Convex Optimization, Shape Constraints, Compound Decisions, and Empirical Bayes Rules

Estimation of mixture densities for the classical Gaussian compound decision problem and their associated (empirical) Bayes rules is considered from two new perspectives. The first, motivated by Brown and Greenshtein, introduces a nonparametric maximum likelihood estimator of the mixture density sub...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association Vol. 109; no. 506; pp. 674 - 685
Main Authors: Koenker, Roger, Mizera, Ivan
Format: Journal Article
Language:English
Published: Alexandria Taylor & Francis 01.06.2014
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Subjects:
ISSN:1537-274X, 0162-1459, 1537-274X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Estimation of mixture densities for the classical Gaussian compound decision problem and their associated (empirical) Bayes rules is considered from two new perspectives. The first, motivated by Brown and Greenshtein, introduces a nonparametric maximum likelihood estimator of the mixture density subject to a monotonicity constraint on the resulting Bayes rule. The second, motivated by Jiang and Zhang, proposes a new approach to computing the Kiefer–Wolfowitz nonparametric maximum likelihood estimator for mixtures. In contrast to prior methods for these problems, our new approaches are cast as convex optimization problems that can be efficiently solved by modern interior point methods. In particular, we show that the reformulation of the Kiefer–Wolfowitz estimator as a convex optimization problem reduces the computational effort by several orders of magnitude for typical problems , by comparison to prior EM-algorithm based methods, and thus greatly expands the practical applicability of the resulting methods. Our new procedures are compared with several existing empirical Bayes methods in simulations employing the well-established design of Johnstone and Silverman. Some further comparisons are made based on prediction of baseball batting averages. A Bernoulli mixture application is briefly considered in the penultimate section.
AbstractList Estimation of mixture densities for the classical Gaussian compound decision problem and their associated (empirical) Bayes rules is considered from two new perspectives. The first, motivated by Brown and Greenshtein, introduces a nonparametric maximum likelihood estimator of the mixture density subject to a monotonicity constraint on the resulting Bayes rule. The second, motivated by Jiang and Zhang, proposes a new approach to computing the Kiefer-Wolfowitz nonparametric maximum likelihood estimator for mixtures. In contrast to prior methods for these problems, our new approaches are cast as convex optimization problems that can be efficiently solved by modern interior point methods. In particular, we show that the reformulation of the Kiefer-Wolfowitz estimator as a convex optimization problem reduces the computational effort by several orders of magnitude for typical problems, by comparison to prior EM-algorithm based methods, and thus greatly expands the practical applicability of the resulting methods. Our new procedures are compared with several existing empirical Bayes methods in simulations employing the well-established design of Johnstone and Silverman. Some further comparisons are made based on prediction of baseball batting averages. A Bernoulli mixture application is briefly considered in the penultimate section.
Author Koenker, Roger
Mizera, Ivan
Author_xml – sequence: 1
  givenname: Roger
  surname: Koenker
  fullname: Koenker, Roger
– sequence: 2
  givenname: Ivan
  surname: Mizera
  fullname: Mizera, Ivan
BookMark eNqFkk1v1DAQhiPUSvSDfwAiEhcO3cUfseNwQbAttFKlSpSVuFmzzhi8SuxgJ8D21-MlgFAv9cUznvedsR77uDjwwWNRPKVkSYkirwiVjFaiWTJC-VLJhrHqUXFEBa8XrK4-H_wXPy6OU9qSvGqljor1Kvjv-LO8GUbXuzsYXfBn5e1XGLDMpTRGcH5MZznphzD5tjxH41JW5TPI6UU_uOgMdOU72GEqP04dptPi0EKX8Mmf_aRYv7_4tLpcXN98uFq9vV4YQfm4YHxjDTWAFTbYAjQWJfK6pi2KxnCKNke4UYACuDQt3QAQK5AqSRQXLT8pXs59hxi-TZhG3btksOvAY5iSpopwohjnMktf3JNuwxR9vp2mUhFG6gwwq6pZZWJIKaLVQ3Q9xJ2mRO9Z67-s9Z61nlln2-t7NuPG3yz3_LqHzM9m8zaNIf4byCpW1bQRuf5mrjtvQ-zhR4hdq0fYdSHaCD4_h-YPTHg-d7AQNHyJ2bC-zQKZf4ESkhH-C_F0rJo
