_1016_j_irbm_2023_100795
crossref_primary_10_1371_journal_pone_0248616
crossref_primary_10_1093_jamia_ocae009
crossref_primary_10_1186_s12885_025_14444_x
crossref_primary_10_1007_s40200_023_01330_1
crossref_primary_10_1038_s43856_025_01047_7
crossref_primary_10_1016_j_actbio_2025_01_059
crossref_primary_10_1016_j_blre_2023_101134
crossref_primary_10_1016_j_isci_2024_110682
crossref_primary_10_1109_TCSI_2023_3298802
crossref_primary_10_1080_1744666X_2024_2359019
crossref_primary_10_2196_47590
crossref_primary_10_1177_00045632211046805
crossref_primary_10_3390_healthcare11141979
crossref_primary_10_1186_s12872_023_03626_9
crossref_primary_10_1093_neuros_nyab337
crossref_primary_10_1145_3703154
crossref_primary_10_3390_bios15030139
crossref_primary_10_4251_wjgo_v17_i4_103679
crossref_primary_10_1111_jdi_14069
crossref_primary_10_1161_JAHA_123_033194
crossref_primary_10_1016_j_ijmedinf_2023_105024
crossref_primary_10_1016_j_foodchem_2024_141304
crossref_primary_10_1016_j_tbs_2024_100914
crossref_primary_10_1177_00031348221103648
crossref_primary_10_23736_S2724_6051_25_06195_6
crossref_primary_10_1016_j_ijnurstu_2021_103932
crossref_primary_10_1016_j_teler_2025_100250
crossref_primary_10_1016_j_pdpdt_2022_103198
crossref_primary_10_1111_idh_12755
crossref_primary_10_2196_57486
crossref_primary_10_3390_healthcare11131825
crossref_primary_10_1016_j_acra_2022_10_030
crossref_primary_10_1155_2022_4862376
crossref_primary_10_1161_JAHA_124_035425
crossref_primary_10_1186_s12874_022_01774_8
crossref_primary_10_1186_s12884_024_06980_4
crossref_primary_10_1007_s40883_022_00273_y
crossref_primary_10_1007_s44194_023_00020_7
crossref_primary_10_1002_clc_24104
crossref_primary_10_1002_1878_0261_12731
crossref_primary_10_1186_s12891_021_04867_5
crossref_primary_10_4103_singaporemedj_SMJ_2022_042
crossref_primary_10_1016_j_jvs_2019_12_026
crossref_primary_10_1080_23279095_2024_2364229
crossref_primary_10_1089_whr_2021_0010
crossref_primary_10_2147_CIA_S349978
crossref_primary_10_1016_j_ejrad_2021_109717
crossref_primary_10_1111_rssa_12644
crossref_primary_10_1109_ACCESS_2024_3411774
crossref_primary_10_1111_hex_13500
crossref_primary_10_3390_diagnostics11071299
crossref_primary_10_1186_s12935_021_01981_1
crossref_primary_10_3389_fendo_2022_1043919
crossref_primary_10_1080_03630269_2022_2158100
crossref_primary_10_1016_j_bspc_2023_105655
crossref_primary_10_1016_j_heares_2021_108281
crossref_primary_10_1155_2022_3141807
crossref_primary_10_1212_WNL_0000000000210171
crossref_primary_10_3390_educsci14040339
crossref_primary_10_1093_bib_bbab584
crossref_primary_10_1007_s10462_024_11005_9
crossref_primary_10_1016_j_media_2025_103497
crossref_primary_10_1016_j_ijmedinf_2025_105887
crossref_primary_10_1016_j_bulcan_2021_08_015
crossref_primary_10_3390_healthcare10030541
crossref_primary_10_1016_j_euo_2023_02_006
crossref_primary_10_1038_s41598_022_11361_y
crossref_primary_10_1007_s00192_024_05983_1
crossref_primary_10_3389_fpubh_2023_1257818
crossref_primary_10_1016_j_jvs_2025_03_198
crossref_primary_10_1016_j_eprac_2023_06_003
crossref_primary_10_1186_s12911_025_02869_0
crossref_primary_10_1002_cam4_70305
crossref_primary_10_1088_1755_1315_815_1_012010
crossref_primary_10_1093_ejendo_lvad017
crossref_primary_10_2147_IJGM_S338389
crossref_primary_10_3390_bioengineering11070679
crossref_primary_10_3389_fendo_2022_1083569
crossref_primary_10_1017_cts_2023_634
crossref_primary_10_1002_hed_27353
crossref_primary_10_1016_j_future_2021_11_003
crossref_primary_10_1111_liv_15634
crossref_primary_10_1016_j_jmir_2023_04_001
crossref_primary_10_1016_j_healthpol_2020_10_002
crossref_primary_10_4103_IJO_IJO_1895_24
crossref_primary_10_1007_s00330_021_08036_z
crossref_primary_10_2196_46840
crossref_primary_10_1038_s41598_025_88819_2
crossref_primary_10_3389_fendo_2023_1130139
crossref_primary_10_1136_gutjnl_2019_320065
crossref_primary_10_1016_j_watres_2023_119865
crossref_primary_10_1016_j_ucl_2023_06_005
crossref_primary_10_1097_JS9_0000000000001237
crossref_primary_10_3390_diagnostics14171974
crossref_primary_10_1177_15266028251333670
crossref_primary_10_34248_bsengineering_858918
crossref_primary_10_1038_s43018_023_00717_6
crossref_primary_10_1097_PPO_0000000000000579
crossref_primary_10_1038_s41598_024_80978_y
crossref_primary_10_1097_MNH_0000000000000993
crossref_primary_10_1016_j_hpb_2025_02_014
crossref_primary_10_1016_j_jaap_2023_105879
crossref_primary_10_2196_45523
crossref_primary_10_1016_j_geoen_2023_212555
crossref_primary_10_1016_j_bas_2024_102835
crossref_primary_10_1016_j_envpol_2025_125687
crossref_primary_10_1097_INF_0000000000003344
crossref_primary_10_1186_s12889_024_18009_8
crossref_primary_10_3389_fonc_2022_1095059
crossref_primary_10_3390_jpm11080748
crossref_primary_10_3748_wjg_v31_i19_105283
crossref_primary_10_1016_j_fmre_2022_01_037
crossref_primary_10_1155_2022_3154650
crossref_primary_10_1007_s43681_021_00124_6
crossref_primary_10_1227_NEU_0000000000001841
crossref_primary_10_1109_ACCESS_2024_3358827
crossref_primary_10_1186_s12903_023_03112_w
crossref_primary_10_1097_CM9_0000000000000694
crossref_primary_10_1038_s41928_024_01247_4
crossref_primary_10_1177_02734753241299024
crossref_primary_10_1016_j_eswa_2023_122982
crossref_primary_10_1126_scirobotics_abq4821
crossref_primary_10_3389_fmed_2025_1456286
crossref_primary_10_1007_s10916_020_01669_5
crossref_primary_10_1016_j_compbiomed_2024_108294
crossref_primary_10_1007_s10926_020_09910_1
crossref_primary_10_1109_TMC_2023_3316145
crossref_primary_10_1038_s41598_022_16074_w
crossref_primary_10_1002_hcs2_114
crossref_primary_10_1109_TEM_2023_3348991
crossref_primary_10_3389_fcimb_2023_1289124
crossref_primary_10_1109_COMST_2023_3344808
crossref_primary_10_3389_fonc_2022_1066508
crossref_primary_10_2196_18150
crossref_primary_10_1016_j_bvth_2024_100031
crossref_primary_10_2196_67871
crossref_primary_10_1016_j_eswa_2023_121787
crossref_primary_10_1093_ijcoms_lyab001
crossref_primary_10_2147_NDT_S535798
crossref_primary_10_32604_cmc_2023_032020
crossref_primary_10_2174_0115748928361472250123105507
crossref_primary_10_1002_ail2_100
crossref_primary_10_1016_j_jad_2025_120180
crossref_primary_10_1097_CCO_0000000000000809
crossref_primary_10_1016_j_jbi_2023_104319
crossref_primary_10_1177_24715492211038172
crossref_primary_10_1038_s41598_025_03575_7
crossref_primary_10_1007_s40279_023_01866_5
crossref_primary_10_3389_fendo_2025_1552479
crossref_primary_10_3390_app14135845
crossref_primary_10_1016_j_envint_2025_109389
crossref_primary_10_1016_j_modpat_2025_100705
crossref_primary_10_1016_j_mri_2020_09_011
crossref_primary_10_1016_j_archger_2024_105641
crossref_primary_10_1177_02676591231163688
crossref_primary_10_1016_j_jval_2022_08_005
crossref_primary_10_1016_j_scs_2023_105071
crossref_primary_10_1038_s41598_023_33170_7
crossref_primary_10_1111_voxs_12618
crossref_primary_10_1136_bmjopen_2024_089047
crossref_primary_10_1200_EDBK_350652
crossref_primary_10_3389_fpubh_2022_846118
crossref_primary_10_1108_DTS_06_2023_0041
crossref_primary_10_1016_j_gaceta_2020_12_019
crossref_primary_10_1109_TIFS_2024_3364370
crossref_primary_10_1016_j_compbiomed_2025_110028
