Big data and machine learning algorithms for health-care delivery
Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However, to effectively use machine learning tools in health care, several limitations must be addressed and key issues considered, such as its clinic...
Uloženo v:
| Vydáno v: | The lancet oncology Ročník 20; číslo 5; s. e262 - e273 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.05.2019
Elsevier Limited |
| Témata: | |
| ISSN: | 1470-2045, 1474-5488, 1474-5488 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However, to effectively use machine learning tools in health care, several limitations must be addressed and key issues considered, such as its clinical implementation and ethics in health-care delivery. Advantages of machine learning include flexibility and scalability compared with traditional biostatistical methods, which makes it deployable for many tasks, such as risk stratification, diagnosis and classification, and survival predictions. Another advantage of machine learning algorithms is the ability to analyse diverse data types (eg, demographic data, laboratory findings, imaging data, and doctors' free-text notes) and incorporate them into predictions for disease risk, diagnosis, prognosis, and appropriate treatments. Despite these advantages, the application of machine learning in health-care delivery also presents unique challenges that require data pre-processing, model training, and refinement of the system with respect to the actual clinical problem. Also crucial are ethical considerations, which include medico-legal implications, doctors' understanding of machine learning tools, and data privacy and security. In this Review, we discuss some of the benefits and challenges of big data and machine learning in health care. |
|---|---|
| AbstractList | Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However, to effectively use machine learning tools in health care, several limitations must be addressed and key issues considered, such as its clinical implementation and ethics in health-care delivery. Advantages of machine learning include flexibility and scalability compared with traditional biostatistical methods, which makes it deployable for many tasks, such as risk stratification, diagnosis and classification, and survival predictions. Another advantage of machine learning algorithms is the ability to analyse diverse data types (eg, demographic data, laboratory findings, imaging data, and doctors' free-text notes) and incorporate them into predictions for disease risk, diagnosis, prognosis, and appropriate treatments. Despite these advantages, the application of machine learning in health-care delivery also presents unique challenges that require data pre-processing, model training, and refinement of the system with respect to the actual clinical problem. Also crucial are ethical considerations, which include medico-legal implications, doctors' understanding of machine learning tools, and data privacy and security. In this Review, we discuss some of the benefits and challenges of big data and machine learning in health care. Summary Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However, to effectively use machine learning tools in health care, several limitations must be addressed and key issues considered, such as its clinical implementation and ethics in health-care delivery. Advantages of machine learning include flexibility and scalability compared with traditional biostatistical methods, which makes it deployable for many tasks, such as risk stratification, diagnosis and classification, and survival predictions. Another advantage of machine learning algorithms is the ability to analyse diverse data types (eg, demographic data, laboratory findings, imaging data, and doctors' free-text notes) and incorporate them into predictions for disease risk, diagnosis, prognosis, and appropriate treatments. Despite these advantages, the application of machine learning in health-care delivery also presents unique challenges that require data pre-processing, model training, and refinement of the system with respect to the actual clinical problem. Also crucial are ethical considerations, which include medico-legal implications, doctors' understanding of machine learning tools, and data privacy and security. In this Review, we discuss some of the benefits and challenges of big data and machine learning in health care. Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However, to effectively use machine learning tools in health care, several limitations must be addressed and key issues considered, such as its clinical implementation and ethics in health-care delivery. Advantages of machine learning include flexibility and scalability compared with traditional biostatistical methods, which makes it deployable for many tasks, such as risk stratification, diagnosis and classification, and survival predictions. Another advantage of machine learning algorithms is the ability to analyse diverse data types (eg, demographic data, laboratory findings, imaging data, and doctors' free-text notes) and incorporate them into predictions for disease risk, diagnosis, prognosis, and appropriate treatments. Despite these advantages, the application of machine learning in health-care delivery also presents unique challenges that require data pre-processing, model training, and refinement of the system with respect to the actual clinical problem. Also crucial are ethical considerations, which include medico-legal implications, doctors' understanding of machine learning tools, and data privacy and security. In this Review, we discuss some of the benefits and challenges of big data and machine learning in health care.Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However, to effectively use machine learning tools in health care, several limitations must be addressed and key issues considered, such as its clinical implementation and ethics in health-care delivery. Advantages of machine learning include flexibility and scalability compared with traditional biostatistical methods, which makes it deployable for many tasks, such as risk stratification, diagnosis and classification, and survival predictions. Another advantage of machine learning algorithms is the ability to analyse diverse data types (eg, demographic data, laboratory findings, imaging data, and doctors' free-text notes) and incorporate them into predictions for disease risk, diagnosis, prognosis, and appropriate treatments. Despite these advantages, the application of machine learning in health-care delivery also presents unique challenges that require data pre-processing, model training, and refinement of the system with respect to the actual clinical problem. Also crucial are ethical considerations, which include medico-legal implications, doctors' understanding of machine learning tools, and data privacy and security. In this Review, we discuss some of the benefits and challenges of big data and machine learning in health care. |
| Author | Khor, Ing Wei Ngiam, Kee Yuan |
| Author_xml | – sequence: 1 givenname: Kee Yuan surname: Ngiam fullname: Ngiam, Kee Yuan email: kee_yuan_ngiam@nuhs.edu.sg organization: Department of Surgery, National University of Singapore, Singapore – sequence: 2 givenname: Ing Wei surname: Khor fullname: Khor, Ing Wei organization: Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31044724$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1v1DAURS1URD_gJ4AisSmLgF_sOIkQQqVqaaVKLGjXlvPyPOPi2MXOVJp_T2amsJhNWdmyzrmy7j1mByEGYuwt8I_AQX36CbLhZcVlfQrdB8FBdqV8wY7mZ1nWsm0PtvcdcsiOc77nHBrg9St2KIBL2VTyiJ19c4tiMJMpTBiK0eDSBSo8mRRcWBTGL2Jy03LMhY2pWJLx07JEk6gYyLtHSuvX7KU1PtObp_OE3V1e3J5flTc_vl-fn92UWIOYSsFbNLYmQCUqtH2r-gqaWqi2h2YAKaqOKmixt7Lng1UdCou2UYhCmK6W4oSd7nIfUvy9ojzp0WUk702guMq6qqDjfI6AGX2_h97HVQrz7zZUI0EqpWbq3RO16kca9ENyo0lr_becGah3AKaYcyL7DwGuNyPo7Qh607CGTm9H0Bvv856HbjKTi2FKxvln7a87m-YyHx0lndFRQBpcIpz0EN2zCV_2EtC74ND4X7T-D_8PZcmxJQ |