CODEN JSTNAL
CitedBy_id crossref_primary_10_1080_01621459_2022_2093729
crossref_primary_10_1017_S0266466617000299
crossref_primary_10_1080_01621459_2020_1802284
crossref_primary_10_1214_19_STS707
crossref_primary_10_1214_24_BA1496
crossref_primary_10_1214_19_STS706
crossref_primary_10_1214_24_BA1498
crossref_primary_10_1093_biomet_asv067
crossref_primary_10_1016_j_csda_2018_01_006
crossref_primary_10_1111_insr_12098
crossref_primary_10_1080_01621459_2021_2008403
crossref_primary_10_1080_01621459_2024_2421994
crossref_primary_10_1111_obes_12400
crossref_primary_10_1002_sta4_38
crossref_primary_10_1257_aer_20230700
crossref_primary_10_1002_sim_70195
crossref_primary_10_1186_s13059_021_02418_8
crossref_primary_10_1080_07350015_2015_1052457
crossref_primary_10_1214_20_AOS1950
crossref_primary_10_1016_j_optlastec_2023_110139
crossref_primary_10_1111_sjos_12778
crossref_primary_10_1214_19_STS754
crossref_primary_10_1214_22_AOS2207
crossref_primary_10_1111_biom_12619
crossref_primary_10_1093_jrsssb_qkae040
crossref_primary_10_1002_sam_11689
crossref_primary_10_1002_jae_2530
crossref_primary_10_1111_rssb_12490
crossref_primary_10_1214_19_STS709
crossref_primary_10_1214_19_STS708
crossref_primary_10_1109_LSP_2024_3376205
crossref_primary_10_1007_s11222_025_10686_8
crossref_primary_10_3982_ECTA18597
crossref_primary_10_1002_sim_10150
crossref_primary_10_1214_19_AOS1873
crossref_primary_10_1093_biomet_asw053
crossref_primary_10_1080_10618600_2019_1689985
crossref_primary_10_1111_ectj_12092
crossref_primary_10_1080_07350015_2021_1984928
crossref_primary_10_3390_math13162639
crossref_primary_10_1214_15_AOS1377
crossref_primary_10_1214_19_STS674REJ
crossref_primary_10_1016_j_spl_2018_05_012
crossref_primary_10_1080_03610926_2020_1766501
crossref_primary_10_1214_24_AOS2416
crossref_primary_10_1214_24_STS940
crossref_primary_10_1002_sam_11472
crossref_primary_10_1002_sta4_154
crossref_primary_10_1002_sam_11554
crossref_primary_10_1016_j_csda_2020_107130
crossref_primary_10_1093_biomet_asac019
crossref_primary_10_1080_01621459_2021_1967164
crossref_primary_10_1080_01621459_2022_2120401
crossref_primary_10_3150_18_BEJ1096
crossref_primary_10_1016_j_jeconom_2023_01_028
crossref_primary_10_1093_biomet_asaf007
crossref_primary_10_1093_biostatistics_kxw041
crossref_primary_10_1214_18_STS673
crossref_primary_10_1080_00949655_2022_2109634
crossref_primary_10_1214_18_STS674
crossref_primary_10_1162_rest_a_00812
crossref_primary_10_1214_21_BA1263
crossref_primary_10_1080_01621459_2021_1962328
crossref_primary_10_1002_soej_12395
crossref_primary_10_1111_biom_13686
crossref_primary_10_1214_19_AOS1817
crossref_primary_10_1016_j_csda_2017_08_003
crossref_primary_10_1016_j_jeconom_2016_05_018
crossref_primary_10_1080_03610918_2019_1622720
crossref_primary_10_3982_ECTA19304
crossref_primary_10_3390_pharmaceutics13010042
Cites_doi 10.1111/j.1467-9574.1983.tb00796.x
10.1006/aima.1994.1002
10.2140/pjm.1971.39.439
10.1214/aoms/1177728066
10.1214/10-IMSCOLL618
10.1016/0304-4076(84)90075-7
10.1214/09-AOS790
10.1198/jasa.2011.tm11181
10.1111/j.1467-9469.2007.00585.x
10.1214/08-AOS630
10.1515/9781400873173
10.1111/j.1467-9469.2007.00588.x
10.1214/10-AOS814
10.1214/10-AOS840
10.1214/009053604000000030
10.1017/CBO9780511761362
10.1214/aos/1015345958
10.1016/j.csda.2006.12.013
10.1214/08-AOS638
10.1111/j.1467-9868.2010.00753.x
10.1080/01621459.1978.10480103
10.1214/07-AOAS138
10.3150/08-BEJ141
10.1214/aos/1176346059
10.1214/aos/1032526949
ContentType Journal Article
Copyright 2014 American Statistical Association 2014
Copyright © 2014 American Statistical Association
Copyright Taylor & Francis Ltd. Jun 2014
Copyright_xml – notice: 2014 American Statistical Association 2014
– notice: Copyright © 2014 American Statistical Association
– notice: Copyright Taylor & Francis Ltd. Jun 2014
DBID FBQ
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2013.869224
DatabaseName AGRIS
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)



AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 685
ExternalDocumentID 3681333451
10_1080_01621459_2013_869224
24247195
869224
US201600085620
Genre Article
Feature
GroupedDBID -DZ
-~X
.-4
..I
.7F
.GJ
.QJ
07G
0BK
0R~
1OL
29L
2AX
30N
3R3
3V.