crossref_primary_10_1016_j_soncn_2023_151433
crossref_primary_10_1186_s12874_021_01284_z
crossref_primary_10_3389_fpubh_2023_1033070
crossref_primary_10_1016_j_pmr_2024_06_005
crossref_primary_10_1097_JS9_0000000000002003
crossref_primary_10_1002_cnm_3662
crossref_primary_10_1002_ett_4392
crossref_primary_10_1001_jamanetworkopen_2019_11913
crossref_primary_10_1145_3411815
crossref_primary_10_1016_j_jbi_2023_104443
crossref_primary_10_1016_j_artmed_2023_102607
crossref_primary_10_1186_s12884_025_07972_8
crossref_primary_10_1016_j_health_2023_100155
crossref_primary_10_3233_THC_240119
crossref_primary_10_3748_wjg_v29_i22_3561
crossref_primary_10_1136_bmjopen_2021_053352
crossref_primary_10_1016_j_nanoen_2021_106227
crossref_primary_10_1371_journal_pone_0238908
crossref_primary_10_1007_s11301_024_00482_5
crossref_primary_10_1186_s12967_019_2062_5
crossref_primary_10_3390_s25051615
crossref_primary_10_2147_DMSO_S383960
crossref_primary_10_3390_jcm11247481
crossref_primary_10_1080_15563650_2024_2437113
crossref_primary_10_1016_j_apenergy_2021_117250
crossref_primary_10_1186_s12911_025_03090_9
crossref_primary_10_7759_cureus_69121
crossref_primary_10_1016_j_catena_2025_109403
crossref_primary_10_1259_bjr_20211050
crossref_primary_10_1021_acssynbio_5c00244
crossref_primary_10_1183_13993003_01216_2019
crossref_primary_10_1016_j_ebiom_2020_103064
crossref_primary_10_1016_j_yamp_2022_06_003
crossref_primary_10_1155_2023_8898958
crossref_primary_10_3390_diagnostics12102463
crossref_primary_10_1080_23311886_2024_2376309
crossref_primary_10_7759_cureus_29973
crossref_primary_10_1002_btm2_70002
crossref_primary_10_1016_j_ijhcs_2023_103160
crossref_primary_10_1186_s12986_024_00802_2
crossref_primary_10_2196_36823
crossref_primary_10_1016_j_reprotox_2020_05_004
crossref_primary_10_1371_journal_pone_0236957
crossref_primary_10_1007_s10792_023_02730_1
crossref_primary_10_3390_jpm14080816
crossref_primary_10_1155_2023_5507814
crossref_primary_10_3390_cancers16091775
crossref_primary_10_1002_lt_26578
crossref_primary_10_3389_fphar_2022_1027230
crossref_primary_10_7717_peerj_cs_2784
crossref_primary_10_1007_s00761_024_01487_1
crossref_primary_10_1016_j_ejso_2025_109654
crossref_primary_10_1016_j_lanwpc_2025_101575
crossref_primary_10_1097_MD_0000000000035439
crossref_primary_10_1016_S0140_6736_23_01060_7
crossref_primary_10_1016_j_jormas_2024_102209
crossref_primary_10_1016_j_phymed_2025_156538
crossref_primary_10_1186_s12913_024_11932_x
crossref_primary_10_1186_s13014_024_02453_2
crossref_primary_10_31083_j_fbl2901007
crossref_primary_10_3389_fmed_2023_1337335
crossref_primary_10_1016_j_ijbiomac_2023_125669
crossref_primary_10_1038_s41598_023_48830_x
crossref_primary_10_1007_s00417_025_06792_y
crossref_primary_10_1016_j_ejmp_2021_04_004
crossref_primary_10_1016_j_future_2025_107991
crossref_primary_10_1136_bmj_2024_081554
crossref_primary_10_3389_fimmu_2021_642167
crossref_primary_10_1186_s12885_025_13520_6
crossref_primary_10_1016_j_ijmedinf_2021_104679
crossref_primary_10_1038_s41398_024_02998_6
crossref_primary_10_1016_j_engappai_2023_106715
crossref_primary_10_1111_all_15849
crossref_primary_10_1016_j_jvs_2023_05_024
crossref_primary_10_3390_ijerph18083966
crossref_primary_10_1038_s41598_024_52944_1
crossref_primary_10_1186_s12872_024_04216_z
crossref_primary_10_20965_jaciii_2025_p0277
crossref_primary_10_3390_brainsci10110884
crossref_primary_10_1159_000529398
crossref_primary_10_3389_fmed_2021_775047
crossref_primary_10_3390_diagnostics11112034
crossref_primary_10_3390_diagnostics15111377
crossref_primary_10_1007_s13762_022_04149_0
crossref_primary_10_1109_TAI_2025_3531326
crossref_primary_10_1016_j_comcom_2020_02_069
crossref_primary_10_1136_bmjsem_2024_001890
crossref_primary_10_3389_fneur_2024_1478213
crossref_primary_10_3389_fneur_2025_1599856
crossref_primary_10_3390_opt4020022
crossref_primary_10_3389_fendo_2024_1385324
crossref_primary_10_1186_s12911_022_02083_2
crossref_primary_10_1016_j_ejso_2025_110191
crossref_primary_10_1097_ACI_0000000000000829
crossref_primary_10_1186_s12911_023_02331_z
crossref_primary_10_1097_JS9_0000000000002032
crossref_primary_10_1265_ehpm_24_00270
crossref_primary_10_1371_journal_pone_0322419
crossref_primary_10_3390_e24070929
crossref_primary_10_1007_s00345_024_05314_5
crossref_primary_10_1016_j_healthpol_2022_12_001
crossref_primary_10_1016_j_matpr_2021_04_309
crossref_primary_10_1097_MD_0000000000041766
crossref_primary_10_1111_tgis_13303
crossref_primary_10_3389_fpubh_2024_1445181
crossref_primary_10_1016_j_team_2025_02_003
crossref_primary_10_1038_s41467_025_56054_y
crossref_primary_10_4102_hsag_v30i0_2977
crossref_primary_10_3389_fendo_2023_1129793
crossref_primary_10_1002_aisy_202000080
crossref_primary_10_1038_s41578_021_00339_3
crossref_primary_10_1002_ags3_12836
crossref_primary_10_1007_s10916_020_01626_2
crossref_primary_10_1016_j_heliyon_2023_e16068
crossref_primary_10_1055_s_0041_1740923
crossref_primary_10_3390_app12125942
crossref_primary_10_1016_j_engappai_2022_105666
crossref_primary_10_2478_rrlm_2024_0024
crossref_primary_10_1016_j_jclinepi_2020_03_005
crossref_primary_10_1186_s40779_021_00338_z
crossref_primary_10_3389_fpubh_2022_960740
crossref_primary_10_1038_s41598_021_86327_7
crossref_primary_10_1007_s11356_021_14305_7
crossref_primary_10_1093_aje_kwad119
crossref_primary_10_1186_s12967_023_04487_8
crossref_primary_10_1136_bjo_2024_325167
crossref_primary_10_58567_eal04030001
crossref_primary_10_1007_s11831_023_09886_0
crossref_primary_10_1097_ACI_0000000000000831
crossref_primary_10_1016_j_diabres_2023_110917
crossref_primary_10_3389_fonc_2024_1349888
crossref_primary_10_1007_s00261_021_03350_y
crossref_primary_10_1186_s12889_025_21334_1
crossref_primary_10_1177_00031348221117042
crossref_primary_10_1111_papr_12854
crossref_primary_10_2174_0929867329666220105121754
crossref_primary_10_1177_21925682211035363
crossref_primary_10_1016_j_eswa_2023_121490
crossref_primary_10_3389_fcvm_2022_1042996
crossref_primary_10_3390_ijerph181910540
crossref_primary_10_1177_00243639231162431
crossref_primary_10_2196_27275
crossref_primary_10_3390_brainsci14010010
crossref_primary_10_1111_ijlh_14524
crossref_primary_10_1186_s12885_022_09352_3
crossref_primary_10_1007_s43441_021_00292_x
crossref_primary_10_1089_vbz_2023_0112
crossref_primary_10_7717_peerj_10682
crossref_primary_10_1111_trf_17582
crossref_primary_10_1287_msom_2020_0369
crossref_primary_10_1186_s12888_023_04791_z
crossref_primary_10_3389_fdgth_2024_1510674
crossref_primary_10_1002_aisy_202300283
crossref_primary_10_1007_s11042_023_17967_2
crossref_primary_10_1016_j_ienj_2021_101109
crossref_primary_10_1016_j_future_2023_02_021
crossref_primary_10_2196_67922
crossref_primary_10_1016_j_trac_2024_117872
crossref_primary_10_1097_MD_0000000000043926
crossref_primary_10_1155_2020_6873891
crossref_primary_10_1016_j_ejvs_2025_02_016
crossref_primary_10_3389_fcvm_2023_1101765
crossref_primary_10_3390_ijms22010127
crossref_primary_10_4018_IJSWIS_384516
crossref_primary_10_1007_s00345_021_03738_x
crossref_primary_10_7717_peerj_19366
crossref_primary_10_1109_ACCESS_2024_3369491
crossref_primary_10_1080_14789450_2021_1962303
crossref_primary_10_1111_phn_13440
crossref_primary_10_1007_s10877_021_00664_6
crossref_primary_10_7759_cureus_48307
crossref_primary_10_1016_j_compbiomed_2023_107876
crossref_primary_10_1089_big_2020_0383
crossref_primary_10_1016_j_heliyon_2024_e27594
crossref_primary_10_1002_cdt3_68
crossref_primary_10_3389_fonc_2024_1325514
crossref_primary_10_1016_j_resuscitation_2022_07_006
crossref_primary_10_3390_jpm13111590
crossref_primary_10_1002_hsr2_70799
crossref_primary_10_1080_23279095_2022_2078210
crossref_primary_10_1186_s12911_023_02256_7
crossref_primary_10_1007_s12672_024_01017_w
crossref_primary_10_1016_j_numecd_2024_02_004
crossref_primary_10_1093_postmj_qgae180
crossref_primary_10_3389_frai_2025_1481338
crossref_primary_10_1016_j_tranon_2022_101499
crossref_primary_10_1088_2632_2153_ac9036
crossref_primary_10_1038_s41581_021_00439_x
crossref_primary_10_1111_liv_14865
crossref_primary_10_1016_j_jvsv_2024_101943
crossref_primary_10_3390_genes11121493
crossref_primary_10_3390_medicina59030600
crossref_primary_10_1002_ags3_12504
crossref_primary_10_1186_s12889_020_09766_3
crossref_primary_10_1136_rapm_2023_104526
crossref_primary_10_3390_bioengineering10060735
crossref_primary_10_3390_bs9120122
crossref_primary_10_3389_fpubh_2021_626331
crossref_primary_10_1007_s00521_025_11599_3
crossref_primary_10_3390_a15020049
crossref_primary_10_1080_10408363_2021_1943302
crossref_primary_10_2139_ssrn_5250701
crossref_primary_10_1038_s41598_024_62535_9
crossref_primary_10_3390_jcm12144830
crossref_primary_10_4251_wjgo_v16_i12_4548
crossref_primary_10_1186_s12876_024_03223_w
crossref_primary_10_1007_s11307_021_01599_9
crossref_primary_10_1177_21925682251335880
crossref_primary_10_1002_cpe_7652
crossref_primary_10_3390_a14120348
crossref_primary_10_1007_s00521_022_07037_3
crossref_primary_10_1016_j_disamonth_2025_101882
crossref_primary_10_2217_fmb_2023_0269
crossref_primary_10_3389_fonc_2021_653863
crossref_primary_10_1016_j_procs_2021_12_053
crossref_primary_10_1038_s41598_024_64602_7
crossref_primary_10_1038_s41598_025_91825_z
crossref_primary_10_1007_s10072_022_06351_x
crossref_primary_10_1007_s12672_025_02416_3
crossref_primary_10_1136_bmjopen_2022_061309
crossref_primary_10_1177_24518492251349080
crossref_primary_10_1007_s11042_023_14989_8
crossref_primary_10_3389_fcvm_2019_00195
crossref_primary_10_1080_1369118X_2020_1719185
crossref_primary_10_3389_fimmu_2022_985863
crossref_primary_10_1016_j_clinthera_2024_02_010
crossref_primary_10_1007_s00234_021_02890_w
crossref_primary_10_1145_3519420
crossref_primary_10_1155_2022_9227440
crossref_primary_10_3389_fnins_2022_1031732
crossref_primary_10_1002_ijc_33132
crossref_primary_10_1177_17456916221134490
crossref_primary_10_3390_cancers15010325
crossref_primary_10_1080_09599916_2020_1832558
crossref_primary_10_3389_fped_2021_711104
crossref_primary_10_1038_s41598_025_93976_5
crossref_primary_10_3390_antibiotics9020054
crossref_primary_10_3390_diagnostics13010130
crossref_primary_10_1016_j_heliyon_2024_e37294
crossref_primary_10_1016_j_joim_2025_06_005
crossref_primary_10_3390_ai4010003
crossref_primary_10_1016_j_gassur_2025_101997
crossref_primary_10_2196_18477
crossref_primary_10_1016_j_cmpb_2021_106153
crossref_primary_10_1016_j_jpurol_2022_04_010
crossref_primary_10_3390_jpm11080787
crossref_primary_10_1007_s12291_025_01315_2
crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107354
crossref_primary_10_1038_s43587_021_00045_3
crossref_primary_10_3389_fendo_2022_1004913
crossref_primary_10_51536_tusbad_1702172
crossref_primary_10_1016_j_compbiomed_2023_107423
crossref_primary_10_1186_s13104_024_06979_2
crossref_primary_10_1155_2022_9699612
crossref_primary_10_3389_fendo_2022_1030045
crossref_primary_10_1016_j_japr_2025_100602
crossref_primary_10_1016_j_ijbiomac_2023_126354
crossref_primary_10_1097_CIN_0000000000001192
crossref_primary_10_3390_pharmaceutics14051023
crossref_primary_10_1016_j_psychres_2023_115050
crossref_primary_10_1038_s41598_022_20149_z
crossref_primary_10_1053_j_semvascsurg_2023_07_001
crossref_primary_10_1111_jch_70132
crossref_primary_10_3390_app14166858
crossref_primary_10_3389_fneur_2025_1587441
crossref_primary_10_1002_ijc_34248
crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_106234
crossref_primary_10_1002_advs_202304091
crossref_primary_10_1007_s00228_020_02918_9
crossref_primary_10_1038_s41598_024_75435_9
crossref_primary_10_1080_02770903_2024_2409991
crossref_primary_10_1016_j_jvssci_2022_11_004
crossref_primary_10_1186_s12889_025_21412_4
crossref_primary_10_1007_s11135_025_02210_x
crossref_primary_10_1016_j_scib_2023_08_001
crossref_primary_10_3390_computation12010015
crossref_primary_10_1186_s12933_025_02729_1
crossref_primary_10_3390_ijerph18105072
crossref_primary_10_1002_med_21658
crossref_primary_10_1016_j_imu_2022_101010
crossref_primary_10_1016_j_jhazmat_2024_135726
crossref_primary_10_1186_s40795_023_00808_8
crossref_primary_10_1016_j_isci_2024_111106
crossref_primary_10_1111_add_15038
crossref_primary_10_1111_dmcn_15010
crossref_primary_10_3233_JIFS_213486
crossref_primary_10_3389_fcimb_2025_1579558
crossref_primary_10_1111_cns_14002
crossref_primary_10_3389_fimmu_2025_1552265
crossref_primary_10_3389_fendo_2023_1087429
crossref_primary_10_1038_s41746_025_01865_y
crossref_primary_10_1097_ICO_0000000000003641
crossref_primary_10_1016_j_mee_2024_112228
crossref_primary_10_3390_app12126060
crossref_primary_10_1080_21681163_2022_2063189
crossref_primary_10_1007_s10489_023_04944_3
crossref_primary_10_1186_s40779_023_00490_8
crossref_primary_10_3390_biomedicines13071764
crossref_primary_10_1007_s11042_023_18035_5
crossref_primary_10_1016_j_medj_2025_100668
crossref_primary_10_1186_s12916_025_04076_0
crossref_primary_10_3390_diagnostics14010053
crossref_primary_10_1016_j_imu_2023_101381
crossref_primary_10_1038_s41585_019_0241_z
crossref_primary_10_1111_cyt_12799
crossref_primary_10_1007_s10586_024_04719_6
crossref_primary_10_3389_fcvm_2024_1422327
crossref_primary_10_3389_fonc_2022_902353
crossref_primary_10_1002_ksa_12247
crossref_primary_10_1109_ACCESS_2023_3323574
crossref_primary_10_3389_fonc_2022_986867
crossref_primary_10_1007_s10489_025_06602_2
crossref_primary_10_3390_diagnostics14141506
crossref_primary_10_3390_s21020546
crossref_primary_10_1016_j_fuel_2023_128548
crossref_primary_10_1177_1759720X231158198
crossref_primary_10_1177_15280837251349315
crossref_primary_10_3390_s23094178
crossref_primary_10_1007_s00595_023_02696_8
crossref_primary_10_1007_s42452_023_05508_3
crossref_primary_10_1136_bmjspcare_2021_002948
crossref_primary_10_1038_s41598_022_24979_9
crossref_primary_10_1053_j_ro_2025_06_003
crossref_primary_10_1038_s41598_023_32227_x
crossref_primary_10_1371_journal_pone_0289931
crossref_primary_10_3390_jcm13206046
crossref_primary_10_3389_fmed_2025_1502830
crossref_primary_10_3390_medicina56090455
crossref_primary_10_1007_s12094_023_03291_6
crossref_primary_10_1007_s12553_023_00751_5
crossref_primary_10_1002_psp4_12621
crossref_primary_10_2196_73528
crossref_primary_10_3389_fpubh_2024_1367061
crossref_primary_10_1016_j_jad_2025_119976
crossref_primary_10_1038_s41746_025_01644_9
crossref_primary_10_1007_s00415_023_12132_z
crossref_primary_10_1016_j_jvs_2023_08_121
crossref_primary_10_25259_SNI_433_2021
crossref_primary_10_1007_s00500_020_05387_5
crossref_primary_10_1007_s10462_021_10074_4
crossref_primary_10_1016_j_heliyon_2023_e20928
crossref_primary_10_3390_e23121669
crossref_primary_10_1053_j_sodo_2021_05_009
crossref_primary_10_1177_14604582211052391
crossref_primary_10_1007_s00261_021_02985_1
crossref_primary_10_3389_fneur_2024_1419608
crossref_primary_10_3390_jpm11050343
crossref_primary_10_3390_radiation5020011
crossref_primary_10_1159_000539306
crossref_primary_10_1038_s41598_022_12833_x
crossref_primary_10_1371_journal_pone_0300447
crossref_primary_10_1097_MCC_0000000000001304
crossref_primary_10_1186_s13244_022_01220_9
crossref_primary_10_1007_s00404_023_07131_4
crossref_primary_10_1016_j_imu_2023_101236
crossref_primary_10_1038_s41598_023_37171_4
crossref_primary_10_2147_JIR_S499512
crossref_primary_10_1080_17477778_2023_2217334
crossref_primary_10_2478_amns_2023_2_00168
crossref_primary_10_3389_fgene_2021_807825
crossref_primary_10_1016_j_mser_2024_100880
crossref_primary_10_3390_jimaging10110265
crossref_primary_10_1186_s12911_025_02959_z
crossref_primary_10_1038_s41746_024_01031_w
crossref_primary_10_1016_j_jvs_2023_09_037
crossref_primary_10_3390_jpm12091394
crossref_primary_10_1016_j_cej_2025_164149
crossref_primary_10_1007_s11910_023_01318_7
crossref_primary_10_1007_s42979_023_02529_y
crossref_primary_10_1016_j_jamda_2023_03_005
crossref_primary_10_1002_jso_27653
crossref_primary_10_1186_s12911_020_1042_2
crossref_primary_10_1186_s12911_024_02543_x
crossref_primary_10_1016_j_ijmedinf_2024_105659
crossref_primary_10_1007_s10278_024_01371_9
crossref_primary_10_3390_diagnostics13050961
crossref_primary_10_1097_CIN_0000000000000926
crossref_primary_10_1007_s00520_025_09236_9
crossref_primary_10_3389_fmicb_2022_1002522
crossref_primary_10_3390_cancers15030625
crossref_primary_10_1055_s_0042_1751088
crossref_primary_10_3390_su17125287
crossref_primary_10_1002_ksa_12443
crossref_primary_10_3390_vetsci11030118
crossref_primary_10_1016_j_iswa_2023_200191
crossref_primary_10_1093_comjnl_bxaa006
crossref_primary_10_1002_ijgo_70339
crossref_primary_10_1080_23279095_2024_2392282
crossref_primary_10_1186_s12876_025_03697_2
crossref_primary_10_1136_bmjopen_2020_037269
crossref_primary_10_1186_s12967_024_05935_9
crossref_primary_10_2147_IJGM_S521763
crossref_primary_10_3390_pharmaceutics16020260
crossref_primary_10_1007_s10844_023_00837_6
crossref_primary_10_1016_j_amjsurg_2020_01_043
crossref_primary_10_3390_cancers13133148
crossref_primary_10_1038_s41746_025_01733_9
crossref_primary_10_1177_14604582241307839
crossref_primary_10_3389_fpsyt_2022_1000026
crossref_primary_10_1007_s40012_023_00380_3
crossref_primary_10_1016_j_trac_2025_118162
crossref_primary_10_1038_s41598_025_98869_1
crossref_primary_10_1038_s41598_025_00570_w
crossref_primary_10_3389_fmed_2025_1624198
crossref_primary_10_1155_2021_7259414
crossref_primary_10_1016_j_heliyon_2024_e38422
crossref_primary_10_1177_11769351241289719
crossref_primary_10_7861_clinmed_2022_0325
crossref_primary_10_3389_fmed_2021_635771
crossref_primary_10_1016_j_bulcan_2021_12_005
crossref_primary_10_1080_00016489_2023_2201287
crossref_primary_10_3389_fpubh_2025_1558772
crossref_primary_10_3390_diagnostics14070687
crossref_primary_10_1016_j_compbiomed_2021_104632
crossref_primary_10_1155_2023_9507349
crossref_primary_10_1080_26939169_2021_2016036
crossref_primary_10_3390_healthcare11111617
crossref_primary_10_3389_fphys_2022_1060591
crossref_primary_10_1038_s41575_020_0327_3
crossref_primary_10_4103_1673_5374_382228
crossref_primary_10_1186_s12889_024_20028_4
crossref_primary_10_3390_forecast3010012
crossref_primary_10_1080_07853890_2023_2285454
crossref_primary_10_1002_hsr2_71046
crossref_primary_10_1002_mco2_70043
crossref_primary_10_3748_wjg_v30_i5_424
crossref_primary_10_1016_j_tibtech_2019_12_021
crossref_primary_10_1016_j_technovation_2024_103010
crossref_primary_10_1177_09514848231218637
crossref_primary_10_3390_cancers15102741
crossref_primary_10_3390_metabo14060305
crossref_primary_10_3390_pathogens13110940
crossref_primary_10_2147_JHC_S449737
crossref_primary_10_3390_jpm13121625
crossref_primary_10_1016_j_clbc_2023_07_002
crossref_primary_10_1016_j_isci_2024_109081
crossref_primary_10_3390_ijerph18147513
crossref_primary_10_1007_s13042_022_01668_7
crossref_primary_10_1177_01423312241251391
crossref_primary_10_1186_s42836_021_00087_3
Cites_doi 10.1145/3097983.3098149
10.1002/adtp.201800104
10.1111/j.1365-2753.2011.01720.x
10.1007/978-3-642-22887-2_45
10.1056/NEJM200006223422507
10.1038/s41591-018-0147-y
10.1038/nature14539
10.3389/fneur.2017.00489
10.1056/NEJMsr1503323
10.1377/hlthaff.2014.0041
10.1016/j.cmpb.2018.04.005
10.1038/nature21056
10.1038/s41746-018-0040-6
10.1001/jama.2016.17438
10.1080/17460441.2018.1465407
10.1056/NEJMra1615014
10.1371/journal.pmed.1002674
10.1109/ICASSP.2013.6638947
10.1093/nar/gkh061
10.1109/TMI.2016.2553401
10.1371/journal.pmed.1002686
10.1016/j.artmed.2014.06.004
10.1016/j.ijmedinf.2010.08.006
10.1001/jamaoncol.2015.1203
10.1109/TMI.2016.2526689
10.1126/scitranslmed.aab3719
10.1136/svn-2017-000101
10.1093/jamia/ocy072
10.1007/s11548-017-1627-0
10.1038/nbt.4233
10.21037/qims.2018.03.07
10.7326/M17-3008
10.1126/scitranslmed.aac5954
10.1148/radiol.2018180237
10.1007/s11886-018-0990-y
10.1038/s41591-018-0300-7
10.1073/pnas.1717139115
10.1136/leader-2018-000071
10.1147/rd.33.0210
10.1161/CIRCULATIONAHA.115.001593
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
2019. Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: 2019. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7TO
7X7
7XB
88E
8AO
8C1
8C2
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
H94
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOI 10.1016/S1470-2045(19)30149-4
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Lancet Titles
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
Lancet Titles
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Oncogenes and Growth Factors Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1474-5488
EndPage e273
ExternalDocumentID 31044724
10_1016_S1470_2045_19_30149_4
S1470204519301494
Genre Journal Article
Review
GeographicLocations Canada
United States--US
China
Spain
GeographicLocations_xml – name: China
– name: Canada
– name: Spain
– name: United States--US
GroupedDBID ---
--K
--M
-RU
.1-
.55
.FO
0R~
123
1B1
1P~
1~5
29L
4.4
457
4CK
4G.
53G
5VS
6PF
7-5
71M
7RV
7X7
88E
8AO
8C1
8C2
8FI
8FJ
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABMAC
ABMZM
ABUWG
ABWVN
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADMUD
ADNMO
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AHMBA
AIGII
AIIUN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BENPR
BKEYQ
BKOJK
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
HMCUK
HVGLF
HZ~
IHE
J1W
KOM
M1P
M41
MO0
N9A
NAPCQ
O-L
O9-
OC~
OO-
OZT
P-8
P-9
P2P
PCD
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
R2-
ROL
RPZ
SDG
SEL
SES
SPCBC
SSH
SSZ
T5K
TLN
UKHRP
UV1
WOW
X7M
XBR
Z5R
~HD
3V.
AACTN
ABLVK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
RIG
SDF
ZA5
9DU
AAYXX
AFFHD
CITATION
AFCTW
ALIPV
NPM
7TO
7XB
8FK
H94
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c513t-308caf5e1c632cfb86b2175368b17d14329e218cbf4b0df69c3fcf76cc33a9543
IEDL.DBID 7RV
ISICitedReferencesCount 889
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466380000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1470-2045
1474-5488
IngestDate Sat Sep 27 21:51:56 EDT 2025
Tue Oct 07 05:39:55 EDT 2025
Thu Apr 03 06:49:37 EDT 2025
Tue Nov 18 21:44:57 EST 2025
Sat Nov 29 07:05:48 EST 2025
Fri Feb 23 02:31:13 EST 2024
Tue Oct 14 19:35:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-308caf5e1c632cfb86b2175368b17d14329e218cbf4b0df69c3fcf76cc33a9543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 31044724
PQID 2217414666
PQPubID 46089
ParticipantIDs proquest_miscellaneous_2219002181
proquest_journals_2217414666
pubmed_primary_31044724
crossref_primary_10_1016_S1470_2045_19_30149_4
crossref_citationtrail_10_1016_S1470_2045_19_30149_4
elsevier_sciencedirect_doi_10_1016_S1470_2045_19_30149_4
elsevier_clinicalkey_doi_10_1016_S1470_2045_19_30149_4
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
2019-May
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle The lancet oncology
PublicationTitleAlternate Lancet Oncol
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References (bib53) 2018
Laranjo, Dunn, Tong (bib19) 2018; 25
(bib33) 2017
Ross, Swetlitz (bib49) 2018
Wainberg, Merico, Delong, Frey (bib7) 2018; 36
Bodenreider (bib26) 2004; 32
Graves A, Mohamed A-R, Hinton G. Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada; May 26–31, 2013.
Jiang, Jiang, Zhi (bib52) 2017; 2
(bib56) 2012
Zarrinpar, Lee, Silva (bib59) 2016; 8
Greenspan, van Ginneken, Summers (bib31) 2016; 35
Silver DL. Machine lifelong learning: challenges and benefits for artificial general intelligence. Artificial General Intelligence (AGI) 2011; Mountain View, CA, USA; Aug 3–6, 2011.
Pantuck, Lee, Kee (bib50) 2018; 1
Zheng KP, Gao J, Ngiam KY, Ooi BC, Yip WLJ. Resolving the bias in electronic medical records. 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining; Halifax, Nova Scotia, Canada; Aug 13–17, 2017.
Mazzanti, Shirka, Gjergo, Hasimi (bib8) 2018; 20
Azizi, Bayat, Yan (bib47) 2017; 12
Voelker (bib39) 2018; 320
Nam, Park, Hwang (bib46) 2019; 290
Loh (bib60) 2018; 2
(bib32) 2017
Rajpurkar, Irvin, Ball (bib40) 2018; 15
Esteva, Kuprel, Novoa (bib17) 2017; 542
Henry, Hager, Pronovost, Saria (bib42) 2015; 7
Mobadersany, Yousefi, Amgad (bib48) 2018; 115
Marr (bib38) Jan 20, 2017
Kantarjian, Yu (bib6) 2015; 1
Hainc, Federau, Stieltjes, Blatow, Bink, Stippich (bib10) 2017; 8
Kerlikowske, Scott, Mahmoudzadeh (bib44) 2018; 168
van Grinsven, van Ginneken, Hoyng, Theelen, Sanchez (bib24) 2016; 35
Concato, Shah, Horwitz (bib14) 2000; 342
Ekeland, Bowes, Flottorp (bib15) 2010; 79
Faust, Hagiwara, Hong, Lih, Acharya (bib4) 2018; 161
Wang, Peng, Chang, Liang (bib23) 2018; 8
(bib55) 2019
Samuel (bib1) 1959; 3
(bib51) 2018
Gawehn, Hiss, Brown, Schneider (bib21) 2018; 13
(bib45) Feb 19, 2018
Marcus (bib27) 2018
Kowatsch T, Nissen M, Chen-Hsuan IS, et al. Text-based healthcare chatbots supporting patient and health professional teams: preliminary results of a randomized controlled trial on childhood obesity. Persuasive Embodied Agents for Behavior Change (PEACH2017) Workshop, co-located with the 17th International Conference on Intelligent Virtual Agents (IVA 2017); Stockholm, Sweden; Aug 27–30, 2017.
Haendel, Chute, Robinson (bib25) 2018; 379
Daniel, Silcox, Sharma, Wright (bib62) 2019
McNair, Ottley (bib61) 1996; 10
LeCun, Bengio, Hinton (bib2) 2015; 521
Obeid NM, Atkinson IC, Thulborn KR, Hwu W-MW. GPU-accelerated gridding for rapid reconstruction of non-cartesian MRI. 19th Annual International Society for Magnetic Resonance in Medicine (ISMRM) Scientific Meeting and Exhibition 2011; Montreal, QC, Canada; May 7–13, 2011.
Henry, Wongvibulsin, Zhan, Saria, Hager (bib43) 2017; 195
(bib58) 2017
Abràmoff, Lavin, Birch, Shahm, Folk (bib36) 2018; 1
(bib9) January 2019
(bib57) 2015
Tuckson, Edmunds, Hodgkins (bib16) 2017; 377
Lin, Long, Ding (bib37) 2018; 15
Topol (bib11) 2019; 25
Titano, Badgeley, Schefflein (bib41) 2018; 24
Bates, Saria, Ohno-Machado, Shah, Escobar (bib3) 2014; 33
Gelhaus (bib12) 2011; 17
Kuo (bib28) 2016
Luxton (bib13) 2014; 62
Jha, Topol (bib5) 2016; 316
(bib54) 2018
Gepperth A, Hammer B. Incremental learning algorithms and applications. European Symposium on Artificial Neural Networks (ESANN) 2016; Bruges, Belgium; April 27–29, 2016.
Deo (bib29) 2015; 132
Kerlikowske (10.1016/S1470-2045(19)30149-4_bib44) 2018; 168
Mobadersany (10.1016/S1470-2045(19)30149-4_bib48) 2018; 115
(10.1016/S1470-2045(19)30149-4_bib57) 2015
Henry (10.1016/S1470-2045(19)30149-4_bib42) 2015; 7
Bodenreider (10.1016/S1470-2045(19)30149-4_bib26) 2004; 32
(10.1016/S1470-2045(19)30149-4_bib9) 2019
Marcus (10.1016/S1470-2045(19)30149-4_bib27)
Greenspan (10.1016/S1470-2045(19)30149-4_bib31) 2016; 35
Kuo (10.1016/S1470-2045(19)30149-4_bib28)
Titano (10.1016/S1470-2045(19)30149-4_bib41) 2018; 24
Rajpurkar (10.1016/S1470-2045(19)30149-4_bib40) 2018; 15
Nam (10.1016/S1470-2045(19)30149-4_bib46) 2019; 290
Daniel (10.1016/S1470-2045(19)30149-4_bib62)
Bates (10.1016/S1470-2045(19)30149-4_bib3) 2014; 33
Jiang (10.1016/S1470-2045(19)30149-4_bib52) 2017; 2
Zarrinpar (10.1016/S1470-2045(19)30149-4_bib59) 2016; 8
Henry (10.1016/S1470-2045(19)30149-4_bib43) 2017; 195
10.1016/S1470-2045(19)30149-4_bib20
Marr (10.1016/S1470-2045(19)30149-4_bib38) 2017
10.1016/S1470-2045(19)30149-4_bib22
(10.1016/S1470-2045(19)30149-4_bib58) 2017
Loh (10.1016/S1470-2045(19)30149-4_bib60) 2018; 2
Abràmoff (10.1016/S1470-2045(19)30149-4_bib36) 2018; 1
10.1016/S1470-2045(19)30149-4_bib18
Deo (10.1016/S1470-2045(19)30149-4_bib29) 2015; 132
(10.1016/S1470-2045(19)30149-4_bib51) 2018
Mazzanti (10.1016/S1470-2045(19)30149-4_bib8) 2018; 20
Jha (10.1016/S1470-2045(19)30149-4_bib5) 2016; 316
Concato (10.1016/S1470-2045(19)30149-4_bib14) 2000; 342
Esteva (10.1016/S1470-2045(19)30149-4_bib17) 2017; 542
Kantarjian (10.1016/S1470-2045(19)30149-4_bib6) 2015; 1
Wang (10.1016/S1470-2045(19)30149-4_bib23) 2018; 8
Pantuck (10.1016/S1470-2045(19)30149-4_bib50) 2018; 1
Lin (10.1016/S1470-2045(19)30149-4_bib37) 2018; 15
(10.1016/S1470-2045(19)30149-4_bib32) 2017
Wainberg (10.1016/S1470-2045(19)30149-4_bib7) 2018; 36
Faust (10.1016/S1470-2045(19)30149-4_bib4) 2018; 161
(10.1016/S1470-2045(19)30149-4_bib55) 2019
Laranjo (10.1016/S1470-2045(19)30149-4_bib19) 2018; 25
McNair (10.1016/S1470-2045(19)30149-4_bib61) 1996; 10
van Grinsven (10.1016/S1470-2045(19)30149-4_bib24) 2016; 35
(10.1016/S1470-2045(19)30149-4_bib33) 2017
Azizi (10.1016/S1470-2045(19)30149-4_bib47) 2017; 12
Samuel (10.1016/S1470-2045(19)30149-4_bib1) 1959; 3
Gawehn (10.1016/S1470-2045(19)30149-4_bib21) 2018; 13
Hainc (10.1016/S1470-2045(19)30149-4_bib10) 2017; 8
Tuckson (10.1016/S1470-2045(19)30149-4_bib16) 2017; 377
(10.1016/S1470-2045(19)30149-4_bib56) 2012
Gelhaus (10.1016/S1470-2045(19)30149-4_bib12) 2011; 17
Ekeland (10.1016/S1470-2045(19)30149-4_bib15) 2010; 79
Voelker (10.1016/S1470-2045(19)30149-4_bib39) 2018; 320
Topol (10.1016/S1470-2045(19)30149-4_bib11) 2019; 25
10.1016/S1470-2045(19)30149-4_bib30
Haendel (10.1016/S1470-2045(19)30149-4_bib25) 2018; 379
Luxton (10.1016/S1470-2045(19)30149-4_bib13) 2014; 62
10.1016/S1470-2045(19)30149-4_bib35
Ross (10.1016/S1470-2045(19)30149-4_bib49)
LeCun (10.1016/S1470-2045(19)30149-4_bib2) 2015; 521
10.1016/S1470-2045(19)30149-4_bib34
References_xml – year: 2012
  ident: bib56
  article-title: Personal Data Protection Act 2012
– year: 2017
  ident: bib32
  article-title: Changes to existing medical software policies resulting from section 3060 of the 21st Century Cures Act: draft guidance for industry and Food and Drug Administration staff
– volume: 115
  start-page: E2970
  year: 2018
  end-page: E2979
  ident: bib48
  article-title: Predicting cancer outcomes from histology and genomics using convolutional networks
  publication-title: Proc Natl Acad Sci USA
– volume: 33
  start-page: 1123
  year: 2014
  end-page: 1131
  ident: bib3
  article-title: Big data in health care: using analytics to identify and manage high-risk and high-cost patients
  publication-title: Health Aff (Millwood)
– year: 2017
  ident: bib33
  article-title: Software as a medical device (SAMD): clinical evaluation. Guidance for industry and Food and Drug Administration staff
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib2
  article-title: Deep learning
  publication-title: Nature
– year: 2018
  ident: bib54
  article-title: One of the largest AI platforms in healthcare is one you've never heard of, until now. The Pulse
– year: 2015
  ident: bib57
  article-title: Human Biomedical Research Act 2015
– year: 2016
  ident: bib28
  article-title: Understanding convolutional neural networks with a mathematical model
– volume: 195
  start-page: A7016
  year: 2017
  ident: bib43
  article-title: Can septic shock be identified early? Evaluating performance of a targeted real-time early warning score (TREWScore) for septic shock in a community hospital: global and subpopulation performance
  publication-title: Am J Resp Crit Care Med
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib17
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– year: 2018
  ident: bib27
  article-title: Deep learning: a critical appraisal
– volume: 35
  start-page: 1153
  year: 2016
  end-page: 1159
  ident: bib31
  article-title: Deep learning in medical imaging: overview and future promise of an exciting new technique
  publication-title: IEEE Trans Med Imag
– year: 2018
  ident: bib49
  article-title: IBM's Watson supercomputer recommended ‘unsafe and incorrect’ cancer treatments, internal documents show. STAT
– volume: 290
  start-page: 218
  year: 2019
  end-page: 228
  ident: bib46
  article-title: Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs
  publication-title: Radiology
– volume: 25
  start-page: 44
  year: 2019
  end-page: 56
  ident: bib11
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med
– volume: 342
  start-page: 1887
  year: 2000
  end-page: 1892
  ident: bib14
  article-title: Randomized, controlled trials, observational studies, and the hierarchy of research designs
  publication-title: N Engl J Med
– reference: Silver DL. Machine lifelong learning: challenges and benefits for artificial general intelligence. Artificial General Intelligence (AGI) 2011; Mountain View, CA, USA; Aug 3–6, 2011.
– year: January 2019
  ident: bib9
  article-title: A Proposed model artificial intelligence governance framework
– volume: 17
  start-page: 883
  year: 2011
  end-page: 887
  ident: bib12
  article-title: Robot decisions: on the importance of virtuous judgment in clinical decision making
  publication-title: J Eval Clin Pract
– year: 2019
  ident: bib55
  article-title: Predictive maintenance of medical devices based on years of experience and advanced analytics
– volume: 132
  start-page: 1920
  year: 2015
  end-page: 1930
  ident: bib29
  article-title: Machine learning in medicine
  publication-title: Circulation
– volume: 377
  start-page: 1585
  year: 2017
  end-page: 1592
  ident: bib16
  article-title: Telehealth
  publication-title: N Engl J Med
– volume: 379
  start-page: 1452
  year: 2018
  end-page: 1462
  ident: bib25
  article-title: Classification, ontology, and precision medicine
  publication-title: N Engl J Med
– year: 2018
  ident: bib51
  article-title: FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems
– volume: 3
  start-page: 210
  year: 1959
  end-page: 229
  ident: bib1
  article-title: Some studies in machine learning using the game of checkers
  publication-title: IBM J Res Dev
– volume: 8
  start-page: 489
  year: 2017
  ident: bib10
  article-title: The bright, artificial intelligence-augmented future of neuroimaging reading
  publication-title: Front Neurol
– volume: 15
  start-page: e1002686
  year: 2018
  ident: bib40
  article-title: Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists
  publication-title: PLoS Med
– volume: 36
  start-page: 829
  year: 2018
  end-page: 838
  ident: bib7
  article-title: Deep learning in biomedicine
  publication-title: Nat Biotechnol
– year: 2019
  ident: bib62
  article-title: Current state and near-term priorities for AI-enabled diagnostic support software in health care. Margolis Center for Health Policy
– volume: 168
  start-page: 757
  year: 2018
  end-page: 765
  ident: bib44
  article-title: Automated and clinical breast imaging reporting and data system density measures predict risk for screen-detected and interval cancers: a case-control study
  publication-title: Ann Intern Med
– volume: 25
  start-page: 1248
  year: 2018
  end-page: 1258
  ident: bib19
  article-title: Conversational agents in healthcare: a systematic review
  publication-title: J Am Med Inform Assoc
– volume: 8
  start-page: 333ra49
  year: 2016
  ident: bib59
  article-title: Individualizing liver transplant immunosuppression using a phenotypic personalized medicine platform
  publication-title: Sci Transl Med
– year: 2018
  ident: bib53
  article-title: Philips launches AI platform for healthcare. Philips
– volume: 24
  start-page: 1337
  year: 2018
  end-page: 1341
  ident: bib41
  article-title: Automated deep-neural-network surveillance of cranial images for acute neurologic events
  publication-title: Nat Med
– volume: 2
  start-page: 59
  year: 2018
  end-page: 63
  ident: bib60
  article-title: Medicine and the rise of the robots: a qualitative review of recent advances of artificial intelligence in health
  publication-title: BMJ Leader
– volume: 161
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib4
  article-title: Deep learning for healthcare applications based on physiological signals: a review
  publication-title: Comput Methods Programs Biomed
– reference: Kowatsch T, Nissen M, Chen-Hsuan IS, et al. Text-based healthcare chatbots supporting patient and health professional teams: preliminary results of a randomized controlled trial on childhood obesity. Persuasive Embodied Agents for Behavior Change (PEACH2017) Workshop, co-located with the 17th International Conference on Intelligent Virtual Agents (IVA 2017); Stockholm, Sweden; Aug 27–30, 2017.
– volume: 32
  start-page: D267
  year: 2004
  end-page: D270
  ident: bib26
  article-title: The Unified Medical Language System (UMLS): integrating biomedical terminology
  publication-title: Nucleic Acids Res
– volume: 1
  start-page: 39
  year: 2018
  ident: bib36
  article-title: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
  publication-title: npj Digit Med
– volume: 10
  start-page: 18
  year: 1996
  end-page: 20
  ident: bib61
  article-title: Negligence: who is the umpire
  publication-title: J Med Defence Union
– volume: 35
  start-page: 1273
  year: 2016
  end-page: 1284
  ident: bib24
  article-title: Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images
  publication-title: IEEE Trans Med Imag
– year: Feb 19, 2018
  ident: bib45
  article-title: Arterys FDA clearance for Liver AI and Lung AI lesion spotting software.
– volume: 8
  start-page: 196
  year: 2018
  end-page: 208
  ident: bib23
  article-title: A survey of GPU-based acceleration techniques in MRI reconstructions
  publication-title: Quant Imaging Med Surg
– reference: Zheng KP, Gao J, Ngiam KY, Ooi BC, Yip WLJ. Resolving the bias in electronic medical records. 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining; Halifax, Nova Scotia, Canada; Aug 13–17, 2017.
– volume: 13
  start-page: 579
  year: 2018
  end-page: 582
  ident: bib21
  article-title: Advancing drug discovery via GPU-based deep learning
  publication-title: Expert Opin Drug Discov
– reference: Gepperth A, Hammer B. Incremental learning algorithms and applications. European Symposium on Artificial Neural Networks (ESANN) 2016; Bruges, Belgium; April 27–29, 2016.
– year: 2017
  ident: bib58
  article-title: Human Biomedical Research Regulations 2017
– reference: Graves A, Mohamed A-R, Hinton G. Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada; May 26–31, 2013.
– volume: 12
  start-page: 1293
  year: 2017
  end-page: 1305
  ident: bib47
  article-title: Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations
  publication-title: Int J Comput Assist Radiol Surg
– volume: 62
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib13
  article-title: Recommendations for the ethical use and design of artificial intelligent care providers
  publication-title: Artif Intell Med
– volume: 1
  start-page: 573
  year: 2015
  end-page: 574
  ident: bib6
  article-title: Artificial intelligence, big data, and cancer
  publication-title: JAMA Oncol
– year: Jan 20, 2017
  ident: bib38
  article-title: First FDA approval for clinical cloud-based deep learning in healthcare
– volume: 316
  start-page: 2353
  year: 2016
  end-page: 2354
  ident: bib5
  article-title: Adapting to artificial intelligence: radiologists and pathologists as information specialists
  publication-title: JAMA
– volume: 1
  start-page: 1800104
  year: 2018
  ident: bib50
  article-title: Modulating BET bromodomain inhibitor ZEN-3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using CURATE.AI, an artificial intelligence platform
  publication-title: Adv Therap
– volume: 79
  start-page: 736
  year: 2010
  end-page: 771
  ident: bib15
  article-title: Effectiveness of telemedicine: a systematic review of reviews
  publication-title: Int J Med Inform
– volume: 15
  start-page: e1002674
  year: 2018
  ident: bib37
  article-title: Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: a retrospective, multicentre machine learning study
  publication-title: PLoS Med
– reference: Obeid NM, Atkinson IC, Thulborn KR, Hwu W-MW. GPU-accelerated gridding for rapid reconstruction of non-cartesian MRI. 19th Annual International Society for Magnetic Resonance in Medicine (ISMRM) Scientific Meeting and Exhibition 2011; Montreal, QC, Canada; May 7–13, 2011.
– volume: 320
  start-page: 23
  year: 2018
  ident: bib39
  article-title: Diagnosing fractures with AI
  publication-title: JAMA
– volume: 20
  start-page: 48
  year: 2018
  ident: bib8
  article-title: Imaging, health record, and artificial intelligence: hype or hope?
  publication-title: Curr Cardiol Rep
– volume: 2
  start-page: 230
  year: 2017
  end-page: 243
  ident: bib52
  article-title: Artificial intelligence in healthcare: past, present and future
  publication-title: Stroke Vasc Neurol
– volume: 7
  start-page: 299ra122
  year: 2015
  ident: bib42
  article-title: A targeted real-time early warning score (TREWScore) for septic shock
  publication-title: Sci Transl Med
– ident: 10.1016/S1470-2045(19)30149-4_bib20
  doi: 10.1145/3097983.3098149
– volume: 1
  start-page: 1800104
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib50
  article-title: Modulating BET bromodomain inhibitor ZEN-3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using CURATE.AI, an artificial intelligence platform
  publication-title: Adv Therap
  doi: 10.1002/adtp.201800104
– volume: 17
  start-page: 883
  year: 2011
  ident: 10.1016/S1470-2045(19)30149-4_bib12
  article-title: Robot decisions: on the importance of virtuous judgment in clinical decision making
  publication-title: J Eval Clin Pract
  doi: 10.1111/j.1365-2753.2011.01720.x
– year: 2015
  ident: 10.1016/S1470-2045(19)30149-4_bib57
– year: 2017
  ident: 10.1016/S1470-2045(19)30149-4_bib38
– ident: 10.1016/S1470-2045(19)30149-4_bib35
  doi: 10.1007/978-3-642-22887-2_45
– volume: 342
  start-page: 1887
  year: 2000
  ident: 10.1016/S1470-2045(19)30149-4_bib14
  article-title: Randomized, controlled trials, observational studies, and the hierarchy of research designs
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200006223422507
– volume: 24
  start-page: 1337
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib41
  article-title: Automated deep-neural-network surveillance of cranial images for acute neurologic events
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0147-y
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/S1470-2045(19)30149-4_bib2
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 195
  start-page: A7016
  year: 2017
  ident: 10.1016/S1470-2045(19)30149-4_bib43
  article-title: Can septic shock be identified early? Evaluating performance of a targeted real-time early warning score (TREWScore) for septic shock in a community hospital: global and subpopulation performance
  publication-title: Am J Resp Crit Care Med
– year: 2019
  ident: 10.1016/S1470-2045(19)30149-4_bib55
– volume: 8
  start-page: 489
  year: 2017
  ident: 10.1016/S1470-2045(19)30149-4_bib10
  article-title: The bright, artificial intelligence-augmented future of neuroimaging reading
  publication-title: Front Neurol
  doi: 10.3389/fneur.2017.00489
– ident: 10.1016/S1470-2045(19)30149-4_bib18
– year: 2017
  ident: 10.1016/S1470-2045(19)30149-4_bib33
– volume: 377
  start-page: 1585
  year: 2017
  ident: 10.1016/S1470-2045(19)30149-4_bib16
  article-title: Telehealth
  publication-title: N Engl J Med
  doi: 10.1056/NEJMsr1503323
– volume: 33
  start-page: 1123
  year: 2014
  ident: 10.1016/S1470-2045(19)30149-4_bib3
  article-title: Big data in health care: using analytics to identify and manage high-risk and high-cost patients
  publication-title: Health Aff (Millwood)
  doi: 10.1377/hlthaff.2014.0041
– volume: 161
  start-page: 1
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib4
  article-title: Deep learning for healthcare applications based on physiological signals: a review
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.04.005
– volume: 542
  start-page: 115
  year: 2017
  ident: 10.1016/S1470-2045(19)30149-4_bib17
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 1
  start-page: 39
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib36
  article-title: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
  publication-title: npj Digit Med
  doi: 10.1038/s41746-018-0040-6
– volume: 316
  start-page: 2353
  year: 2016
  ident: 10.1016/S1470-2045(19)30149-4_bib5
  article-title: Adapting to artificial intelligence: radiologists and pathologists as information specialists
  publication-title: JAMA
  doi: 10.1001/jama.2016.17438
– volume: 13
  start-page: 579
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib21
  article-title: Advancing drug discovery via GPU-based deep learning
  publication-title: Expert Opin Drug Discov
  doi: 10.1080/17460441.2018.1465407
– volume: 379
  start-page: 1452
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib25
  article-title: Classification, ontology, and precision medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1615014
– volume: 15
  start-page: e1002674
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib37
  article-title: Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: a retrospective, multicentre machine learning study
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002674
– year: 2017
  ident: 10.1016/S1470-2045(19)30149-4_bib58
– ident: 10.1016/S1470-2045(19)30149-4_bib28
– ident: 10.1016/S1470-2045(19)30149-4_bib30
  doi: 10.1109/ICASSP.2013.6638947
– volume: 32
  start-page: D267
  year: 2004
  ident: 10.1016/S1470-2045(19)30149-4_bib26
  article-title: The Unified Medical Language System (UMLS): integrating biomedical terminology
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh061
– year: 2017
  ident: 10.1016/S1470-2045(19)30149-4_bib32
– volume: 35
  start-page: 1153
  year: 2016
  ident: 10.1016/S1470-2045(19)30149-4_bib31
  article-title: Deep learning in medical imaging: overview and future promise of an exciting new technique
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2016.2553401
– volume: 15
  start-page: e1002686
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib40
  article-title: Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002686
– ident: 10.1016/S1470-2045(19)30149-4_bib34
– ident: 10.1016/S1470-2045(19)30149-4_bib27
– ident: 10.1016/S1470-2045(19)30149-4_bib62
– ident: 10.1016/S1470-2045(19)30149-4_bib49
– volume: 62
  start-page: 1
  year: 2014
  ident: 10.1016/S1470-2045(19)30149-4_bib13
  article-title: Recommendations for the ethical use and design of artificial intelligent care providers
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2014.06.004
– volume: 79
  start-page: 736
  year: 2010
  ident: 10.1016/S1470-2045(19)30149-4_bib15
  article-title: Effectiveness of telemedicine: a systematic review of reviews
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2010.08.006
– volume: 1
  start-page: 573
  year: 2015
  ident: 10.1016/S1470-2045(19)30149-4_bib6
  article-title: Artificial intelligence, big data, and cancer
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2015.1203
– volume: 35
  start-page: 1273
  year: 2016
  ident: 10.1016/S1470-2045(19)30149-4_bib24
  article-title: Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2016.2526689
– volume: 7
  start-page: 299ra122
  year: 2015
  ident: 10.1016/S1470-2045(19)30149-4_bib42
  article-title: A targeted real-time early warning score (TREWScore) for septic shock
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aab3719
– volume: 2
  start-page: 230
  year: 2017
  ident: 10.1016/S1470-2045(19)30149-4_bib52
  article-title: Artificial intelligence in healthcare: past, present and future
  publication-title: Stroke Vasc Neurol
  doi: 10.1136/svn-2017-000101
– volume: 10
  start-page: 18
  year: 1996
  ident: 10.1016/S1470-2045(19)30149-4_bib61
  article-title: Negligence: who is the umpire
  publication-title: J Med Defence Union
– volume: 25
  start-page: 1248
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib19
  article-title: Conversational agents in healthcare: a systematic review
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocy072
– volume: 12
  start-page: 1293
  year: 2017
  ident: 10.1016/S1470-2045(19)30149-4_bib47
  article-title: Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-017-1627-0
– volume: 320
  start-page: 23
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib39
  article-title: Diagnosing fractures with AI
  publication-title: JAMA
– volume: 36
  start-page: 829
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib7
  article-title: Deep learning in biomedicine
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4233
– volume: 8
  start-page: 196
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib23
  article-title: A survey of GPU-based acceleration techniques in MRI reconstructions
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims.2018.03.07
– volume: 168
  start-page: 757
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib44
  article-title: Automated and clinical breast imaging reporting and data system density measures predict risk for screen-detected and interval cancers: a case-control study
  publication-title: Ann Intern Med
  doi: 10.7326/M17-3008
– volume: 8
  start-page: 333ra49
  year: 2016
  ident: 10.1016/S1470-2045(19)30149-4_bib59
  article-title: Individualizing liver transplant immunosuppression using a phenotypic personalized medicine platform
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aac5954
– year: 2012
  ident: 10.1016/S1470-2045(19)30149-4_bib56
– volume: 290
  start-page: 218
  year: 2019
  ident: 10.1016/S1470-2045(19)30149-4_bib46
  article-title: Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs
  publication-title: Radiology
  doi: 10.1148/radiol.2018180237
– volume: 20
  start-page: 48
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib8
  article-title: Imaging, health record, and artificial intelligence: hype or hope?
  publication-title: Curr Cardiol Rep
  doi: 10.1007/s11886-018-0990-y
– volume: 25
  start-page: 44
  year: 2019
  ident: 10.1016/S1470-2045(19)30149-4_bib11
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0300-7
– ident: 10.1016/S1470-2045(19)30149-4_bib22
– volume: 115
  start-page: E2970
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib48
  article-title: Predicting cancer outcomes from histology and genomics using convolutional networks
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1717139115
– volume: 2
  start-page: 59
  year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib60
  article-title: Medicine and the rise of the robots: a qualitative review of recent advances of artificial intelligence in health
  publication-title: BMJ Leader
  doi: 10.1136/leader-2018-000071
– volume: 3
  start-page: 210
  year: 1959
  ident: 10.1016/S1470-2045(19)30149-4_bib1
  article-title: Some studies in machine learning using the game of checkers
  publication-title: IBM J Res Dev
  doi: 10.1147/rd.33.0210
– volume: 132
  start-page: 1920
  year: 2015
  ident: 10.1016/S1470-2045(19)30149-4_bib29
  article-title: Machine learning in medicine
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.001593
– year: 2019
  ident: 10.1016/S1470-2045(19)30149-4_bib9
– year: 2018
  ident: 10.1016/S1470-2045(19)30149-4_bib51
SSID ssj0017105
Score 2.7160597
SecondaryResourceType review_article
Snippet Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However,...
Summary Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e262
SubjectTerms Algorithms
Artificial intelligence
Biomarkers
Biopsy
Clinical medicine
Clinical trials
Colonoscopy
Colorectal cancer
Datasets
Diagnosis
Electronic health records
Health care delivery
Histology
Learning algorithms
Lung cancer
Medical imaging
Medical screening
Melanoma
Neural networks
Oncology
Pancreatic cancer
Physicians
Population
Prostate cancer
Skin cancer
Vision systems
Title Big data and machine learning algorithms for health-care delivery
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1470204519301494
https://dx.doi.org/10.1016/S1470-2045(19)30149-4
https://www.ncbi.nlm.nih.gov/pubmed/31044724
https://www.proquest.com/docview/2217414666
https://www.proquest.com/docview/2219002181
Volume 20
WOSCitedRecordID wos000466380000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 1474-5488
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017105
  issn: 1470-2045
  databaseCode: 7X7
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1474-5488
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017105
  issn: 1470-2045
  databaseCode: 7RV
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1474-5488
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017105
  issn: 1470-2045
  databaseCode: BENPR
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1474-5488
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017105
  issn: 1470-2045
  databaseCode: 8C1
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RqKpeWvpkKUWu1EN7cElix48TAgTiwgoBrfZmJRN7i7RkgV0q9d_XdpxwolTqxYckYyUZe-az5_MMwGeLtUaOgmpkSHnjJK1slVFVFqVlStRWNLHYhByP1WSiT9OG2yLRKnubGA11M8ewR75TBOzsp7UQu9c3NFSNCtHVVELjCazlwXf78SzPfgxRBNlRGHMuMxrSrt-f4Nk5Hy5-yfXXsK7QlD_kmx7CntEHHb3837dfhxcJfZK9bri8ghXbvoZnJym-_gb29i-nJJBGSdU25CoSLS1JlSWmpJpNfafLn1cL4rEu6c5Q0kAeI42dBYbH77fw_ejw4uCYpiILFMucLSnLFFautDkKVqCrvXqKkL1TqDqXjUdThbYeBmDteJ01TnidOnRSIDJW6ZKzd7Dazlu7AcS7emWlli6u0pzVjiEr6sz35DyOcCPg_e81mDKQh0IYMzNQzYJWTNCKybWJWjF8BN8GsesuBcdjAqLXnenPl3qLaLyTeExQDYIJgHTA4l9Et3rFm2QFFuZe6yP4NNz28zcEZarWzu_iM7oDWiN43w2u4Ss99OZcFnzz751_gOcexumOhrkFq8vbO_sRnuKv5eXidjtOidBOZGyVb9VBvg1r-4fj07M_vewPzw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgoBL-S5LCxgJJDiYJrZjxweEykfVqu0KiSLtzSSOva20zZbuFtQ_1d_YcZykp1IuPXBNMlYcP4_fxG88AK-dLbUVVlJtuaWi8ooWrkhonrHM8VyWTlZNsQk1HOajkf62AGddLkyQVXY-sXHU1dSGf-RrLHBnnNZSfjz6RUPVqLC72pXQiLDYdqd_MGSbfdj6guP7hrGNr3ufN2lbVYDaLOVzypPcFj5zqZWcWV_i-7BwXKXMy1RVSB-Ydrju2dKLMqm8xE5465W0lvNCZ4JjuzfgJvpxFSRkatQHeKmKkslUqISGY94vMobWvvcX36b6XYhjNBWXrYWXcd1mzdu49799rfuw1LJrsh6nwwNYcPVDuL3b6gcewfqngzEJolhS1BU5bISkjrSVM8akmIyxE_P9wxlBLk9ijigN4jhSuUlQsJw-hh_X0oEnsFhPa_cUCFKZ3CmtfBOFeqc9t5yVCbbkkSf5AYhuOI1tT1gPhT4mppfSBRSYgAKTatOgwIgBvO_NjuIRI1cZyA4rpsufRY9vcBG8yjDvDVuCFYnTv5iudkAzrZebmQuUDeBVfxv9U9h0Kmo3PWme0ZFIDmA5grnvJYYWQigmnv298ZdwZ3Nvd8fsbA23V-AuUlYdJaersDg_PnHP4Zb9PT-YHb9opiOBn9eN6HNQsGiX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgioulG-WFjASSHAwm9iOHR8QKpQVVWFVCZD2ZhLHXipts6W7BfWv9dd1HCfpqZRLD1yTjBXHz5438RsPwAtnS22FlVRbbqmovKKFKxKaZyxzPJelk1VTbEKNx_lkovdW4LTLhQmyym5NbBbqam7DP_IhC9wZp7WUQ9_KIva2R-8Of9FQQSrstHblNCJEdt3JHwzfFm93tnGsXzI2-vjtwyfaVhigNkv5kvIkt4XPXGolZ9aX-G4sHF0p8zJVFVIJph36QFt6USaVl9ghb72S1nJe6ExwbPcaXFecq1A2Qk36YC9VUT6ZCpXQcOT7efbQ8Gt_8VWqX4eYRlNxkV-8iPc2_m-0_j9_udtwq2XdZCtOkzuw4uq7sPal1RXcg633-1MSxLKkqCty0AhMHWkrakxJMZtiJ5Y_DxYEOT6JuaM0iOZI5WZB2XJyH75fSQcewGo9r90jIEhxcqe08k106p323HJWJtiSR_7kByC6oTW2PXk9FACZmV5iFxBhAiJMqk2DCCMG8KY3O4xHj1xmIDvcmC6vFj2BQed4mWHeG7bEKxKqfzHd7EBn2tVvYc4RN4Dn_W1ct8JmVFG7-XHzjI4EcwAPI7D7XmLIIYRi4vHfG38Gawhk83lnvLsBN5HJ6qhE3YTV5dGxewI37O_l_uLoaTMzCfy4akCfAU2YcUs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+data+and+machine+learning+algorithms+for+health-care+delivery&rft.jtitle=The+lancet+oncology&rft.au=Kee+Yuan+Ngiam&rft.au=Ing+Wei+Khor&rft.date=2019-05-01&rft.pub=Elsevier+Limited&rft.issn=1470-2045&rft.eissn=1474-5488&rft.volume=20&rft.issue=5&rft.spage=e262&rft_id=info:doi/10.1016%2FS1470-2045%2819%2930149-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-2045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-2045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-2045&client=summon