| CitedBy_id | crossref_primary_10_1186_s12893_024_02427_x crossref_primary_10_3389_fendo_2020_577537 crossref_primary_10_1007_s42044_024_00206_8 crossref_primary_10_1002_acm2_14500 crossref_primary_10_3389_fmed_2021_617486 crossref_primary_10_1007_s10554_022_02649_1 crossref_primary_10_1016_j_ijnurstu_2025_105094 crossref_primary_10_1016_j_jvoice_2025_03_015 crossref_primary_10_1515_med_2023_0874 crossref_primary_10_1002_cam4_5137 crossref_primary_10_3390_biomedicines12030606 crossref_primary_10_1016_j_healun_2023_12_009 crossref_primary_10_1016_j_eswa_2023_119638 crossref_primary_10_1016_j_ijmedinf_2023_105177 crossref_primary_10_1016_j_gexplo_2024_107441 crossref_primary_10_1016_j_socscimed_2020_113172 crossref_primary_10_1016_j_compbiomed_2020_104171 crossref_primary_10_1038_s43856_022_00071_1 crossref_primary_10_3389_fonc_2022_852746 crossref_primary_10_1016_j_artmed_2021_102060 crossref_primary_10_1109_ACCESS_2023_3305965 crossref_primary_10_1177_2045894019890549 crossref_primary_10_1016_j_jvsv_2024_102162 crossref_primary_10_3389_fpubh_2023_1196397 crossref_primary_10_1109_TSC_2023_3332102 crossref_primary_10_3390_electronics11040593 crossref_primary_10_1080_02701367_2024_2343815 crossref_primary_10_1177_19322968211056917 crossref_primary_10_1016_j_cities_2022_103941 crossref_primary_10_1513_AnnalsATS_201908_608ED crossref_primary_10_1007_s13312_021_2228_0 crossref_primary_10_3390_brainsci13081148 crossref_primary_10_3389_frai_2020_561802 crossref_primary_10_1111_jems_12572 crossref_primary_10_1186_s12910_025_01236_y crossref_primary_10_3389_fonc_2021_692322 crossref_primary_10_1016_j_cmpb_2022_107093 crossref_primary_10_3390_jpm11100991 crossref_primary_10_3390_jcm12041580 crossref_primary_10_3390_bioengineering11080762 crossref_primary_10_1016_j_compbiomed_2023_107295 crossref_primary_10_1111_jcpe_13739 crossref_primary_10_2196_49605 crossref_primary_10_1007_s12265_020_10008_5 crossref_primary_10_1007_s11655_021_3453_z crossref_primary_10_1155_2020_6795392 crossref_primary_10_1093_cid_ciaf149 crossref_primary_10_3390_math11051192 crossref_primary_10_1007_s00125_024_06339_6 crossref_primary_10_1016_j_artmed_2020_101912 crossref_primary_10_3389_fpubh_2022_949377 crossref_primary_10_1016_j_chbah_2025_100127 crossref_primary_10_2196_28916 crossref_primary_10_3389_fsurg_2021_606038 crossref_primary_10_3389_fpubh_2022_1008137 crossref_primary_10_2196_69423 crossref_primary_10_1007_s11416_023_00479_w crossref_primary_10_3390_axioms12020097 crossref_primary_10_3390_healthcare10040674 crossref_primary_10_1155_2022_1977446 crossref_primary_10_1186_s12913_024_10894_4 crossref_primary_10_3389_fonc_2020_00743 crossref_primary_10_3389_fgene_2022_961142 crossref_primary_10_4240_wjgs_v17_i9_107977 crossref_primary_10_1097_AIA_0000000000000294 crossref_primary_10_1007_s00192_025_06057_6 crossref_primary_10_1016_j_media_2023_102845 crossref_primary_10_3390_app13031772 crossref_primary_10_1093_asjof_ojad099 crossref_primary_10_1162_dint_a_00197 crossref_primary_10_1016_j_jss_2024_112093 crossref_primary_10_1038_s41598_025_07406_7 crossref_primary_10_1016_j_eclinm_2025_103098 crossref_primary_10_1007_s12553_024_00825_y crossref_primary_10_3389_fnagi_2023_1216163 crossref_primary_10_1016_j_apmr_2022_01_154 crossref_primary_10_20517_ais_2025_02 crossref_primary_10_3390_s20092533 crossref_primary_10_1080_21681163_2023_2299093 crossref_primary_10_1007_s41019_024_00262_x crossref_primary_10_3389_fnins_2021_670475 crossref_primary_10_1371_journal_pone_0263940 crossref_primary_10_2196_25759 crossref_primary_10_1007_s40744_022_00481_6 crossref_primary_10_1038_s41598_020_68383_7 crossref_primary_10_3390_jpm12101682 crossref_primary_10_1016_j_jad_2023_02_028 crossref_primary_10_1186_s12967_024_05005_0 crossref_primary_10_3389_fcvm_2021_812182 crossref_primary_10_2147_TCRM_S482662 crossref_primary_10_3389_fcimb_2023_1206393 crossref_primary_10_3389_fpubh_2021_782203 crossref_primary_10_3390_su14052497 crossref_primary_10_1038_s41746_021_00438_z crossref_primary_10_1016_j_compbiomed_2022_105741 crossref_primary_10_1080_09638288_2023_2175919 crossref_primary_10_1097_CIN_0000000000000765 crossref_primary_10_1186_s42492_025_00204_y crossref_primary_10_1186_s12911_021_01730_4 crossref_primary_10_1038_s41746_024_01117_5 crossref_primary_10_3389_fmed_2025_1554579 crossref_primary_10_3389_fmed_2022_807382 crossref_primary_10_3390_ai5040095 crossref_primary_10_3390_s21165526 crossref_primary_10_1016_j_jormas_2022_01_010 crossref_primary_10_3389_feduc_2025_1518909 crossref_primary_10_1016_j_cmpb_2022_106929 crossref_primary_10_1038_s42256_023_00760_z crossref_primary_10_2196_26634 crossref_primary_10_1016_j_irbm_2023_100795 crossref_primary_10_1371_journal_pone_0248616 crossref_primary_10_1093_jamia_ocae009 crossref_primary_10_1186_s12885_025_14444_x crossref_primary_10_1007_s40200_023_01330_1 crossref_primary_10_1038_s43856_025_01047_7 crossref_primary_10_1016_j_actbio_2025_01_059 crossref_primary_10_1016_j_blre_2023_101134 crossref_primary_10_1016_j_isci_2024_110682 crossref_primary_10_1109_TCSI_2023_3298802 crossref_primary_10_1080_1744666X_2024_2359019 crossref_primary_10_2196_47590 crossref_primary_10_1177_00045632211046805 crossref_primary_10_3390_healthcare11141979 crossref_primary_10_1186_s12872_023_03626_9 crossref_primary_10_1093_neuros_nyab337 crossref_primary_10_1145_3703154 crossref_primary_10_3390_bios15030139 crossref_primary_10_4251_wjgo_v17_i4_103679 crossref_primary_10_1111_jdi_14069 crossref_primary_10_1161_JAHA_123_033194 crossref_primary_10_1016_j_ijmedinf_2023_105024 crossref_primary_10_1016_j_foodchem_2024_141304 crossref_primary_10_1016_j_tbs_2024_100914 crossref_primary_10_1177_00031348221103648 crossref_primary_10_23736_S2724_6051_25_06195_6 crossref_primary_10_1016_j_ijnurstu_2021_103932 crossref_primary_10_1016_j_teler_2025_100250 crossref_primary_10_1016_j_pdpdt_2022_103198 crossref_primary_10_1111_idh_12755 crossref_primary_10_2196_57486 crossref_primary_10_3390_healthcare11131825 crossref_primary_10_1016_j_acra_2022_10_030 crossref_primary_10_1155_2022_4862376 crossref_primary_10_1161_JAHA_124_035425 crossref_primary_10_1186_s12874_022_01774_8 crossref_primary_10_1186_s12884_024_06980_4 crossref_primary_10_1007_s40883_022_00273_y crossref_primary_10_1007_s44194_023_00020_7 crossref_primary_10_1002_clc_24104 crossref_primary_10_1002_1878_0261_12731 crossref_primary_10_1186_s12891_021_04867_5 crossref_primary_10_4103_singaporemedj_SMJ_2022_042 crossref_primary_10_1016_j_jvs_2019_12_026 crossref_primary_10_1080_23279095_2024_2364229 crossref_primary_10_1089_whr_2021_0010 crossref_primary_10_2147_CIA_S349978 crossref_primary_10_1016_j_ejrad_2021_109717 crossref_primary_10_1111_rssa_12644 crossref_primary_10_1109_ACCESS_2024_3411774 crossref_primary_10_1111_hex_13500 crossref_primary_10_3390_diagnostics11071299 crossref_primary_10_1186_s12935_021_01981_1 crossref_primary_10_3389_fendo_2022_1043919 crossref_primary_10_1080_03630269_2022_2158100 crossref_primary_10_1016_j_bspc_2023_105655 crossref_primary_10_1016_j_heares_2021_108281 crossref_primary_10_1155_2022_3141807 crossref_primary_10_1212_WNL_0000000000210171 crossref_primary_10_3390_educsci14040339 crossref_primary_10_1093_bib_bbab584 crossref_primary_10_1007_s10462_024_11005_9 crossref_primary_10_1016_j_media_2025_103497 crossref_primary_10_1016_j_ijmedinf_2025_105887 crossref_primary_10_1016_j_bulcan_2021_08_015 crossref_primary_10_3390_healthcare10030541 crossref_primary_10_1016_j_euo_2023_02_006 crossref_primary_10_1038_s41598_022_11361_y crossref_primary_10_1007_s00192_024_05983_1 crossref_primary_10_3389_fpubh_2023_1257818 crossref_primary_10_1016_j_jvs_2025_03_198 crossref_primary_10_1016_j_eprac_2023_06_003 crossref_primary_10_1186_s12911_025_02869_0 crossref_primary_10_1002_cam4_70305 crossref_primary_10_1088_1755_1315_815_1_012010 crossref_primary_10_1093_ejendo_lvad017 crossref_primary_10_2147_IJGM_S338389 crossref_primary_10_3390_bioengineering11070679 crossref_primary_10_3389_fendo_2022_1083569 crossref_primary_10_1017_cts_2023_634 crossref_primary_10_1002_hed_27353 crossref_primary_10_1016_j_future_2021_11_003 crossref_primary_10_1111_liv_15634 crossref_primary_10_1016_j_jmir_2023_04_001 crossref_primary_10_1016_j_healthpol_2020_10_002 crossref_primary_10_4103_IJO_IJO_1895_24 crossref_primary_10_1007_s00330_021_08036_z crossref_primary_10_2196_46840 crossref_primary_10_1038_s41598_025_88819_2 crossref_primary_10_3389_fendo_2023_1130139 crossref_primary_10_1136_gutjnl_2019_320065 crossref_primary_10_1016_j_watres_2023_119865 crossref_primary_10_1016_j_ucl_2023_06_005 crossref_primary_10_1097_JS9_0000000000001237 crossref_primary_10_3390_diagnostics14171974 crossref_primary_10_1177_15266028251333670 crossref_primary_10_34248_bsengineering_858918 crossref_primary_10_1038_s43018_023_00717_6 crossref_primary_10_1097_PPO_0000000000000579 crossref_primary_10_1038_s41598_024_80978_y crossref_primary_10_1097_MNH_0000000000000993 crossref_primary_10_1016_j_hpb_2025_02_014 crossref_primary_10_1016_j_jaap_2023_105879 crossref_primary_10_2196_45523 crossref_primary_10_1016_j_geoen_2023_212555 crossref_primary_10_1016_j_bas_2024_102835 crossref_primary_10_1016_j_envpol_2025_125687 crossref_primary_10_1097_INF_0000000000003344 crossref_primary_10_1186_s12889_024_18009_8 crossref_primary_10_3389_fonc_2022_1095059 crossref_primary_10_3390_jpm11080748 crossref_primary_10_3748_wjg_v31_i19_105283 crossref_primary_10_1016_j_fmre_2022_01_037 crossref_primary_10_1155_2022_3154650 crossref_primary_10_1007_s43681_021_00124_6 crossref_primary_10_1227_NEU_0000000000001841 crossref_primary_10_1109_ACCESS_2024_3358827 crossref_primary_10_1186_s12903_023_03112_w crossref_primary_10_1097_CM9_0000000000000694 crossref_primary_10_1038_s41928_024_01247_4 crossref_primary_10_1177_02734753241299024 crossref_primary_10_1016_j_eswa_2023_122982 crossref_primary_10_1126_scirobotics_abq4821 crossref_primary_10_3389_fmed_2025_1456286 crossref_primary_10_1007_s10916_020_01669_5 crossref_primary_10_1016_j_compbiomed_2024_108294 crossref_primary_10_1007_s10926_020_09910_1 crossref_primary_10_1109_TMC_2023_3316145 crossref_primary_10_1038_s41598_022_16074_w crossref_primary_10_1002_hcs2_114 crossref_primary_10_1109_TEM_2023_3348991 crossref_primary_10_3389_fcimb_2023_1289124 crossref_primary_10_1109_COMST_2023_3344808 crossref_primary_10_3389_fonc_2022_1066508 crossref_primary_10_2196_18150 crossref_primary_10_1016_j_bvth_2024_100031 crossref_primary_10_2196_67871 crossref_primary_10_1016_j_eswa_2023_121787 crossref_primary_10_1093_ijcoms_lyab001 crossref_primary_10_2147_NDT_S535798 crossref_primary_10_32604_cmc_2023_032020 crossref_primary_10_2174_0115748928361472250123105507 crossref_primary_10_1002_ail2_100 crossref_primary_10_1016_j_jad_2025_120180 crossref_primary_10_1097_CCO_0000000000000809 crossref_primary_10_1016_j_jbi_2023_104319 crossref_primary_10_1177_24715492211038172 crossref_primary_10_1038_s41598_025_03575_7 crossref_primary_10_1007_s40279_023_01866_5 crossref_primary_10_3389_fendo_2025_1552479 crossref_primary_10_3390_app14135845 crossref_primary_10_1016_j_envint_2025_109389 crossref_primary_10_1016_j_modpat_2025_100705 crossref_primary_10_1016_j_mri_2020_09_011 crossref_primary_10_1016_j_archger_2024_105641 crossref_primary_10_1177_02676591231163688 crossref_primary_10_1016_j_jval_2022_08_005 crossref_primary_10_1016_j_scs_2023_105071 crossref_primary_10_1038_s41598_023_33170_7 crossref_primary_10_1111_voxs_12618 crossref_primary_10_1136_bmjopen_2024_089047 crossref_primary_10_1200_EDBK_350652 crossref_primary_10_3389_fpubh_2022_846118 crossref_primary_10_1108_DTS_06_2023_0041 crossref_primary_10_1016_j_gaceta_2020_12_019 crossref_primary_10_1109_TIFS_2024_3364370 crossref_primary_10_1016_j_compbiomed_2025_110028 crossref_primary_10_1016_j_soncn_2023_151433 crossref_primary_10_1186_s12874_021_01284_z crossref_primary_10_3389_fpubh_2023_1033070 crossref_primary_10_1016_j_pmr_2024_06_005 crossref_primary_10_1097_JS9_0000000000002003 crossref_primary_10_1002_cnm_3662 crossref_primary_10_1002_ett_4392 crossref_primary_10_1001_jamanetworkopen_2019_11913 crossref_primary_10_1145_3411815 crossref_primary_10_1016_j_jbi_2023_104443 crossref_primary_10_1016_j_artmed_2023_102607 crossref_primary_10_1186_s12884_025_07972_8 crossref_primary_10_1016_j_health_2023_100155 crossref_primary_10_3233_THC_240119 crossref_primary_10_3748_wjg_v29_i22_3561 crossref_primary_10_1136_bmjopen_2021_053352 crossref_primary_10_1016_j_nanoen_2021_106227 crossref_primary_10_1371_journal_pone_0238908 crossref_primary_10_1007_s11301_024_00482_5 crossref_primary_10_1186_s12967_019_2062_5 crossref_primary_10_3390_s25051615 crossref_primary_10_2147_DMSO_S383960 crossref_primary_10_3390_jcm11247481 crossref_primary_10_1080_15563650_2024_2437113 crossref_primary_10_1016_j_apenergy_2021_117250 crossref_primary_10_1186_s12911_025_03090_9 crossref_primary_10_7759_cureus_69121 crossref_primary_10_1016_j_catena_2025_109403 crossref_primary_10_1259_bjr_20211050 crossref_primary_10_1021_acssynbio_5c00244 crossref_primary_10_1183_13993003_01216_2019 crossref_primary_10_1016_j_ebiom_2020_103064 crossref_primary_10_1016_j_yamp_2022_06_003 crossref_primary_10_1155_2023_8898958 crossref_primary_10_3390_diagnostics12102463 crossref_primary_10_1080_23311886_2024_2376309 crossref_primary_10_7759_cureus_29973 crossref_primary_10_1002_btm2_70002 crossref_primary_10_1016_j_ijhcs_2023_103160 crossref_primary_10_1186_s12986_024_00802_2 crossref_primary_10_2196_36823 crossref_primary_10_1016_j_reprotox_2020_05_004 crossref_primary_10_1371_journal_pone_0236957 crossref_primary_10_1007_s10792_023_02730_1 crossref_primary_10_3390_jpm14080816 crossref_primary_10_1155_2023_5507814 crossref_primary_10_3390_cancers16091775 crossref_primary_10_1002_lt_26578 crossref_primary_10_3389_fphar_2022_1027230 crossref_primary_10_7717_peerj_cs_2784 crossref_primary_10_1007_s00761_024_01487_1 crossref_primary_10_1016_j_ejso_2025_109654 crossref_primary_10_1016_j_lanwpc_2025_101575 crossref_primary_10_1097_MD_0000000000035439 crossref_primary_10_1016_S0140_6736_23_01060_7 crossref_primary_10_1016_j_jormas_2024_102209 crossref_primary_10_1016_j_phymed_2025_156538 crossref_primary_10_1186_s12913_024_11932_x crossref_primary_10_1186_s13014_024_02453_2 crossref_primary_10_31083_j_fbl2901007 crossref_primary_10_3389_fmed_2023_1337335 crossref_primary_10_1016_j_ijbiomac_2023_125669 crossref_primary_10_1038_s41598_023_48830_x crossref_primary_10_1007_s00417_025_06792_y crossref_primary_10_1016_j_ejmp_2021_04_004 crossref_primary_10_1016_j_future_2025_107991 crossref_primary_10_1136_bmj_2024_081554 crossref_primary_10_3389_fimmu_2021_642167 crossref_primary_10_1186_s12885_025_13520_6 crossref_primary_10_1016_j_ijmedinf_2021_104679 crossref_primary_10_1038_s41398_024_02998_6 crossref_primary_10_1016_j_engappai_2023_106715 crossref_primary_10_1111_all_15849 crossref_primary_10_1016_j_jvs_2023_05_024 crossref_primary_10_3390_ijerph18083966 crossref_primary_10_1038_s41598_024_52944_1 crossref_primary_10_1186_s12872_024_04216_z crossref_primary_10_20965_jaciii_2025_p0277 crossref_primary_10_3390_brainsci10110884 crossref_primary_10_1159_000529398 crossref_primary_10_3389_fmed_2021_775047 crossref_primary_10_3390_diagnostics11112034 crossref_primary_10_3390_diagnostics15111377 crossref_primary_10_1007_s13762_022_04149_0 crossref_primary_10_1109_TAI_2025_3531326 crossref_primary_10_1016_j_comcom_2020_02_069 crossref_primary_10_1136_bmjsem_2024_001890 crossref_primary_10_3389_fneur_2024_1478213 crossref_primary_10_3389_fneur_2025_1599856 crossref_primary_10_3390_opt4020022 crossref_primary_10_3389_fendo_2024_1385324 crossref_primary_10_1186_s12911_022_02083_2 crossref_primary_10_1016_j_ejso_2025_110191 crossref_primary_10_1097_ACI_0000000000000829 crossref_primary_10_1186_s12911_023_02331_z crossref_primary_10_1097_JS9_0000000000002032 crossref_primary_10_1265_ehpm_24_00270 crossref_primary_10_1371_journal_pone_0322419 crossref_primary_10_3390_e24070929 crossref_primary_10_1007_s00345_024_05314_5 crossref_primary_10_1016_j_healthpol_2022_12_001 crossref_primary_10_1016_j_matpr_2021_04_309 crossref_primary_10_1097_MD_0000000000041766 crossref_primary_10_1111_tgis_13303 crossref_primary_10_3389_fpubh_2024_1445181 crossref_primary_10_1016_j_team_2025_02_003 crossref_primary_10_1038_s41467_025_56054_y crossref_primary_10_4102_hsag_v30i0_2977 crossref_primary_10_3389_fendo_2023_1129793 crossref_primary_10_1002_aisy_202000080 crossref_primary_10_1038_s41578_021_00339_3 crossref_primary_10_1002_ags3_12836 crossref_primary_10_1007_s10916_020_01626_2 crossref_primary_10_1016_j_heliyon_2023_e16068 crossref_primary_10_1055_s_0041_1740923 crossref_primary_10_3390_app12125942 crossref_primary_10_1016_j_engappai_2022_105666 crossref_primary_10_2478_rrlm_2024_0024 crossref_primary_10_1016_j_jclinepi_2020_03_005 crossref_primary_10_1186_s40779_021_00338_z crossref_primary_10_3389_fpubh_2022_960740 crossref_primary_10_1038_s41598_021_86327_7 crossref_primary_10_1007_s11356_021_14305_7 crossref_primary_10_1093_aje_kwad119 crossref_primary_10_1186_s12967_023_04487_8 crossref_primary_10_1136_bjo_2024_325167 crossref_primary_10_58567_eal04030001 crossref_primary_10_1007_s11831_023_09886_0 crossref_primary_10_1097_ACI_0000000000000831 crossref_primary_10_1016_j_diabres_2023_110917 crossref_primary_10_3389_fonc_2024_1349888 crossref_primary_10_1007_s00261_021_03350_y crossref_primary_10_1186_s12889_025_21334_1 crossref_primary_10_1177_00031348221117042 crossref_primary_10_1111_papr_12854 crossref_primary_10_2174_0929867329666220105121754 crossref_primary_10_1177_21925682211035363 crossref_primary_10_1016_j_eswa_2023_121490 crossref_primary_10_3389_fcvm_2022_1042996 crossref_primary_10_3390_ijerph181910540 crossref_primary_10_1177_00243639231162431 crossref_primary_10_2196_27275 crossref_primary_10_3390_brainsci14010010 crossref_primary_10_1111_ijlh_14524 crossref_primary_10_1186_s12885_022_09352_3 crossref_primary_10_1007_s43441_021_00292_x crossref_primary_10_1089_vbz_2023_0112 crossref_primary_10_7717_peerj_10682 crossref_primary_10_1111_trf_17582 crossref_primary_10_1287_msom_2020_0369 crossref_primary_10_1186_s12888_023_04791_z crossref_primary_10_3389_fdgth_2024_1510674 crossref_primary_10_1002_aisy_202300283 crossref_primary_10_1007_s11042_023_17967_2 crossref_primary_10_1016_j_ienj_2021_101109 crossref_primary_10_1016_j_future_2023_02_021 crossref_primary_10_2196_67922 crossref_primary_10_1016_j_trac_2024_117872 crossref_primary_10_1097_MD_0000000000043926 crossref_primary_10_1155_2020_6873891 crossref_primary_10_1016_j_ejvs_2025_02_016 crossref_primary_10_3389_fcvm_2023_1101765 crossref_primary_10_3390_ijms22010127 crossref_primary_10_4018_IJSWIS_384516 crossref_primary_10_1007_s00345_021_03738_x crossref_primary_10_7717_peerj_19366 crossref_primary_10_1109_ACCESS_2024_3369491 crossref_primary_10_1080_14789450_2021_1962303 crossref_primary_10_1111_phn_13440 crossref_primary_10_1007_s10877_021_00664_6 crossref_primary_10_7759_cureus_48307 crossref_primary_10_1016_j_compbiomed_2023_107876 crossref_primary_10_1089_big_2020_0383 crossref_primary_10_1016_j_heliyon_2024_e27594 crossref_primary_10_1002_cdt3_68 crossref_primary_10_3389_fonc_2024_1325514 crossref_primary_10_1016_j_resuscitation_2022_07_006 crossref_primary_10_3390_jpm13111590 crossref_primary_10_1002_hsr2_70799 crossref_primary_10_1080_23279095_2022_2078210 crossref_primary_10_1186_s12911_023_02256_7 crossref_primary_10_1007_s12672_024_01017_w crossref_primary_10_1016_j_numecd_2024_02_004 crossref_primary_10_1093_postmj_qgae180 crossref_primary_10_3389_frai_2025_1481338 crossref_primary_10_1016_j_tranon_2022_101499 crossref_primary_10_1088_2632_2153_ac9036 crossref_primary_10_1038_s41581_021_00439_x crossref_primary_10_1111_liv_14865 crossref_primary_10_1016_j_jvsv_2024_101943 