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AAAVI
AAAVZ
AABCJ
AAENE
AAFWJ
AAIKQ
AAJMT
AAKBW
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEFU
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABJVF
ABLIJ
ABLJU
ABPEM
ABPFR
ABPPZ
ABQHQ
ABRLO
ABTAI
ABUWG
ABXUL
ABXYU
ABYAD
ABYWD
ACAGQ
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADODI
ADULT
AEGYZ
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUMN
AEUPB
AEYOC
AFFNX
AFKRA
AFOLD
AFSUE
AFVYC
AFWLO
AFXHP
AFXKK
AGCQS
AGDLA
AGLEN
AGMYJ
AGROQ
AHDLD
AHMOU
AI.
AIHXQ
AIJEM
AIRXU
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMATQ
AMXXU
AQRUH
AQUVI
AVBZW
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BPLKW
BVXVI
C06
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWIFK
DWQXO
E.L
EBS
ECEWR
EFSUC
EJD
E~A
E~B
F20
F5P
FBQ
FEDTE
FJW
FRNLG
FUNRP
FVMVE
FVPDL
FYUFA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
IVXBP
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
K9-
KQ8
KYCEM
L6V
LJTGL
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
MW2
N95
NA5
NHB
NUSFT
NY~
O9-
OFU
OK1
P-O
P2P
PADUT
PQBIZ
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SJN
SNACF
TAE
TAQ
TEJ
TFL
TFMCV
TFT
TFW
TN5
TOXWX
TTHFI
U5U
UB9
UKHRP
UPT
UQL
UT5
UU3
V1K
VH1
VOH
WH7
WHG
WZA
XFK
YQT
YXB
YYM
YYP
ZCG
ZGI
ZGOLN
ZUP
ZXP
~S~
AAGDL
AAHBH
AAHIA
AAWIL
ABAWQ
ABPAQ
ABPQH
ABUFD
ABXSQ
ACHJO
ADMHG
ADXHL
AFRVT
AGLNM
AHDZW
AIHAF
AIYEW
ALRMG
AMVHM
AQTUD
AWYRJ
H13
IPSME
TASJS
TBQAZ
TDBHL
TUROJ
ADYSH
ALIPV
AMPGV
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
ID FETCH-LOGICAL-c513t-23bfc1cae4e9edaa9fe6e3771de59c31ef1deeb8ae5a36cd1baa0f5e1860835d3
IEDL.DBID TFW
ISICitedReferencesCount 105
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338236000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1537-274X
0162-1459
IngestDate Thu Oct 02 23:59:16 EDT 2025
Sat Nov 29 17:10:33 EST 2025
Tue Nov 18 22:07:54 EST 2025
Sat Nov 29 03:56:39 EST 2025
Fri May 30 11:48:46 EDT 2025
Mon Oct 20 23:43:55 EDT 2025
Wed Dec 27 19:14:39 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 506
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-23bfc1cae4e9edaa9fe6e3771de59c31ef1deeb8ae5a36cd1baa0f5e1860835d3
Notes http://dx.doi.org/10.1080/01621459.2013.869224
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1680207459
PQPubID 41715
PageCount 12
ParticipantIDs proquest_journals_1680207459
crossref_primary_10_1080_01621459_2013_869224
informaworld_taylorfrancis_310_1080_01621459_2013_869224
jstor_primary_24247195
fao_agris_US201600085620
proquest_miscellaneous_1803082336
crossref_citationtrail_10_1080_01621459_2013_869224
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2014
Publisher Taylor & Francis
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group, LLC
– name: Taylor & Francis Ltd
References cit0011
cit0012
cit0031
cit0010
Rockafellar R.T. (cit0025) 1970
Johnstone I. (cit0016) 2004
Koenker R. (cit0018) 2013
Jiang W. (cit0015) 2010
Robbins H. (cit0024) 1956
cit0019
cit0017
cit0013
cit0014
cit0022
cit0023
cit0021
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0002
cit0003
References_xml – ident: cit0029
  doi: 10.1111/j.1467-9574.1983.tb00796.x
– ident: cit0002
  doi: 10.1006/aima.1994.1002
– ident: cit0026
  doi: 10.2140/pjm.1971.39.439
– ident: cit0017
  doi: 10.1214/aoms/1177728066
– start-page: 263
  volume-title: Borrowing Strength: Theory Powering Applications: A Festschrift for Lawrence D. Brown (Vol. 6)
  year: 2010
  ident: cit0015
  doi: 10.1214/10-IMSCOLL618
– ident: cit0013
  doi: 10.1016/0304-4076(84)90075-7
– volume-title: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability (Vol. I)
  year: 1956
  ident: cit0024
– ident: cit0006
  doi: 10.1214/09-AOS790
– ident: cit0010
  doi: 10.1198/jasa.2011.tm11181
– ident: cit0031
  doi: 10.1111/j.1467-9469.2007.00585.x
– ident: cit0005
  doi: 10.1214/08-AOS630
– volume-title: Convex Analysis
  year: 1970
  ident: cit0025
  doi: 10.1515/9781400873173
– ident: cit0012
  doi: 10.1111/j.1467-9469.2007.00588.x
– ident: cit0019
  doi: 10.1214/10-AOS814
– ident: cit0028
  doi: 10.1214/10-AOS840
– start-page: 1594
  year: 2004
  ident: cit0016
  publication-title: The Annals of Statistics
  doi: 10.1214/009053604000000030
– ident: cit0009
  doi: 10.1017/CBO9780511761362
– ident: cit0011
  doi: 10.1214/aos/1015345958
– ident: cit0003
  doi: 10.1016/j.csda.2006.12.013
– ident: cit0014
  doi: 10.1214/08-AOS638
– ident: cit0007
  doi: 10.1111/j.1467-9868.2010.00753.x
– year: 2013
  ident: cit0018
  publication-title: R package version 0.31,
– ident: cit0021
  doi: 10.1080/01621459.1978.10480103
– ident: cit0004
  doi: 10.1214/07-AOAS138
– ident: cit0008
  doi: 10.3150/08-BEJ141
– ident: cit0022
  doi: 10.1214/aos/1176346059
– ident: cit0023
  doi: 10.1214/aos/1032526949
SSID ssj0000788
Score 2.5281765
Snippet Estimation of mixture densities for the classical Gaussian compound decision problem and their associated (empirical) Bayes rules is considered from two new...
SourceID proquest
crossref
jstor
informaworld
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 674
SubjectTerms Algorithms
Baseball
Bayes estimators
Bayes rule
Bayesian analysis
Bernoulli Hypothesis
Constraints
Convex analysis
Density estimation
Empirical Bayes
Estimating techniques
Estimation methods
Estimators
Interior points
Iterative solutions
Kiefer-Wolfowitz maximum likelihood estimator
Maximum likelihood estimation
Mixture models
Mixtures
Normal distribution
Objective functions
Optimization
prediction
Rules
Scientific method
Statistics
system optimization
Theory and Methods
Title Convex Optimization, Shape Constraints, Compound Decisions, and Empirical Bayes Rules
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2013.869224
https://www.jstor.org/stable/24247195