crossref_primary_10_3390_genes11121493 crossref_primary_10_3390_medicina59030600 crossref_primary_10_1002_ags3_12504 crossref_primary_10_1186_s12889_020_09766_3 crossref_primary_10_1136_rapm_2023_104526 crossref_primary_10_3390_bioengineering10060735 crossref_primary_10_3390_bs9120122 crossref_primary_10_3389_fpubh_2021_626331 crossref_primary_10_1007_s00521_025_11599_3 crossref_primary_10_3390_a15020049 crossref_primary_10_1080_10408363_2021_1943302 crossref_primary_10_2139_ssrn_5250701 crossref_primary_10_1038_s41598_024_62535_9 crossref_primary_10_3390_jcm12144830 crossref_primary_10_4251_wjgo_v16_i12_4548 crossref_primary_10_1186_s12876_024_03223_w crossref_primary_10_1007_s11307_021_01599_9 crossref_primary_10_1177_21925682251335880 crossref_primary_10_1002_cpe_7652 crossref_primary_10_3390_a14120348 crossref_primary_10_1007_s00521_022_07037_3 crossref_primary_10_1016_j_disamonth_2025_101882 crossref_primary_10_2217_fmb_2023_0269 crossref_primary_10_3389_fonc_2021_653863 crossref_primary_10_1016_j_procs_2021_12_053 crossref_primary_10_1038_s41598_024_64602_7 crossref_primary_10_1038_s41598_025_91825_z crossref_primary_10_1007_s10072_022_06351_x crossref_primary_10_1007_s12672_025_02416_3 crossref_primary_10_1136_bmjopen_2022_061309 crossref_primary_10_1177_24518492251349080 crossref_primary_10_1007_s11042_023_14989_8 crossref_primary_10_3389_fcvm_2019_00195 crossref_primary_10_1080_1369118X_2020_1719185 crossref_primary_10_3389_fimmu_2022_985863 crossref_primary_10_1016_j_clinthera_2024_02_010 crossref_primary_10_1007_s00234_021_02890_w crossref_primary_10_1145_3519420 crossref_primary_10_1155_2022_9227440 crossref_primary_10_3389_fnins_2022_1031732 crossref_primary_10_1002_ijc_33132 crossref_primary_10_1177_17456916221134490 crossref_primary_10_3390_cancers15010325 crossref_primary_10_1080_09599916_2020_1832558 crossref_primary_10_3389_fped_2021_711104 crossref_primary_10_1038_s41598_025_93976_5 crossref_primary_10_3390_antibiotics9020054 crossref_primary_10_3390_diagnostics13010130 crossref_primary_10_1016_j_heliyon_2024_e37294 crossref_primary_10_1016_j_joim_2025_06_005 crossref_primary_10_3390_ai4010003 crossref_primary_10_1016_j_gassur_2025_101997 crossref_primary_10_2196_18477 crossref_primary_10_1016_j_cmpb_2021_106153 crossref_primary_10_1016_j_jpurol_2022_04_010 crossref_primary_10_3390_jpm11080787 crossref_primary_10_1007_s12291_025_01315_2 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107354 crossref_primary_10_1038_s43587_021_00045_3 crossref_primary_10_3389_fendo_2022_1004913 crossref_primary_10_51536_tusbad_1702172 crossref_primary_10_1016_j_compbiomed_2023_107423 crossref_primary_10_1186_s13104_024_06979_2 crossref_primary_10_1155_2022_9699612 crossref_primary_10_3389_fendo_2022_1030045 crossref_primary_10_1016_j_japr_2025_100602 crossref_primary_10_1016_j_ijbiomac_2023_126354 crossref_primary_10_1097_CIN_0000000000001192 crossref_primary_10_3390_pharmaceutics14051023 crossref_primary_10_1016_j_psychres_2023_115050 crossref_primary_10_1038_s41598_022_20149_z crossref_primary_10_1053_j_semvascsurg_2023_07_001 crossref_primary_10_1111_jch_70132 crossref_primary_10_3390_app14166858 crossref_primary_10_3389_fneur_2025_1587441 crossref_primary_10_1002_ijc_34248 crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_106234 crossref_primary_10_1002_advs_202304091 crossref_primary_10_1007_s00228_020_02918_9 crossref_primary_10_1038_s41598_024_75435_9 crossref_primary_10_1080_02770903_2024_2409991 crossref_primary_10_1016_j_jvssci_2022_11_004 crossref_primary_10_1186_s12889_025_21412_4 crossref_primary_10_1007_s11135_025_02210_x crossref_primary_10_1016_j_scib_2023_08_001 crossref_primary_10_3390_computation12010015 crossref_primary_10_1186_s12933_025_02729_1 crossref_primary_10_3390_ijerph18105072 crossref_primary_10_1002_med_21658 crossref_primary_10_1016_j_imu_2022_101010 crossref_primary_10_1016_j_jhazmat_2024_135726 crossref_primary_10_1186_s40795_023_00808_8 crossref_primary_10_1016_j_isci_2024_111106 crossref_primary_10_1111_add_15038 crossref_primary_10_1111_dmcn_15010 crossref_primary_10_3233_JIFS_213486 crossref_primary_10_3389_fcimb_2025_1579558 crossref_primary_10_1111_cns_14002 crossref_primary_10_3389_fimmu_2025_1552265 crossref_primary_10_3389_fendo_2023_1087429 crossref_primary_10_1038_s41746_025_01865_y crossref_primary_10_1097_ICO_0000000000003641 crossref_primary_10_1016_j_mee_2024_112228 crossref_primary_10_3390_app12126060 crossref_primary_10_1080_21681163_2022_2063189 crossref_primary_10_1007_s10489_023_04944_3 crossref_primary_10_1186_s40779_023_00490_8 crossref_primary_10_3390_biomedicines13071764 crossref_primary_10_1007_s11042_023_18035_5 crossref_primary_10_1016_j_medj_2025_100668 crossref_primary_10_1186_s12916_025_04076_0 crossref_primary_10_3390_diagnostics14010053 crossref_primary_10_1016_j_imu_2023_101381 crossref_primary_10_1038_s41585_019_0241_z crossref_primary_10_1111_cyt_12799 crossref_primary_10_1007_s10586_024_04719_6 crossref_primary_10_3389_fcvm_2024_1422327 crossref_primary_10_3389_fonc_2022_902353 crossref_primary_10_1002_ksa_12247 crossref_primary_10_1109_ACCESS_2023_3323574 crossref_primary_10_3389_fonc_2022_986867 crossref_primary_10_1007_s10489_025_06602_2 crossref_primary_10_3390_diagnostics14141506 crossref_primary_10_3390_s21020546 crossref_primary_10_1016_j_fuel_2023_128548 crossref_primary_10_1177_1759720X231158198 crossref_primary_10_1177_15280837251349315 crossref_primary_10_3390_s23094178 crossref_primary_10_1007_s00595_023_02696_8 crossref_primary_10_1007_s42452_023_05508_3 crossref_primary_10_1136_bmjspcare_2021_002948 crossref_primary_10_1038_s41598_022_24979_9 crossref_primary_10_1053_j_ro_2025_06_003 crossref_primary_10_1038_s41598_023_32227_x crossref_primary_10_1371_journal_pone_0289931 crossref_primary_10_3390_jcm13206046 crossref_primary_10_3389_fmed_2025_1502830 crossref_primary_10_3390_medicina56090455 crossref_primary_10_1007_s12094_023_03291_6 crossref_primary_10_1007_s12553_023_00751_5 crossref_primary_10_1002_psp4_12621 crossref_primary_10_2196_73528 crossref_primary_10_3389_fpubh_2024_1367061 crossref_primary_10_1016_j_jad_2025_119976 crossref_primary_10_1038_s41746_025_01644_9 crossref_primary_10_1007_s00415_023_12132_z crossref_primary_10_1016_j_jvs_2023_08_121 crossref_primary_10_25259_SNI_433_2021 crossref_primary_10_1007_s00500_020_05387_5 crossref_primary_10_1007_s10462_021_10074_4 crossref_primary_10_1016_j_heliyon_2023_e20928 crossref_primary_10_3390_e23121669 crossref_primary_10_1053_j_sodo_2021_05_009 crossref_primary_10_1177_14604582211052391 crossref_primary_10_1007_s00261_021_02985_1 crossref_primary_10_3389_fneur_2024_1419608 crossref_primary_10_3390_jpm11050343 crossref_primary_10_3390_radiation5020011 crossref_primary_10_1159_000539306 crossref_primary_10_1038_s41598_022_12833_x crossref_primary_10_1371_journal_pone_0300447 crossref_primary_10_1097_MCC_0000000000001304 crossref_primary_10_1186_s13244_022_01220_9 crossref_primary_10_1007_s00404_023_07131_4 crossref_primary_10_1016_j_imu_2023_101236 crossref_primary_10_1038_s41598_023_37171_4 crossref_primary_10_2147_JIR_S499512 crossref_primary_10_1080_17477778_2023_2217334 crossref_primary_10_2478_amns_2023_2_00168 crossref_primary_10_3389_fgene_2021_807825 crossref_primary_10_1016_j_mser_2024_100880 crossref_primary_10_3390_jimaging10110265 crossref_primary_10_1186_s12911_025_02959_z crossref_primary_10_1038_s41746_024_01031_w crossref_primary_10_1016_j_jvs_2023_09_037 crossref_primary_10_3390_jpm12091394 crossref_primary_10_1016_j_cej_2025_164149 crossref_primary_10_1007_s11910_023_01318_7 crossref_primary_10_1007_s42979_023_02529_y crossref_primary_10_1016_j_jamda_2023_03_005 crossref_primary_10_1002_jso_27653 crossref_primary_10_1186_s12911_020_1042_2 crossref_primary_10_1186_s12911_024_02543_x crossref_primary_10_1016_j_ijmedinf_2024_105659 crossref_primary_10_1007_s10278_024_01371_9 crossref_primary_10_3390_diagnostics13050961 crossref_primary_10_1097_CIN_0000000000000926 crossref_primary_10_1007_s00520_025_09236_9 crossref_primary_10_3389_fmicb_2022_1002522 crossref_primary_10_3390_cancers15030625 crossref_primary_10_1055_s_0042_1751088 crossref_primary_10_3390_su17125287 crossref_primary_10_1002_ksa_12443 crossref_primary_10_3390_vetsci11030118 crossref_primary_10_1016_j_iswa_2023_200191 crossref_primary_10_1093_comjnl_bxaa006 crossref_primary_10_1002_ijgo_70339 crossref_primary_10_1080_23279095_2024_2392282 crossref_primary_10_1186_s12876_025_03697_2 crossref_primary_10_1136_bmjopen_2020_037269 crossref_primary_10_1186_s12967_024_05935_9 crossref_primary_10_2147_IJGM_S521763 crossref_primary_10_3390_pharmaceutics16020260 crossref_primary_10_1007_s10844_023_00837_6 crossref_primary_10_1016_j_amjsurg_2020_01_043 crossref_primary_10_3390_cancers13133148 crossref_primary_10_1038_s41746_025_01733_9 crossref_primary_10_1177_14604582241307839 crossref_primary_10_3389_fpsyt_2022_1000026 crossref_primary_10_1007_s40012_023_00380_3 crossref_primary_10_1016_j_trac_2025_118162 crossref_primary_10_1038_s41598_025_98869_1 crossref_primary_10_1038_s41598_025_00570_w crossref_primary_10_3389_fmed_2025_1624198 crossref_primary_10_1155_2021_7259414 crossref_primary_10_1016_j_heliyon_2024_e38422 crossref_primary_10_1177_11769351241289719 crossref_primary_10_7861_clinmed_2022_0325 crossref_primary_10_3389_fmed_2021_635771 crossref_primary_10_1016_j_bulcan_2021_12_005 crossref_primary_10_1080_00016489_2023_2201287 crossref_primary_10_3389_fpubh_2025_1558772 crossref_primary_10_3390_diagnostics14070687 crossref_primary_10_1016_j_compbiomed_2021_104632 crossref_primary_10_1155_2023_9507349 crossref_primary_10_1080_26939169_2021_2016036 crossref_primary_10_3390_healthcare11111617 crossref_primary_10_3389_fphys_2022_1060591 crossref_primary_10_1038_s41575_020_0327_3 crossref_primary_10_4103_1673_5374_382228 crossref_primary_10_1186_s12889_024_20028_4 crossref_primary_10_3390_forecast3010012 crossref_primary_10_1080_07853890_2023_2285454 crossref_primary_10_1002_hsr2_71046 crossref_primary_10_1002_mco2_70043 crossref_primary_10_3748_wjg_v30_i5_424 crossref_primary_10_1016_j_tibtech_2019_12_021 crossref_primary_10_1016_j_technovation_2024_103010 crossref_primary_10_1177_09514848231218637 crossref_primary_10_3390_cancers15102741 crossref_primary_10_3390_metabo14060305 crossref_primary_10_3390_pathogens13110940 crossref_primary_10_2147_JHC_S449737 crossref_primary_10_3390_jpm13121625 crossref_primary_10_1016_j_clbc_2023_07_002 crossref_primary_10_1016_j_isci_2024_109081 crossref_primary_10_3390_ijerph18147513 crossref_primary_10_1007_s13042_022_01668_7 crossref_primary_10_1177_01423312241251391 crossref_primary_10_1186_s42836_021_00087_3 |
| Cites_doi | 10.1145/3097983.3098149 10.1002/adtp.201800104 10.1111/j.1365-2753.2011.01720.x 10.1007/978-3-642-22887-2_45 10.1056/NEJM200006223422507 10.1038/s41591-018-0147-y 10.1038/nature14539 10.3389/fneur.2017.00489 10.1056/NEJMsr1503323 10.1377/hlthaff.2014.0041 10.1016/j.cmpb.2018.04.005 10.1038/nature21056 10.1038/s41746-018-0040-6 10.1001/jama.2016.17438 10.1080/17460441.2018.1465407 10.1056/NEJMra1615014 10.1371/journal.pmed.1002674 10.1109/ICASSP.2013.6638947 10.1093/nar/gkh061 10.1109/TMI.2016.2553401 10.1371/journal.pmed.1002686 10.1016/j.artmed.2014.06.004 10.1016/j.ijmedinf.2010.08.006 10.1001/jamaoncol.2015.1203 10.1109/TMI.2016.2526689 10.1126/scitranslmed.aab3719 10.1136/svn-2017-000101 10.1093/jamia/ocy072 10.1007/s11548-017-1627-0 10.1038/nbt.4233 10.21037/qims.2018.03.07 10.7326/M17-3008 10.1126/scitranslmed.aac5954 10.1148/radiol.2018180237 10.1007/s11886-018-0990-y 10.1038/s41591-018-0300-7 10.1073/pnas.1717139115 10.1136/leader-2018-000071 10.1147/rd.33.0210 10.1161/CIRCULATIONAHA.115.001593 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd |
| DBID | AAYXX CITATION NPM 3V. 7RV 7TO 7X7 7XB 88E 8AO 8C1 8C2 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH H94 K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 |
| DOI | 10.1016/S1470-2045(19)30149-4 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Lancet Titles Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) Lancet Titles ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Oncogenes and Growth Factors Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1474-5488 |
| EndPage | e273 |
| ExternalDocumentID | 31044724 10_1016_S1470_2045_19_30149_4 S1470204519301494 |
| Genre | Journal Article Review |
| GeographicLocations | Canada United States--US China Spain |
| GeographicLocations_xml | – name: China – name: Canada – name: Spain – name: United States--US |
| GroupedDBID | --- --K --M -RU .1- .55 .FO 0R~ 123 1B1 1P~ 1~5 29L 4.4 457 4CK 4G. 53G 5VS 6PF 7-5 71M 7RV 7X7 88E 8AO 8C1 8C2 8FI 8FJ AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABMAC ABMZM ABUWG ABWVN ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADMUD ADNMO AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AHMBA AIGII AIIUN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BENPR BKEYQ BKOJK BNPGV BPHCQ BVXVI CCPQU CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-Q GBLVA HMCUK HVGLF HZ~ IHE J1W KOM M1P M41 MO0 N9A NAPCQ O-L O9- OC~ OO- OZT P-8 P-9 P2P PCD PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO R2- ROL RPZ SDG SEL SES SPCBC SSH SSZ T5K TLN UKHRP UV1 WOW X7M XBR Z5R ~HD 3V. AACTN ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW RIG SDF ZA5 9DU AAYXX AFFHD CITATION AFCTW ALIPV NPM 7TO 7XB 8FK H94 K9. PKEHL PQEST PQUKI 7X8 PUEGO |
| ID | FETCH-LOGICAL-c513t-308caf5e1c632cfb86b2175368b17d14329e218cbf4b0df69c3fcf76cc33a9543 |
| IEDL.DBID | 7RV |
| ISICitedReferencesCount | 889 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466380000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1470-2045 1474-5488 |
| IngestDate | Sat Sep 27 21:51:56 EDT 2025 Tue Oct 07 05:39:55 EDT 2025 Thu Apr 03 06:49:37 EDT 2025 Tue Nov 18 21:44:57 EST 2025 Sat Nov 29 07:05:48 EST 2025 Fri Feb 23 02:31:13 EST 2024 Tue Oct 14 19:35:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c513t-308caf5e1c632cfb86b2175368b17d14329e218cbf4b0df69c3fcf76cc33a9543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| PMID | 31044724 |
| PQID | 2217414666 |
| PQPubID | 46089 |
| ParticipantIDs | proquest_miscellaneous_2219002181 proquest_journals_2217414666 pubmed_primary_31044724 crossref_primary_10_1016_S1470_2045_19_30149_4 crossref_citationtrail_10_1016_S1470_2045_19_30149_4 elsevier_sciencedirect_doi_10_1016_S1470_2045_19_30149_4 elsevier_clinicalkey_doi_10_1016_S1470_2045_19_30149_4 |
| PublicationCentury | 2000 |
| PublicationDate | May 2019 2019-05-00 2019-May 20190501 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | The lancet oncology |
| PublicationTitleAlternate | Lancet Oncol |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | (bib53) 2018 Laranjo, Dunn, Tong (bib19) 2018; 25 (bib33) 2017 Ross, Swetlitz (bib49) 2018 Wainberg, Merico, Delong, Frey (bib7) 2018; 36 Bodenreider (bib26) 2004; 32 Graves A, Mohamed A-R, Hinton G. Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada; May 26–31, 2013. Jiang, Jiang, Zhi (bib52) 2017; 2 (bib56) 2012 Zarrinpar, Lee, Silva (bib59) 2016; 8 Greenspan, van Ginneken, Summers (bib31) 2016; 35 Silver DL. Machine lifelong learning: challenges and benefits for artificial general intelligence. Artificial General Intelligence (AGI) 2011; Mountain View, CA, USA; Aug 3–6, 2011. Pantuck, Lee, Kee (bib50) 2018; 1 Zheng KP, Gao J, Ngiam KY, Ooi BC, Yip WLJ. Resolving the bias in electronic medical records. 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining; Halifax, Nova Scotia, Canada; Aug 13–17, 2017. Mazzanti, Shirka, Gjergo, Hasimi (bib8) 2018; 20 Azizi, Bayat, Yan (bib47) 2017; 12 Voelker (bib39) 2018; 320 Nam, Park, Hwang (bib46) 2019; 290 Loh (bib60) 2018; 2 (bib32) 2017 Rajpurkar, Irvin, Ball (bib40) 2018; 15 Esteva, Kuprel, Novoa (bib17) 2017; 542 Henry, Hager, Pronovost, Saria (bib42) 2015; 7 Mobadersany, Yousefi, Amgad (bib48) 2018; 115 Marr (bib38) Jan 20, 2017 Kantarjian, Yu (bib6) 2015; 1 Hainc, Federau, Stieltjes, Blatow, Bink, Stippich (bib10) 2017; 8 Kerlikowske, Scott, Mahmoudzadeh (bib44) 2018; 168 van Grinsven, van Ginneken, Hoyng, Theelen, Sanchez (bib24) 2016; 35 Concato, Shah, Horwitz (bib14) 2000; 342 Ekeland, Bowes, Flottorp (bib15) 2010; 79 Faust, Hagiwara, Hong, Lih, Acharya (bib4) 2018; 161 Wang, Peng, Chang, Liang (bib23) 2018; 8 (bib55) 2019 Samuel (bib1) 1959; 3 (bib51) 2018 Gawehn, Hiss, Brown, Schneider (bib21) 2018; 13 (bib45) Feb 19, 2018 Marcus (bib27) 2018 Kowatsch T, Nissen M, Chen-Hsuan IS, et al. Text-based healthcare chatbots supporting patient and health professional teams: preliminary results of a randomized controlled trial on childhood obesity. Persuasive Embodied Agents for Behavior Change (PEACH2017) Workshop, co-located with the 17th International Conference on Intelligent Virtual Agents (IVA 2017); Stockholm, Sweden; Aug 27–30, 2017. Haendel, Chute, Robinson (bib25) 2018; 379 Daniel, Silcox, Sharma, Wright (bib62) 2019 McNair, Ottley (bib61) 1996; 10 LeCun, Bengio, Hinton (bib2) 2015; 521 Obeid NM, Atkinson IC, Thulborn KR, Hwu W-MW. GPU-accelerated gridding for rapid reconstruction of non-cartesian MRI. 19th Annual International Society for Magnetic Resonance in Medicine (ISMRM) Scientific Meeting and Exhibition 2011; Montreal, QC, Canada; May 7–13, 2011. Henry, Wongvibulsin, Zhan, Saria, Hager (bib43) 2017; 195 (bib58) 2017 Abràmoff, Lavin, Birch, Shahm, Folk (bib36) 2018; 1 (bib9) January 2019 (bib57) 2015 Tuckson, Edmunds, Hodgkins (bib16) 2017; 377 Lin, Long, Ding (bib37) 2018; 15 Topol (bib11) 2019; 25 Titano, Badgeley, Schefflein (bib41) 2018; 24 Bates, Saria, Ohno-Machado, Shah, Escobar (bib3) 2014; 33 Gelhaus (bib12) 2011; 17 Kuo (bib28) 2016 Luxton (bib13) 2014; 62 Jha, Topol (bib5) 2016; 316 (bib54) 2018 Gepperth A, Hammer B. Incremental learning algorithms and applications. European Symposium on Artificial Neural Networks (ESANN) 2016; Bruges, Belgium; April 27–29, 2016. Deo (bib29) 2015; 132 Kerlikowske (10.1016/S1470-2045(19)30149-4_bib44) 2018; 168 Mobadersany (10.1016/S1470-2045(19)30149-4_bib48) 2018; 115 (10.1016/S1470-2045(19)30149-4_bib57) 2015 Henry (10.1016/S1470-2045(19)30149-4_bib42) 2015; 7 Bodenreider (10.1016/S1470-2045(19)30149-4_bib26) 2004; 32 (10.1016/S1470-2045(19)30149-4_bib9) 2019 Marcus (10.1016/S1470-2045(19)30149-4_bib27) Greenspan (10.1016/S1470-2045(19)30149-4_bib31) 2016; 35 Kuo (10.1016/S1470-2045(19)30149-4_bib28) Titano (10.1016/S1470-2045(19)30149-4_bib41) 2018; 24 Rajpurkar (10.1016/S1470-2045(19)30149-4_bib40) 2018; 15 Nam (10.1016/S1470-2045(19)30149-4_bib46) 2019; 290 Daniel (10.1016/S1470-2045(19)30149-4_bib62) Bates (10.1016/S1470-2045(19)30149-4_bib3) 2014; 33 Jiang (10.1016/S1470-2045(19)30149-4_bib52) 2017; 2 Zarrinpar (10.1016/S1470-2045(19)30149-4_bib59) 2016; 8 Henry (10.1016/S1470-2045(19)30149-4_bib43) 2017; 195 10.1016/S1470-2045(19)30149-4_bib20 Marr (10.1016/S1470-2045(19)30149-4_bib38) 2017 10.1016/S1470-2045(19)30149-4_bib22 (10.1016/S1470-2045(19)30149-4_bib58) 2017 Loh (10.1016/S1470-2045(19)30149-4_bib60) 2018; 2 Abràmoff (10.1016/S1470-2045(19)30149-4_bib36) 2018; 1 10.1016/S1470-2045(19)30149-4_bib18 Deo (10.1016/S1470-2045(19)30149-4_bib29) 2015; 132 (10.1016/S1470-2045(19)30149-4_bib51) 2018 Mazzanti (10.1016/S1470-2045(19)30149-4_bib8) 2018; 20 Jha (10.1016/S1470-2045(19)30149-4_bib5) 2016; 316 Concato (10.1016/S1470-2045(19)30149-4_bib14) 2000; 342 Esteva (10.1016/S1470-2045(19)30149-4_bib17) 2017; 542 Kantarjian (10.1016/S1470-2045(19)30149-4_bib6) 2015; 1 Wang (10.1016/S1470-2045(19)30149-4_bib23) 2018; 8 Pantuck (10.1016/S1470-2045(19)30149-4_bib50) 2018; 1 Lin (10.1016/S1470-2045(19)30149-4_bib37) 2018; 15 (10.1016/S1470-2045(19)30149-4_bib32) 2017 Wainberg (10.1016/S1470-2045(19)30149-4_bib7) 2018; 36 Faust (10.1016/S1470-2045(19)30149-4_bib4) 2018; 161 (10.1016/S1470-2045(19)30149-4_bib55) 2019 Laranjo (10.1016/S1470-2045(19)30149-4_bib19) 2018; 25 McNair (10.1016/S1470-2045(19)30149-4_bib61) 1996; 10 van Grinsven (10.1016/S1470-2045(19)30149-4_bib24) 2016; 35 (10.1016/S1470-2045(19)30149-4_bib33) 2017 Azizi (10.1016/S1470-2045(19)30149-4_bib47) 2017; 12 Samuel (10.1016/S1470-2045(19)30149-4_bib1) 1959; 3 Gawehn (10.1016/S1470-2045(19)30149-4_bib21) 2018; 13 Hainc (10.1016/S1470-2045(19)30149-4_bib10) 2017; 8 Tuckson (10.1016/S1470-2045(19)30149-4_bib16) 2017; 377 (10.1016/S1470-2045(19)30149-4_bib56) 2012 Gelhaus (10.1016/S1470-2045(19)30149-4_bib12) 2011; 17 Ekeland (10.1016/S1470-2045(19)30149-4_bib15) 2010; 79 Voelker (10.1016/S1470-2045(19)30149-4_bib39) 2018; 320 Topol (10.1016/S1470-2045(19)30149-4_bib11) 2019; 25 10.1016/S1470-2045(19)30149-4_bib30 Haendel (10.1016/S1470-2045(19)30149-4_bib25) 2018; 379 Luxton (10.1016/S1470-2045(19)30149-4_bib13) 2014; 62 10.1016/S1470-2045(19)30149-4_bib35 Ross (10.1016/S1470-2045(19)30149-4_bib49) LeCun (10.1016/S1470-2045(19)30149-4_bib2) 2015; 521 10.1016/S1470-2045(19)30149-4_bib34 |
| References_xml | – year: 2012 ident: bib56 article-title: Personal Data Protection Act 2012 – year: 2017 ident: bib32 article-title: Changes to existing medical software policies resulting from section 3060 of the 21st Century Cures Act: draft guidance for industry and Food and Drug Administration staff – volume: 115 start-page: E2970 year: 2018 end-page: E2979 ident: bib48 article-title: Predicting cancer outcomes from histology and genomics using convolutional networks publication-title: Proc Natl Acad Sci USA – volume: 33 start-page: 1123 year: 2014 end-page: 1131 ident: bib3 article-title: Big data in health care: using analytics to identify and manage high-risk and high-cost patients publication-title: Health Aff (Millwood) – year: 2017 ident: bib33 article-title: Software as a medical device (SAMD): clinical evaluation. Guidance for industry and Food and Drug Administration staff – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib2 article-title: Deep learning publication-title: Nature – year: 2018 ident: bib54 article-title: One of the largest AI platforms in healthcare is one you've never heard of, until now. The Pulse – year: 2015 ident: bib57 article-title: Human Biomedical Research Act 2015 – year: 2016 ident: bib28 article-title: Understanding convolutional neural networks with a mathematical model – volume: 195 start-page: A7016 year: 2017 ident: bib43 article-title: Can septic shock be identified early? Evaluating performance of a targeted real-time early warning score (TREWScore) for septic shock in a community hospital: global and subpopulation performance publication-title: Am J Resp Crit Care Med – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bib17 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – year: 2018 ident: bib27 article-title: Deep learning: a critical appraisal – volume: 35 start-page: 1153 year: 2016 end-page: 1159 ident: bib31 article-title: Deep learning in medical imaging: overview and future promise of an exciting new technique publication-title: IEEE Trans Med Imag – year: 2018 ident: bib49 article-title: IBM's Watson supercomputer recommended ‘unsafe and incorrect’ cancer treatments, internal documents show. STAT – volume: 290 start-page: 218 year: 2019 end-page: 228 ident: bib46 article-title: Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs publication-title: Radiology – volume: 25 start-page: 44 year: 2019 end-page: 56 ident: bib11 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat Med – volume: 342 start-page: 1887 year: 2000 end-page: 1892 ident: bib14 article-title: Randomized, controlled trials, observational studies, and the hierarchy of research designs publication-title: N Engl J Med – reference: Silver DL. Machine lifelong learning: challenges and benefits for artificial general intelligence. Artificial General Intelligence (AGI) 2011; Mountain View, CA, USA; Aug 3–6, 2011. – year: January 2019 ident: bib9 article-title: A Proposed model artificial intelligence governance framework – volume: 17 start-page: 883 year: 2011 end-page: 887 ident: bib12 article-title: Robot decisions: on the importance of virtuous judgment in clinical decision making publication-title: J Eval Clin Pract – year: 2019 ident: bib55 article-title: Predictive maintenance of medical devices based on years of experience and advanced analytics – volume: 132 start-page: 1920 year: 2015 end-page: 1930 ident: bib29 article-title: Machine learning in medicine publication-title: Circulation – volume: 377 start-page: 1585 year: 2017 end-page: 1592 ident: bib16 article-title: Telehealth publication-title: N Engl J Med – volume: 379 start-page: 1452 year: 2018 end-page: 1462 ident: bib25 article-title: Classification, ontology, and precision medicine publication-title: N Engl J Med – year: 2018 ident: bib51 article-title: FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems – volume: 3 start-page: 210 year: 1959 end-page: 229 ident: bib1 article-title: Some studies in machine learning using the game of checkers publication-title: IBM J Res Dev – volume: 8 start-page: 489 year: 2017 ident: bib10 article-title: The bright, artificial intelligence-augmented future of neuroimaging reading publication-title: Front Neurol – volume: 15 start-page: e1002686 year: 2018 ident: bib40 article-title: Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists publication-title: PLoS Med – volume: 36 start-page: 829 year: 2018 end-page: 838 ident: bib7 article-title: Deep learning in biomedicine publication-title: Nat Biotechnol – year: 2019 ident: bib62 article-title: Current state and near-term priorities for AI-enabled diagnostic support software in health care. Margolis Center for Health Policy – volume: 168 start-page: 757 year: 2018 end-page: 765 ident: bib44 article-title: Automated and clinical breast imaging reporting and data system density measures predict risk for screen-detected and interval cancers: a case-control study publication-title: Ann Intern Med – volume: 25 start-page: 1248 year: 2018 end-page: 1258 ident: bib19 article-title: Conversational agents in healthcare: a systematic review publication-title: J Am Med Inform Assoc – volume: 8 start-page: 333ra49 year: 2016 ident: bib59 article-title: Individualizing liver transplant immunosuppression using a phenotypic personalized medicine platform publication-title: Sci Transl Med – year: 2018 ident: bib53 article-title: Philips launches AI platform for healthcare. Philips – volume: 24 start-page: 1337 year: 2018 end-page: 1341 ident: bib41 article-title: Automated deep-neural-network surveillance of cranial images for acute neurologic events publication-title: Nat Med – volume: 2 start-page: 59 year: 2018 end-page: 63 ident: bib60 article-title: Medicine and the rise of the robots: a qualitative review of recent advances of artificial intelligence in health publication-title: BMJ Leader – volume: 161 start-page: 1 year: 2018 end-page: 13 ident: bib4 article-title: Deep learning for healthcare applications based on physiological signals: a review publication-title: Comput Methods Programs Biomed – reference: Kowatsch T, Nissen M, Chen-Hsuan IS, et al. Text-based healthcare chatbots supporting patient and health professional teams: preliminary results of a randomized controlled trial on childhood obesity. Persuasive Embodied Agents for Behavior Change (PEACH2017) Workshop, co-located with the 17th International Conference on Intelligent Virtual Agents (IVA 2017); Stockholm, Sweden; Aug 27–30, 2017. – volume: 32 start-page: D267 year: 2004 end-page: D270 ident: bib26 article-title: The Unified Medical Language System (UMLS): integrating biomedical terminology publication-title: Nucleic Acids Res – volume: 1 start-page: 39 year: 2018 ident: bib36 article-title: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices publication-title: npj Digit Med – volume: 10 start-page: 18 year: 1996 end-page: 20 ident: bib61 article-title: Negligence: who is the umpire publication-title: J Med Defence Union – volume: 35 start-page: 1273 year: 2016 end-page: 1284 ident: bib24 article-title: Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images publication-title: IEEE Trans Med Imag – year: Feb 19, 2018 ident: bib45 article-title: Arterys FDA clearance for Liver AI and Lung AI lesion spotting software. – volume: 8 start-page: 196 year: 2018 end-page: 208 ident: bib23 article-title: A survey of GPU-based acceleration techniques in MRI reconstructions publication-title: Quant Imaging Med Surg – reference: Zheng KP, Gao J, Ngiam KY, Ooi BC, Yip WLJ. Resolving the bias in electronic medical records. 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining; Halifax, Nova Scotia, Canada; Aug 13–17, 2017. – volume: 13 start-page: 579 year: 2018 end-page: 582 ident: bib21 article-title: Advancing drug discovery via GPU-based deep learning publication-title: Expert Opin Drug Discov – reference: Gepperth A, Hammer B. Incremental learning algorithms and applications. European Symposium on Artificial Neural Networks (ESANN) 2016; Bruges, Belgium; April 27–29, 2016. – year: 2017 ident: bib58 article-title: Human Biomedical Research Regulations 2017 – reference: Graves A, Mohamed A-R, Hinton G. Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada; May 26–31, 2013. – volume: 12 start-page: 1293 year: 2017 end-page: 1305 ident: bib47 article-title: Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations publication-title: Int J Comput Assist Radiol Surg – volume: 62 start-page: 1 year: 2014 end-page: 10 ident: bib13 article-title: Recommendations for the ethical use and design of artificial intelligent care providers publication-title: Artif Intell Med – volume: 1 start-page: 573 year: 2015 end-page: 574 ident: bib6 article-title: Artificial intelligence, big data, and cancer publication-title: JAMA Oncol – year: Jan 20, 2017 ident: bib38 article-title: First FDA approval for clinical cloud-based deep learning in healthcare – volume: 316 start-page: 2353 year: 2016 end-page: 2354 ident: bib5 article-title: Adapting to artificial intelligence: radiologists and pathologists as information specialists publication-title: JAMA – volume: 1 start-page: 1800104 year: 2018 ident: bib50 article-title: Modulating BET bromodomain inhibitor ZEN-3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using CURATE.AI, an artificial intelligence platform publication-title: Adv Therap – volume: 79 start-page: 736 year: 2010 end-page: 771 ident: bib15 article-title: Effectiveness of telemedicine: a systematic review of reviews publication-title: Int J Med Inform – volume: 15 start-page: e1002674 year: 2018 ident: bib37 article-title: Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: a retrospective, multicentre machine learning study publication-title: PLoS Med – reference: Obeid NM, Atkinson IC, Thulborn KR, Hwu W-MW. GPU-accelerated gridding for rapid reconstruction of non-cartesian MRI. 19th Annual International Society for Magnetic Resonance in Medicine (ISMRM) Scientific Meeting and Exhibition 2011; Montreal, QC, Canada; May 7–13, 2011. – volume: 320 start-page: 23 year: 2018 ident: bib39 article-title: Diagnosing fractures with AI publication-title: JAMA – volume: 20 start-page: 48 year: 2018 ident: bib8 article-title: Imaging, health record, and artificial intelligence: hype or hope? publication-title: Curr Cardiol Rep – volume: 2 start-page: 230 year: 2017 end-page: 243 ident: bib52 article-title: Artificial intelligence in healthcare: past, present and future publication-title: Stroke Vasc Neurol – volume: 7 start-page: 299ra122 year: 2015 ident: bib42 article-title: A targeted real-time early warning score (TREWScore) for septic shock publication-title: Sci Transl Med – ident: 10.1016/S1470-2045(19)30149-4_bib20 doi: 10.1145/3097983.3098149 – volume: 1 start-page: 1800104 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib50 article-title: Modulating BET bromodomain inhibitor ZEN-3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using CURATE.AI, an artificial intelligence platform publication-title: Adv Therap doi: 10.1002/adtp.201800104 – volume: 17 start-page: 883 year: 2011 ident: 10.1016/S1470-2045(19)30149-4_bib12 article-title: Robot decisions: on the importance of virtuous judgment in clinical decision making publication-title: J Eval Clin Pract doi: 10.1111/j.1365-2753.2011.01720.x – year: 2015 ident: 10.1016/S1470-2045(19)30149-4_bib57 – year: 2017 ident: 10.1016/S1470-2045(19)30149-4_bib38 – ident: 10.1016/S1470-2045(19)30149-4_bib35 doi: 10.1007/978-3-642-22887-2_45 – volume: 342 start-page: 1887 year: 2000 ident: 10.1016/S1470-2045(19)30149-4_bib14 article-title: Randomized, controlled trials, observational studies, and the hierarchy of research designs publication-title: N Engl J Med doi: 10.1056/NEJM200006223422507 – volume: 24 start-page: 1337 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib41 article-title: Automated deep-neural-network surveillance of cranial images for acute neurologic events publication-title: Nat Med doi: 10.1038/s41591-018-0147-y – volume: 521 start-page: 436 year: 2015 ident: 10.1016/S1470-2045(19)30149-4_bib2 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 195 start-page: A7016 year: 2017 ident: 10.1016/S1470-2045(19)30149-4_bib43 article-title: Can septic shock be identified early? Evaluating performance of a targeted real-time early warning score (TREWScore) for septic shock in a community hospital: global and subpopulation performance publication-title: Am J Resp Crit Care Med – year: 2019 ident: 10.1016/S1470-2045(19)30149-4_bib55 – volume: 8 start-page: 489 year: 2017 ident: 10.1016/S1470-2045(19)30149-4_bib10 article-title: The bright, artificial intelligence-augmented future of neuroimaging reading publication-title: Front Neurol doi: 10.3389/fneur.2017.00489 – ident: 10.1016/S1470-2045(19)30149-4_bib18 – year: 2017 ident: 10.1016/S1470-2045(19)30149-4_bib33 – volume: 377 start-page: 1585 year: 2017 ident: 10.1016/S1470-2045(19)30149-4_bib16 article-title: Telehealth publication-title: N Engl J Med doi: 10.1056/NEJMsr1503323 – volume: 33 start-page: 1123 year: 2014 ident: 10.1016/S1470-2045(19)30149-4_bib3 article-title: Big data in health care: using analytics to identify and manage high-risk and high-cost patients publication-title: Health Aff (Millwood) doi: 10.1377/hlthaff.2014.0041 – volume: 161 start-page: 1 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib4 article-title: Deep learning for healthcare applications based on physiological signals: a review publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.04.005 – volume: 542 start-page: 115 year: 2017 ident: 10.1016/S1470-2045(19)30149-4_bib17 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 1 start-page: 39 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib36 article-title: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices publication-title: npj Digit Med doi: 10.1038/s41746-018-0040-6 – volume: 316 start-page: 2353 year: 2016 ident: 10.1016/S1470-2045(19)30149-4_bib5 article-title: Adapting to artificial intelligence: radiologists and pathologists as information specialists publication-title: JAMA doi: 10.1001/jama.2016.17438 – volume: 13 start-page: 579 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib21 article-title: Advancing drug discovery via GPU-based deep learning publication-title: Expert Opin Drug Discov doi: 10.1080/17460441.2018.1465407 – volume: 379 start-page: 1452 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib25 article-title: Classification, ontology, and precision medicine publication-title: N Engl J Med doi: 10.1056/NEJMra1615014 – volume: 15 start-page: e1002674 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib37 article-title: Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: a retrospective, multicentre machine learning study publication-title: PLoS Med doi: 10.1371/journal.pmed.1002674 – year: 2017 ident: 10.1016/S1470-2045(19)30149-4_bib58 – ident: 10.1016/S1470-2045(19)30149-4_bib28 – ident: 10.1016/S1470-2045(19)30149-4_bib30 doi: 10.1109/ICASSP.2013.6638947 – volume: 32 start-page: D267 year: 2004 ident: 10.1016/S1470-2045(19)30149-4_bib26 article-title: The Unified Medical Language System (UMLS): integrating biomedical terminology publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh061 – year: 2017 ident: 10.1016/S1470-2045(19)30149-4_bib32 – volume: 35 start-page: 1153 year: 2016 ident: 10.1016/S1470-2045(19)30149-4_bib31 article-title: Deep learning in medical imaging: overview and future promise of an exciting new technique publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2016.2553401 – volume: 15 start-page: e1002686 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib40 article-title: Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists publication-title: PLoS Med doi: 10.1371/journal.pmed.1002686 – ident: 10.1016/S1470-2045(19)30149-4_bib34 – ident: 10.1016/S1470-2045(19)30149-4_bib27 – ident: 10.1016/S1470-2045(19)30149-4_bib62 – ident: 10.1016/S1470-2045(19)30149-4_bib49 – volume: 62 start-page: 1 year: 2014 ident: 10.1016/S1470-2045(19)30149-4_bib13 article-title: Recommendations for the ethical use and design of artificial intelligent care providers publication-title: Artif Intell Med doi: 10.1016/j.artmed.2014.06.004 – volume: 79 start-page: 736 year: 2010 ident: 10.1016/S1470-2045(19)30149-4_bib15 article-title: Effectiveness of telemedicine: a systematic review of reviews publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2010.08.006 – volume: 1 start-page: 573 year: 2015 ident: 10.1016/S1470-2045(19)30149-4_bib6 article-title: Artificial intelligence, big data, and cancer publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2015.1203 – volume: 35 start-page: 1273 year: 2016 ident: 10.1016/S1470-2045(19)30149-4_bib24 article-title: Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2016.2526689 – volume: 7 start-page: 299ra122 year: 2015 ident: 10.1016/S1470-2045(19)30149-4_bib42 article-title: A targeted real-time early warning score (TREWScore) for septic shock publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aab3719 – volume: 2 start-page: 230 year: 2017 ident: 10.1016/S1470-2045(19)30149-4_bib52 article-title: Artificial intelligence in healthcare: past, present and future publication-title: Stroke Vasc Neurol doi: 10.1136/svn-2017-000101 – volume: 10 start-page: 18 year: 1996 ident: 10.1016/S1470-2045(19)30149-4_bib61 article-title: Negligence: who is the umpire publication-title: J Med Defence Union – volume: 25 start-page: 1248 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib19 article-title: Conversational agents in healthcare: a systematic review publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocy072 – volume: 12 start-page: 1293 year: 2017 ident: 10.1016/S1470-2045(19)30149-4_bib47 article-title: Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-017-1627-0 – volume: 320 start-page: 23 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib39 article-title: Diagnosing fractures with AI publication-title: JAMA – volume: 36 start-page: 829 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib7 article-title: Deep learning in biomedicine publication-title: Nat Biotechnol doi: 10.1038/nbt.4233 – volume: 8 start-page: 196 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib23 article-title: A survey of GPU-based acceleration techniques in MRI reconstructions publication-title: Quant Imaging Med Surg doi: 10.21037/qims.2018.03.07 – volume: 168 start-page: 757 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib44 article-title: Automated and clinical breast imaging reporting and data system density measures predict risk for screen-detected and interval cancers: a case-control study publication-title: Ann Intern Med doi: 10.7326/M17-3008 – volume: 8 start-page: 333ra49 year: 2016 ident: 10.1016/S1470-2045(19)30149-4_bib59 article-title: Individualizing liver transplant immunosuppression using a phenotypic personalized medicine platform publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aac5954 – year: 2012 ident: 10.1016/S1470-2045(19)30149-4_bib56 – volume: 290 start-page: 218 year: 2019 ident: 10.1016/S1470-2045(19)30149-4_bib46 article-title: Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs publication-title: Radiology doi: 10.1148/radiol.2018180237 – volume: 20 start-page: 48 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib8 article-title: Imaging, health record, and artificial intelligence: hype or hope? publication-title: Curr Cardiol Rep doi: 10.1007/s11886-018-0990-y – volume: 25 start-page: 44 year: 2019 ident: 10.1016/S1470-2045(19)30149-4_bib11 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat Med doi: 10.1038/s41591-018-0300-7 – ident: 10.1016/S1470-2045(19)30149-4_bib22 – volume: 115 start-page: E2970 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib48 article-title: Predicting cancer outcomes from histology and genomics using convolutional networks publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1717139115 – volume: 2 start-page: 59 year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib60 article-title: Medicine and the rise of the robots: a qualitative review of recent advances of artificial intelligence in health publication-title: BMJ Leader doi: 10.1136/leader-2018-000071 – volume: 3 start-page: 210 year: 1959 ident: 10.1016/S1470-2045(19)30149-4_bib1 article-title: Some studies in machine learning using the game of checkers publication-title: IBM J Res Dev doi: 10.1147/rd.33.0210 – volume: 132 start-page: 1920 year: 2015 ident: 10.1016/S1470-2045(19)30149-4_bib29 article-title: Machine learning in medicine publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.001593 – year: 2019 ident: 10.1016/S1470-2045(19)30149-4_bib9 – year: 2018 ident: 10.1016/S1470-2045(19)30149-4_bib51 |
| SSID | ssj0017105 |
| Score | 2.7160597 |
| SecondaryResourceType | review_article |
| Snippet | Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However,... Summary Analysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data.... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e262 |
| SubjectTerms | Algorithms Artificial intelligence Biomarkers Biopsy Clinical medicine Clinical trials Colonoscopy Colorectal cancer Datasets Diagnosis Electronic health records Health care delivery Histology Learning algorithms Lung cancer Medical imaging Medical screening Melanoma Neural networks Oncology Pancreatic cancer Physicians Population Prostate cancer Skin cancer Vision systems |
| Title | Big data and machine learning algorithms for health-care delivery |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1470204519301494 https://dx.doi.org/10.1016/S1470-2045(19)30149-4 https://www.ncbi.nlm.nih.gov/pubmed/31044724 https://www.proquest.com/docview/2217414666 https://www.proquest.com/docview/2219002181 |
| Volume | 20 |
| WOSCitedRecordID | wos000466380000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health Medical collection customDbUrl: eissn: 1474-5488 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0017105 issn: 1470-2045 databaseCode: 7X7 dateStart: 20000901 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1474-5488 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0017105 issn: 1470-2045 databaseCode: 7RV dateStart: 20000901 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1474-5488 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0017105 issn: 1470-2045 databaseCode: BENPR dateStart: 20000901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1474-5488 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0017105 issn: 1470-2045 databaseCode: 8C1 dateStart: 20000901 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RqKpeWvpkKUWu1EN7cElix48TAgTiwgoBrfZmJRN7i7RkgV0q9d_XdpxwolTqxYckYyUZe-az5_MMwGeLtUaOgmpkSHnjJK1slVFVFqVlStRWNLHYhByP1WSiT9OG2yLRKnubGA11M8ewR75TBOzsp7UQu9c3NFSNCtHVVELjCazlwXf78SzPfgxRBNlRGHMuMxrSrt-f4Nk5Hy5-yfXXsK7QlD_kmx7CntEHHb3837dfhxcJfZK9bri8ghXbvoZnJym-_gb29i-nJJBGSdU25CoSLS1JlSWmpJpNfafLn1cL4rEu6c5Q0kAeI42dBYbH77fw_ejw4uCYpiILFMucLSnLFFautDkKVqCrvXqKkL1TqDqXjUdThbYeBmDteJ01TnidOnRSIDJW6ZKzd7Dazlu7AcS7emWlli6u0pzVjiEr6sz35DyOcCPg_e81mDKQh0IYMzNQzYJWTNCKybWJWjF8BN8GsesuBcdjAqLXnenPl3qLaLyTeExQDYIJgHTA4l9Et3rFm2QFFuZe6yP4NNz28zcEZarWzu_iM7oDWiN43w2u4Ss99OZcFnzz751_gOcexumOhrkFq8vbO_sRnuKv5eXidjtOidBOZGyVb9VBvg1r-4fj07M_vewPzw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgoBL-S5LCxgJJDiYJrZjxweEykfVqu0KiSLtzSSOva20zZbuFtQ_1d_YcZykp1IuPXBNMlYcP4_fxG88AK-dLbUVVlJtuaWi8ooWrkhonrHM8VyWTlZNsQk1HOajkf62AGddLkyQVXY-sXHU1dSGf-RrLHBnnNZSfjz6RUPVqLC72pXQiLDYdqd_MGSbfdj6guP7hrGNr3ufN2lbVYDaLOVzypPcFj5zqZWcWV_i-7BwXKXMy1RVSB-Ydrju2dKLMqm8xE5465W0lvNCZ4JjuzfgJvpxFSRkatQHeKmKkslUqISGY94vMobWvvcX36b6XYhjNBWXrYWXcd1mzdu49799rfuw1LJrsh6nwwNYcPVDuL3b6gcewfqngzEJolhS1BU5bISkjrSVM8akmIyxE_P9wxlBLk9ijigN4jhSuUlQsJw-hh_X0oEnsFhPa_cUCFKZ3CmtfBOFeqc9t5yVCbbkkSf5AYhuOI1tT1gPhT4mppfSBRSYgAKTatOgwIgBvO_NjuIRI1cZyA4rpsufRY9vcBG8yjDvDVuCFYnTv5iudkAzrZebmQuUDeBVfxv9U9h0Kmo3PWme0ZFIDmA5grnvJYYWQigmnv298ZdwZ3Nvd8fsbA23V-AuUlYdJaersDg_PnHP4Zb9PT-YHb9opiOBn9eN6HNQsGiX |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgioulG-WFjASSHAwm9iOHR8QKpQVVWFVCZD2ZhLHXipts6W7BfWv9dd1HCfpqZRLD1yTjBXHz5438RsPwAtnS22FlVRbbqmovKKFKxKaZyxzPJelk1VTbEKNx_lkovdW4LTLhQmyym5NbBbqam7DP_IhC9wZp7WUQ9_KIva2R-8Of9FQQSrstHblNCJEdt3JHwzfFm93tnGsXzI2-vjtwyfaVhigNkv5kvIkt4XPXGolZ9aX-G4sHF0p8zJVFVIJph36QFt6USaVl9ghb72S1nJe6ExwbPcaXFecq1A2Qk36YC9VUT6ZCpXQcOT7efbQ8Gt_8VWqX4eYRlNxkV-8iPc2_m-0_j9_udtwq2XdZCtOkzuw4uq7sPal1RXcg633-1MSxLKkqCty0AhMHWkrakxJMZtiJ5Y_DxYEOT6JuaM0iOZI5WZB2XJyH75fSQcewGo9r90jIEhxcqe08k106p323HJWJtiSR_7kByC6oTW2PXk9FACZmV5iFxBhAiJMqk2DCCMG8KY3O4xHj1xmIDvcmC6vFj2BQed4mWHeG7bEKxKqfzHd7EBn2tVvYc4RN4Dn_W1ct8JmVFG7-XHzjI4EcwAPI7D7XmLIIYRi4vHfG38Gawhk83lnvLsBN5HJ6qhE3YTV5dGxewI37O_l_uLoaTMzCfy4akCfAU2YcUs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+data+and+machine+learning+algorithms+for+health-care+delivery&rft.jtitle=The+lancet+oncology&rft.au=Kee+Yuan+Ngiam&rft.au=Ing+Wei+Khor&rft.date=2019-05-01&rft.pub=Elsevier+Limited&rft.issn=1470-2045&rft.eissn=1474-5488&rft.volume=20&rft.issue=5&rft.spage=e262&rft_id=info:doi/10.1016%2FS1470-2045%2819%2930149-4&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-2045&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-2045&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-2045&client=summon |