https://www.proquest.com/docview/1680207459
https://www.proquest.com/docview/1803082336
Volume 109
WOSCitedRecordID wos000338236000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 1537-274X
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI9g4mEvfE8rDBQkHldYmrZJHmHsxAMaiO1gb5GbOoC03Z3Wu2n899hpewwQIIHUh34kUeI4tpPaPwvxtCywikVUeYg0DWXUbW6boslDW0bGHzc2HWV_eGMOD-3JiXt3JYqf3Sp5Dx17oIgkq3lxQ9ONHnHPyUphfG0OM1H6ma0dqSESwqT5eWUeTz5-F8UmJZ7kCjnXGGPnftPID7rpeoT5T_ilo8_iL3I7KaPJrf8fxm1xczBE5Yuec-6Iazi7KzbZ9uyhm--J6T57pF_KtyRVzoZwzV159BkWKDnPZ8ousex2JcsUzs4kXw0Je-gd9UoenC2-JAQS-RK-Yiffr06xuy-mk4Pj_df5kIUhD5XSy7zQTQwqAJbosAVwEWvUxqgWKxe0wkh32FjACnQdWtUA7MUKla3ZvGv1ltiYzWe4LaTRJQKfuiLUpTLYON59tYDg6HI6E3qkvw8DRDmP5dSrEcl0oJlnmvmeZpnI17UWPUTHX8pv09R6-ERS1E-PCsbYY8uzLvYyYa_Ot1-mU5PYpzjx-s-tbiXeWHeB426MclUmdkZm8YN86LyqLdnphtrIxJP1Z1rZ_LsGZjhfURnbYwnp-sG_d-uh2KSnsndu2xEby_MVPhI3wgUx0_njtFq-AZGPDXY
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RgkQvvKumFDASxwbqOA_72JauilgWRHehN8txxlCp3V01uwj-PR7HWV4CJISUQxQ_ZHvG4_Fk5huAJ3mGhcscT63zZMidaFJZZ3Vqm9wR_nglgyn73bAajeTpqXoTvQnb6FZJd2jXAUUEWU2bm4zRvUvcM6-mEMA2xZlw8VSWyp9Da3C18EctweePB--_CeMqpJ6kFik16aPnftPLD6fTmjOznxBMe6_FXyR3OI4GN__DRG7BjaiLsv2OeW7DFZzegQ1SPzv05rswOSSn9M_stRcsFzFic5edfDRzZJTqMySYWLS7jMQKJWhiz2POHv_ND4sdXczPAggJOzBfsGVvl-fY3oPJ4Gh8eJzGRAypLbhYpJmoneXWYI4KG2OUwxJFVfEGC2UFR-ffsJYGCyNK2_DamD1XIJclaXiN2IT16WyKW8AqkaMhwyuaMucV1oouYI1Bo_yjRAKiJ4C2EaWc5nKueQ9mGtdM05rpbs0SSFet5h1Kx1_qb3naavPBC1I9OckIZo-UzzLbS0B-T3C9CIYT12U50eLPvW4G5lgNgUJvKq6KBHZ6btFRRLSal9Kr6pXvI4HHq2K_uemPjZnibOnryA5OSJTb_z6sR3D9ePxqqIcvRi_vw4YvyTtftx1YX1wu8QFcs588Y10-DFvnK6U_EaA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfYQGgvfE8rDAgSjyssTZuPR9h2AjEdE9vB3qI0dQbSdnfa3U3jvydO22OAAAmkPlTNhxzHcZzU_hngeVlgFYrAcx_iNJRBNLmuizr3TRkIf1zpdJX9cV8Nh_r42BxcieInt0o6Q4cWKCLpalrc0yb0HnEvo5VC-NoUZsLFCy1N3IZW4Hq0nCXJ-NHg03ddrFLmSWqRU5M-eO43vfywOa0EN_kJwLR3WvxFcafdaHD7_8dxB251lih71YrOXbiG43uwRsZni918H0Y75JJ-yd5HtXLWxWtuscPPboqMEn2m9BLz2RYjpULpmdhul7EnfotUsb2z6ZcEQcJeu684Yx8Wpzh7AKPB3tHOm7xLw5D7iot5Xog6eO4dlmiwcc4ElCiU4g1WxguOIb5hrR1WTkjf8Nq57VAh15Lsu0asw-p4MsYNYEqU6OjaFZ0sucLa0PGrcehMfIzIQPT8t77DKKexnFreQ5l2PLPEM9vyLIN82WraYnT8pf5GnFrrTqIataPDgkD2yPSUxXYG-up823m6NgltjhMr_tzrepKNJQkUeKO4qTLY7IXFdgpiZrnU0VBXsY8Mni2L49Km_zVujJNFrKNbMCEhH_47WU_h5sHuwO6_Hb57BGuxoGwd3TZhdX6-wMdww19EuTp_khbON1LkEFI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convex+Optimization%2C+Shape+Constraints%2C+Compound+Decisions%2C+and+Empirical+Bayes+Rules&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Koenker%2C+Roger&rft.au=Mizera%2C+Ivan&rft.date=2014-06-01&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=109&rft.issue=506&rft.spage=674&rft.epage=685&rft_id=info:doi/10.1080%2F01621459.2013.869224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2013_869224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon