MAPK signaling regulates c-MYC for melanoma cell adaptation to asparagine restriction

Amino acid restriction is among promising potential cancer treatment strategies. However, cancer cells employ a multitude of mechanisms to mount resistance to amino acid restriction, which impede the latter’s clinical development. Here we show that MAPK signaling activation in asparagine-restricted...

Full description

Saved in:
Bibliographic Details
Published in:EMBO reports Vol. 22; no. 3; pp. e51436 - n/a
Main Authors: Pathria, Gaurav, Verma, Sachin, Yin, Jun, Scott, David A, Ronai, Ze’ev A
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 03.03.2021
Springer Nature B.V
John Wiley and Sons Inc
Subjects:
ISSN:1469-221X, 1469-3178, 1469-3178
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Amino acid restriction is among promising potential cancer treatment strategies. However, cancer cells employ a multitude of mechanisms to mount resistance to amino acid restriction, which impede the latter’s clinical development. Here we show that MAPK signaling activation in asparagine-restricted melanoma cells impairs GSK3-β-mediated c-MYC degradation. In turn, elevated c-MYC supports ATF4 translational induction by enhancing the expression of the amino acid transporter SLC7A5, increasing the uptake of essential amino acids, and the subsequent maintenance of mTORC1 activity in asparagine-restricted melanoma cells. Blocking the MAPK-c-MYC-SLC7A5 signaling axis cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. This work reveals a previously unknown axis of cancer cell adaptation to asparagine restriction and informs mechanisms that may be targeted for enhanced therapeutic efficacy of asparagine limiting strategies. SYNOPSIS This study demonstrates that blocking MAPK cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. MAPK activation impairs GSK3-β mediated c-MYC degradation in asparagine-restricted melanoma cells. c-MYC promotes SLC7A5 expression to increase the uptake of essential amino acids. Essential amino acids induce mTORC1 activity, supporting ATF4 translation. Blocking the MAPK-c-MYC-SLC7A5-mTORC1 signaling axis cooperates with asparagine restriction to restrict melanoma cell proliferation. Graphical Abstract This study demonstrates that blocking MAPK cooperates with asparagine restriction to effectively suppress melanoma cell proliferation.
AbstractList Amino acid restriction is among promising potential cancer treatment strategies. However, cancer cells employ a multitude of mechanisms to mount resistance to amino acid restriction, which impede the latter’s clinical development. Here we show that MAPK signaling activation in asparagine‐restricted melanoma cells impairs GSK3‐β‐mediated c‐MYC degradation. In turn, elevated c‐MYC supports ATF4 translational induction by enhancing the expression of the amino acid transporter SLC7A5, increasing the uptake of essential amino acids, and the subsequent maintenance of mTORC1 activity in asparagine‐restricted melanoma cells. Blocking the MAPK‐c‐MYC‐SLC7A5 signaling axis cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. This work reveals a previously unknown axis of cancer cell adaptation to asparagine restriction and informs mechanisms that may be targeted for enhanced therapeutic efficacy of asparagine limiting strategies. This study demonstrates that blocking MAPK cooperates with asparagine restriction to effectively suppress melanoma cell proliferation.
Amino acid restriction is among promising potential cancer treatment strategies. However, cancer cells employ a multitude of mechanisms to mount resistance to amino acid restriction, which impede the latter's clinical development. Here we show that MAPK signaling activation in asparagine-restricted melanoma cells impairs GSK3-β-mediated c-MYC degradation. In turn, elevated c-MYC supports ATF4 translational induction by enhancing the expression of the amino acid transporter SLC7A5, increasing the uptake of essential amino acids, and the subsequent maintenance of mTORC1 activity in asparagine-restricted melanoma cells. Blocking the MAPK-c-MYC-SLC7A5 signaling axis cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. This work reveals a previously unknown axis of cancer cell adaptation to asparagine restriction and informs mechanisms that may be targeted for enhanced therapeutic efficacy of asparagine limiting strategies.Amino acid restriction is among promising potential cancer treatment strategies. However, cancer cells employ a multitude of mechanisms to mount resistance to amino acid restriction, which impede the latter's clinical development. Here we show that MAPK signaling activation in asparagine-restricted melanoma cells impairs GSK3-β-mediated c-MYC degradation. In turn, elevated c-MYC supports ATF4 translational induction by enhancing the expression of the amino acid transporter SLC7A5, increasing the uptake of essential amino acids, and the subsequent maintenance of mTORC1 activity in asparagine-restricted melanoma cells. Blocking the MAPK-c-MYC-SLC7A5 signaling axis cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. This work reveals a previously unknown axis of cancer cell adaptation to asparagine restriction and informs mechanisms that may be targeted for enhanced therapeutic efficacy of asparagine limiting strategies.
Amino acid restriction is among promising potential cancer treatment strategies. However, cancer cells employ a multitude of mechanisms to mount resistance to amino acid restriction, which impede the latter's clinical development. Here we show that MAPK signaling activation in asparagine-restricted melanoma cells impairs GSK3-β-mediated c-MYC degradation. In turn, elevated c-MYC supports ATF4 translational induction by enhancing the expression of the amino acid transporter SLC7A5, increasing the uptake of essential amino acids, and the subsequent maintenance of mTORC1 activity in asparagine-restricted melanoma cells. Blocking the MAPK-c-MYC-SLC7A5 signaling axis cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. This work reveals a previously unknown axis of cancer cell adaptation to asparagine restriction and informs mechanisms that may be targeted for enhanced therapeutic efficacy of asparagine limiting strategies.
Amino acid restriction is among promising potential cancer treatment strategies. However, cancer cells employ a multitude of mechanisms to mount resistance to amino acid restriction, which impede the latter’s clinical development. Here we show that MAPK signaling activation in asparagine-restricted melanoma cells impairs GSK3-β-mediated c-MYC degradation. In turn, elevated c-MYC supports ATF4 translational induction by enhancing the expression of the amino acid transporter SLC7A5, increasing the uptake of essential amino acids, and the subsequent maintenance of mTORC1 activity in asparagine-restricted melanoma cells. Blocking the MAPK-c-MYC-SLC7A5 signaling axis cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. This work reveals a previously unknown axis of cancer cell adaptation to asparagine restriction and informs mechanisms that may be targeted for enhanced therapeutic efficacy of asparagine limiting strategies. SYNOPSIS This study demonstrates that blocking MAPK cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. MAPK activation impairs GSK3-β mediated c-MYC degradation in asparagine-restricted melanoma cells. c-MYC promotes SLC7A5 expression to increase the uptake of essential amino acids. Essential amino acids induce mTORC1 activity, supporting ATF4 translation. Blocking the MAPK-c-MYC-SLC7A5-mTORC1 signaling axis cooperates with asparagine restriction to restrict melanoma cell proliferation. Graphical Abstract This study demonstrates that blocking MAPK cooperates with asparagine restriction to effectively suppress melanoma cell proliferation.
Amino acid restriction is among promising potential cancer treatment strategies. However, cancer cells employ a multitude of mechanisms to mount resistance to amino acid restriction, which impede the latter’s clinical development. Here we show that MAPK signaling activation in asparagine‐restricted melanoma cells impairs GSK3‐β‐mediated c‐MYC degradation. In turn, elevated c‐MYC supports ATF4 translational induction by enhancing the expression of the amino acid transporter SLC7A5, increasing the uptake of essential amino acids, and the subsequent maintenance of mTORC1 activity in asparagine‐restricted melanoma cells. Blocking the MAPK‐c‐MYC‐SLC7A5 signaling axis cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. This work reveals a previously unknown axis of cancer cell adaptation to asparagine restriction and informs mechanisms that may be targeted for enhanced therapeutic efficacy of asparagine limiting strategies. image This study demonstrates that blocking MAPK cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. MAPK activation impairs GSK3‐β mediated c‐MYC degradation in asparagine‐restricted melanoma cells. c‐MYC promotes SLC7A5 expression to increase the uptake of essential amino acids. Essential amino acids induce mTORC1 activity, supporting ATF4 translation. Blocking the MAPK‐c‐MYC‐SLC7A5‐mTORC1 signaling axis cooperates with asparagine restriction to restrict melanoma cell proliferation.
Amino acid restriction is among promising potential cancer treatment strategies. However, cancer cells employ a multitude of mechanisms to mount resistance to amino acid restriction, which impede the latter’s clinical development. Here we show that MAPK signaling activation in asparagine‐restricted melanoma cells impairs GSK3‐β‐mediated c‐MYC degradation. In turn, elevated c‐MYC supports ATF4 translational induction by enhancing the expression of the amino acid transporter SLC7A5, increasing the uptake of essential amino acids, and the subsequent maintenance of mTORC1 activity in asparagine‐restricted melanoma cells. Blocking the MAPK‐c‐MYC‐SLC7A5 signaling axis cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. This work reveals a previously unknown axis of cancer cell adaptation to asparagine restriction and informs mechanisms that may be targeted for enhanced therapeutic efficacy of asparagine limiting strategies. SYNOPSIS This study demonstrates that blocking MAPK cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. MAPK activation impairs GSK3‐β mediated c‐MYC degradation in asparagine‐restricted melanoma cells. c‐MYC promotes SLC7A5 expression to increase the uptake of essential amino acids. Essential amino acids induce mTORC1 activity, supporting ATF4 translation. Blocking the MAPK‐c‐MYC‐SLC7A5‐mTORC1 signaling axis cooperates with asparagine restriction to restrict melanoma cell proliferation. This study demonstrates that blocking MAPK cooperates with asparagine restriction to effectively suppress melanoma cell proliferation.
Author Ronai, Ze’ev A
Verma, Sachin
Scott, David A
Yin, Jun
Pathria, Gaurav
AuthorAffiliation 1 Cancer Center Sanford Burnham Prebys Medical Discovery Institute La Jolla CA USA
2 Present address: Genentech Inc South San Francisco CA USA
AuthorAffiliation_xml – name: 2 Present address: Genentech Inc South San Francisco CA USA
– name: 1 Cancer Center Sanford Burnham Prebys Medical Discovery Institute La Jolla CA USA
Author_xml – sequence: 1
  givenname: Gaurav
  orcidid: 0000-0001-6566-7031
  surname: Pathria
  fullname: Pathria, Gaurav
  email: gauravpathria@gmail.com
  organization: Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, Genentech Inc
– sequence: 2
  givenname: Sachin
  surname: Verma
  fullname: Verma, Sachin
  organization: Cancer Center, Sanford Burnham Prebys Medical Discovery Institute
– sequence: 3
  givenname: Jun
  surname: Yin
  fullname: Yin, Jun
  organization: Cancer Center, Sanford Burnham Prebys Medical Discovery Institute
– sequence: 4
  givenname: David A
  orcidid: 0000-0002-8668-2449
  surname: Scott
  fullname: Scott, David A
  organization: Cancer Center, Sanford Burnham Prebys Medical Discovery Institute
– sequence: 5
  givenname: Ze’ev A
  orcidid: 0000-0002-3859-0400
  surname: Ronai
  fullname: Ronai, Ze’ev A
  email: zeev@ronailab.net
  organization: Cancer Center, Sanford Burnham Prebys Medical Discovery Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33554439$$D View this record in MEDLINE/PubMed
BookMark eNqFkctrFTEUxoNU7EPX7mTAjZvb5jkPF0K91Af2oogFXYWTTDKmzCTXZEbpf2_Gua21UFwlcL7fd75zziHa88EbhJ4SfEwEFfTEDCoeU0yxIJyVD9AB4WWzYqSq93Z_SsnXfXSY0iXGWDRV_QjtMyYE56w5QBeb008fiuQ6D73zXRFNN_UwmlTo1ebburAhFoPpwYcBCm36voAWtiOMLvhiDAWkLUTonDcZTWN0eq48Rg8t9Mk82b1H6OLN2Zf1u9X5x7fv16fnKy0IK1dV1RpCBChhGqoMKTXlOSOzRlUUOGhrlW4ba21jS6JaraCymqsKW1zWirIj9Grx3U5qMK02fozQy210A8QrGcDJfyvefZdd-Cmrhpa0JNngxc4ghh9THkAOLs1jgjdhSpLyuuK0pnzu9fyO9DJMMa9tVjWC4YZhnFXPbie6iXK98SwQi0DHkFI0Vmq3rDMHdL0kWP65rJwvK28um7mTO9y19f3Ey4X45Xpz9T-5PNu8_nwbxgucMuc7E_9Oe1-_34P-yF0
CitedBy_id crossref_primary_10_1038_s41419_021_04417_w
crossref_primary_10_1038_s12276_023_01091_0
crossref_primary_10_3390_cells11081300
crossref_primary_10_1016_j_bbcan_2022_188736
crossref_primary_10_1016_j_ijbiomac_2024_133932
crossref_primary_10_1186_s12931_025_03226_5
crossref_primary_10_1186_s12964_024_01540_x
crossref_primary_10_1371_journal_pgen_1010904
crossref_primary_10_1002_advs_202413439
crossref_primary_10_3389_fcvm_2023_1232681
crossref_primary_10_1002_advs_202402086
crossref_primary_10_3389_fgene_2024_1346852
crossref_primary_10_3390_ijms24043755
crossref_primary_10_1016_j_bcp_2024_116652
crossref_primary_10_3390_antiox11091845
crossref_primary_10_1016_j_heliyon_2024_e35789
crossref_primary_10_3390_metabo11060402
crossref_primary_10_1371_journal_pone_0298362
Cites_doi 10.1073/pnas.0604129103
10.1186/1476-4598-12-152
10.1074/jbc.M801756200
10.1016/j.celrep.2017.12.002
10.1007/s002800000207
10.4103/0976-500X.184769
10.1186/s12986-020-00439-x
10.1038/nature22056
10.1158/0008-5472.CAN-11-3605
10.1016/j.ccell.2017.12.003
10.1038/s41556-019-0415-1
10.1073/pnas.1805523115
10.1097/MPA.0000000000000394
10.1016/0092-8674(92)90193-G
10.15252/embj.201899735
10.1074/jbc.M310722200
10.1016/S1097-2765(03)00105-9
10.1080/01635581.2011.523504
10.1158/0008-5472.CAN-08-3157
10.1016/j.celrep.2019.02.037
10.1158/2159-8290.CD-15-0507
10.1016/j.tem.2009.05.008
10.1038/ncomms11457
10.1016/j.molcel.2017.08.011
10.1101/gad.836800
10.1083/jcb.201403009
10.1016/j.tcb.2014.03.003
10.1016/j.molcel.2005.06.009
10.1038/sj.onc.1201520
10.1038/cr.2015.33
10.1016/j.cell.2012.03.003
10.1016/j.cell.2008.11.044
10.2174/138161208784246199
10.1248/bpb.31.1096
ContentType Journal Article
Copyright The Author(s) 2021
2021 The Authors
2021 The Authors.
2021 EMBO
Copyright_xml – notice: The Author(s) 2021
– notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 EMBO
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embr.202051436
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

CrossRef
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Gaurav Pathria et al
EISSN 1469-3178
EndPage n/a
ExternalDocumentID PMC7926261
33554439
10_15252_embr_202051436
EMBR202051436
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: CA197465; CA128814; CA030199
  funderid: 10.13039/100000054
– fundername: HHS | NIH | National Cancer Institute (NCI)
  funderid: CA197465; CA128814; CA030199
– fundername: NCI NIH HHS
  grantid: R35 CA197465
– fundername: NCI NIH HHS
  grantid: CA128814
– fundername: NCI NIH HHS
  grantid: P01 CA128814
– fundername: NCI NIH HHS
  grantid: P30 CA030199
– fundername: NCI NIH HHS
  grantid: CA030199
– fundername: NCI NIH HHS
  grantid: CA197465
– fundername: ;
  grantid: CA197465; CA128814; CA030199
GroupedDBID ---
-DZ
0R~
1OC
29G
2WC
33P
36B
39C
53G
5GY
5VS
70F
8R4
8R5
AAESR
AAEVG
AAHBH
AAJSJ
AAMMB
AANLZ
AAONW
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABZEH
ACAHQ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AFBPY
AFGKR
AFRAH
AFWVQ
AFZJQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BFHJK
BHPHI
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
E3Z
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HK~
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NAO
O8X
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TR2
WBKPD
WIH
WIK
WIN
WOHZO
WXSBR
ZGI
ZZTAW
24P
AAHHS
ABJNI
ACCFJ
ADZOD
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
RHF
WYJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5136-77de115ab5e92be16c240053feb72a4acffbcd9fff9f61bdcba7fc4b70f068b23
IEDL.DBID WIN
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615794900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1469-221X
1469-3178
IngestDate Tue Sep 30 16:48:50 EDT 2025
Sat Sep 27 20:14:41 EDT 2025
Sun Nov 30 04:19:57 EST 2025
Thu Apr 03 06:56:44 EDT 2025
Tue Nov 18 22:32:52 EST 2025
Sat Nov 29 03:51:03 EST 2025
Wed Jan 22 16:31:40 EST 2025
Sat Nov 29 01:24:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords melanoma
MAPK
c-MYC
mTORC1
ATF4
Language English
License 2021 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5136-77de115ab5e92be16c240053feb72a4acffbcd9fff9f61bdcba7fc4b70f068b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3859-0400
0000-0002-8668-2449
0000-0001-6566-7031
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7926261
PMID 33554439
PQID 2495309300
PQPubID 26169
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7926261
proquest_miscellaneous_2487428242
proquest_journals_2495309300
pubmed_primary_33554439
crossref_citationtrail_10_15252_embr_202051436
crossref_primary_10_15252_embr_202051436
wiley_primary_10_15252_embr_202051436_EMBR202051436
springer_journals_10_15252_embr_202051436
PublicationCentury 2000
PublicationDate 03 March 2021
PublicationDateYYYYMMDD 2021-03-03
PublicationDate_xml – month: 03
  year: 2021
  text: 03 March 2021
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References 2009; 69
2015; 5
2009; 20
1980; 64
2017; 21
2017; 67
2008; 14
2020; 17
2014; 24
2008; 31
2012; 149
2003; 278
2001; 47
2009; 136
2008; 283
2003; 11
2014; 206
1998; 16
2012; 72
2016; 7
2015; 25
2005; 19
2000; 14
2013; 12
2019; 21
2015; 44
2019; 26
2018; 115
2011; 63
1992; 68
2018; 33
2017; 544
2018; 37
2006; 103
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Lessner HE (e_1_2_9_20_1) 1980; 64
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 16
  start-page: 211
  year: 1998
  end-page: 216
  article-title: Regulation of c‐myc expression by Ras/Raf signalling
  publication-title: Oncogene
– volume: 44
  start-page: 1141
  year: 2015
  end-page: 1147
  article-title: Asparagine synthetase expression and phase I study with L‐asparaginase encapsulated in red blood cells in patients with pancreatic adenocarcinoma
  publication-title: Pancreas
– volume: 21
  start-page: 1590
  year: 2019
  end-page: 1603
  article-title: Translational reprogramming marks adaptation to asparagine restriction in cancer
  publication-title: Nat Cell Biol
– volume: 33
  start-page: 91
  year: 2018
  end-page: 107
  article-title: Oncogenic KRAS regulates amino acid homeostasis and asparagine biosynthesis via ATF4 and alters sensitivity to L‐asparaginase
  publication-title: Cancer Cell
– volume: 47
  start-page: 83
  year: 2001
  end-page: 88
  article-title: A phase I and pharmacodynamic evaluation of polyethylene glycol‐conjugated L‐asparaginase in patients with advanced solid tumors
  publication-title: Cancer Chemother Pharmacol
– volume: 72
  start-page: 2622
  year: 2012
  end-page: 2633
  article-title: Activation of Ras/PI3K/ERK pathway induces c‐Myc stabilization to upregulate argininosuccinate synthetase, leading to arginine deiminase resistance in melanoma cells
  publication-title: Cancer Res
– volume: 7
  start-page: 62
  year: 2016
  end-page: 71
  article-title: L‐asparaginase in the treatment of patients with acute lymphoblastic leukemia
  publication-title: J Pharmacol Pharmacother
– volume: 68
  start-page: 585
  year: 1992
  end-page: 596
  article-title: Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene‐specific translational control of GCN4 in yeast
  publication-title: Cell
– volume: 31
  start-page: 1096
  year: 2008
  end-page: 1100
  article-title: BCH, an inhibitor of system L amino acid transporters, induces apoptosis in cancer cells
  publication-title: Biol Pharm Bull
– volume: 69
  start-page: 700
  year: 2009
  end-page: 708
  article-title: Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase‐independent apoptosis
  publication-title: Cancer Res
– volume: 20
  start-page: 436
  year: 2009
  end-page: 443
  article-title: ATF4‐dependent transcription mediates signaling of amino acid limitation
  publication-title: Trends Endocrinol Metab
– volume: 115
  start-page: E7776
  year: 2018
  end-page: E7785
  article-title: Inhibition of GCN2 sensitizes ASNS‐low cancer cells to asparaginase by disrupting the amino acid response
  publication-title: Proc Natl Acad Sci USA
– volume: 24
  start-page: 400
  year: 2014
  end-page: 406
  article-title: Regulation of mTORC1 by amino acids
  publication-title: Trends Cell Biol
– volume: 103
  start-page: 17834
  year: 2006
  end-page: 17839
  article-title: Global mapping of c‐Myc binding sites and target gene networks in human B cells
  publication-title: Proc Natl Acad Sci USA
– volume: 278
  start-page: 51606
  year: 2003
  end-page: 51612
  article-title: Phosphorylation by glycogen synthase kinase‐3 controls c‐myc proteolysis and subnuclear localization
  publication-title: J Biol Chem
– volume: 136
  start-page: 521
  year: 2009
  end-page: 534
  article-title: Bidirectional transport of amino acids regulates mTOR and autophagy
  publication-title: Cell
– volume: 14
  start-page: 2501
  year: 2000
  end-page: 2514
  article-title: Multiple Ras‐dependent phosphorylation pathways regulate Myc protein stability
  publication-title: Genes Dev
– volume: 19
  start-page: 159
  year: 2005
  end-page: 170
  article-title: Erk associates with and primes GSK‐3beta for its inactivation resulting in upregulation of beta‐catenin
  publication-title: Mol Cell
– volume: 26
  start-page: 3051
  year: 2019
  end-page: 3060
  article-title: p53 promotes cancer cell adaptation to glutamine deprivation by upregulating Slc7a3 to increase arginine uptake
  publication-title: Cell Rep
– volume: 14
  start-page: 1049
  year: 2008
  end-page: 1057
  article-title: Arginine deprivation as a targeted therapy for cancer
  publication-title: Curr Pharm Des
– volume: 149
  start-page: 22
  year: 2012
  end-page: 35
  article-title: MYC on the path to cancer
  publication-title: Cell
– volume: 7
  start-page: 11457
  year: 2016
  article-title: Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor
  publication-title: Nat Commun
– volume: 11
  start-page: 619
  year: 2003
  end-page: 633
  article-title: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
  publication-title: Mol Cell
– volume: 37
  year: 2018
  article-title: Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival
  publication-title: EMBO J
– volume: 64
  start-page: 1359
  year: 1980
  end-page: 1361
  article-title: Phase II study of L‐asparaginase in the treatment of pancreatic carcinoma
  publication-title: Cancer Treat Rep
– volume: 63
  start-page: 264
  year: 2011
  end-page: 271
  article-title: The effect of leucine restriction on Akt/mTOR signaling in breast cancer cell lines and
  publication-title: Nutr Cancer
– volume: 21
  start-page: 3819
  year: 2017
  end-page: 3832
  article-title: Oncogenic MYC activates a feedforward regulatory loop promoting essential amino acid metabolism and tumorigenesis
  publication-title: Cell Rep
– volume: 25
  start-page: 429
  year: 2015
  end-page: 444
  article-title: cMyc‐mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions
  publication-title: Cell Res
– volume: 5
  start-page: 1024
  year: 2015
  end-page: 1039
  article-title: MYC, metabolism, and cancer
  publication-title: Cancer Discov
– volume: 12
  start-page: 152
  year: 2013
  article-title: Tumor glycolysis as a target for cancer therapy: progress and prospects
  publication-title: Mol Cancer
– volume: 544
  start-page: 372
  year: 2017
  end-page: 376
  article-title: Modulating the therapeutic response of tumours to dietary serine and glycine starvation
  publication-title: Nature
– volume: 17
  start-page: 20
  year: 2020
  article-title: Dietary restriction of amino acids for Cancer therapy
  publication-title: Nutr Metab (Lond)
– volume: 206
  start-page: 173
  year: 2014
  end-page: 182
  article-title: The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation
  publication-title: J Cell Biol
– volume: 283
  start-page: 30566
  year: 2008
  end-page: 30575
  article-title: Glycogen synthase kinase 3beta is a novel regulator of high glucose‐ and high insulin‐induced extracellular matrix protein synthesis in renal proximal tubular epithelial cells
  publication-title: J Biol Chem
– volume: 67
  start-page: 936
  year: 2017
  end-page: 946
  article-title: mTOR Inhibition restores amino acid balance in cells dependent on catabolism of extracellular protein
  publication-title: Mol Cell
– ident: e_1_2_9_36_1
  doi: 10.1073/pnas.0604129103
– ident: e_1_2_9_10_1
  doi: 10.1186/1476-4598-12-152
– ident: e_1_2_9_23_1
  doi: 10.1074/jbc.M801756200
– ident: e_1_2_9_35_1
  doi: 10.1016/j.celrep.2017.12.002
– ident: e_1_2_9_33_1
  doi: 10.1007/s002800000207
– ident: e_1_2_9_8_1
  doi: 10.4103/0976-500X.184769
– ident: e_1_2_9_14_1
  doi: 10.1186/s12986-020-00439-x
– ident: e_1_2_9_22_1
  doi: 10.1038/nature22056
– ident: e_1_2_9_34_1
  doi: 10.1158/0008-5472.CAN-11-3605
– ident: e_1_2_9_12_1
  doi: 10.1016/j.ccell.2017.12.003
– ident: e_1_2_9_27_1
  doi: 10.1038/s41556-019-0415-1
– ident: e_1_2_9_24_1
  doi: 10.1073/pnas.1805523115
– ident: e_1_2_9_2_1
  doi: 10.1097/MPA.0000000000000394
– ident: e_1_2_9_6_1
  doi: 10.1016/0092-8674(92)90193-G
– ident: e_1_2_9_28_1
  doi: 10.15252/embj.201899735
– ident: e_1_2_9_11_1
  doi: 10.1074/jbc.M310722200
– ident: e_1_2_9_13_1
  doi: 10.1016/S1097-2765(03)00105-9
– ident: e_1_2_9_30_1
  doi: 10.1080/01635581.2011.523504
– ident: e_1_2_9_18_1
  doi: 10.1158/0008-5472.CAN-08-3157
– ident: e_1_2_9_21_1
  doi: 10.1016/j.celrep.2019.02.037
– ident: e_1_2_9_31_1
  doi: 10.1158/2159-8290.CD-15-0507
– ident: e_1_2_9_16_1
  doi: 10.1016/j.tem.2009.05.008
– ident: e_1_2_9_19_1
  doi: 10.1038/ncomms11457
– volume: 64
  start-page: 1359
  year: 1980
  ident: e_1_2_9_20_1
  article-title: Phase II study of L‐asparaginase in the treatment of pancreatic carcinoma
  publication-title: Cancer Treat Rep
– ident: e_1_2_9_26_1
  doi: 10.1016/j.molcel.2017.08.011
– ident: e_1_2_9_29_1
  doi: 10.1101/gad.836800
– ident: e_1_2_9_4_1
  doi: 10.1083/jcb.201403009
– ident: e_1_2_9_3_1
  doi: 10.1016/j.tcb.2014.03.003
– ident: e_1_2_9_7_1
  doi: 10.1016/j.molcel.2005.06.009
– ident: e_1_2_9_15_1
  doi: 10.1038/sj.onc.1201520
– ident: e_1_2_9_32_1
  doi: 10.1038/cr.2015.33
– ident: e_1_2_9_5_1
  doi: 10.1016/j.cell.2012.03.003
– ident: e_1_2_9_25_1
  doi: 10.1016/j.cell.2008.11.044
– ident: e_1_2_9_9_1
  doi: 10.2174/138161208784246199
– ident: e_1_2_9_17_1
  doi: 10.1248/bpb.31.1096
SSID ssj0005978
Score 2.4559655
SecondaryResourceType review_article
Snippet Amino acid restriction is among promising potential cancer treatment strategies. However, cancer cells employ a multitude of mechanisms to mount resistance to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e51436
SubjectTerms Acid resistance
Adaptation
Amino acids
Asparagine
ATF4
Cancer
Cell activation
Cell growth
Cell Line, Tumor
Cell Proliferation
c‐MYC
Degradation
EMBO03
EMBO21
Glycogen Synthase Kinase 3
Humans
MAP kinase
MAPK
Mechanistic Target of Rapamycin Complex 1 - genetics
Mechanistic Target of Rapamycin Complex 1 - metabolism
Melanoma
Melanoma - genetics
mTORC1
Myc protein
Proto-Oncogene Proteins c-myc - genetics
Proto-Oncogene Proteins c-myc - metabolism
Signal Transduction
Signaling
Title MAPK signaling regulates c-MYC for melanoma cell adaptation to asparagine restriction
URI https://link.springer.com/article/10.15252/embr.202051436
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.202051436
https://www.ncbi.nlm.nih.gov/pubmed/33554439
https://www.proquest.com/docview/2495309300
https://www.proquest.com/docview/2487428242
https://pubmed.ncbi.nlm.nih.gov/PMC7926261
Volume 22
WOSCitedRecordID wos000615794900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-3178
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005978
  issn: 1469-221X
  databaseCode: DRFUL
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1469-3178
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0005978
  issn: 1469-221X
  databaseCode: WIN
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VFhAXHqVAoF0ZiQMc0ibOw8mxlK5AsKuqoupyisYvsVI3W222SNz6E_ob-SV4kmyqqKqQKo5R7CS2Z-zPmfH3AbwzuSQKmdR3qwf6sdGRnyUq8UUcED2dFoiyFpsQ43E2meRHbTYhnYVp-CG6H27kGfV8TQ6Oslop9hBrqJlJIvTkxOAdEel2GIekYXD6ZXyd5JHXc7GbDnKf83DSkvvQE_b69fvr0g2weTNnsguc9mFtvS4Nn_yHFj2Fxy0oZfuNFT2DNVNuwoNGpvL3JjwctQH453A62j_6yijpA-kcO1s0UvamYurP5dXoxwFzIJjNzBmW8xkyCgsw1HjeBPzZcs6wIrZxIkFkJAuymNYHK7bgZHj4_eCz32oz-CoJo9SBcm0cmESZmJxLE6aKklGTyBopOMaorJVK59ba3Kah1EqisCqWIrBBmkkevYD1cl6aV8B0rBJXlOeZNHEslUx0hqnSGqUDZFx6sLsamUK1xOWkn3FW0AaGuq6gjiu6jvPgfVfhvOHsuL3o9mqoi9Z5q4LkuClAHAQevO1uO7ejTsPSzC-oTCbczs0BHA9eNpbRvSsiDOeAngeiZzNdAaL07t8ppz9ram9B9I1p6MGHlXVdf9atTYhqo_pXU4vD0cfj7ur1nWq9gUeccnooBy_ahvXl4sLswH31azmtFgO4JybZADY-HQ9Pvg1qR_wL3kMywA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTtwwFL3i2bLpg9I2LW2NxIIuAonzcLKkCASCjBCiYlhFfoqRZjJoZkBi10_gG_kSfJNMIEIICXUZxXFi-177OPf6HIB1nQqkkIldu3pwN9QqcJNIRi4LPaSnU4xzUYpNsE4n6XbTx2dhKn6I5ocbekY5X6OD4w_pqWQP0obqgUBGT4oU3kE8C_OhhRso33B20HlI80jL2dhOCKlLqd-t6X2wiq12Be2V6QncfJo12YRO28C2XJn23v-PNn2AdzUuJduVIX2EGV0sw2KlVHmzDG-yOgb_Cc6y7eNDgnkfHI-yk1GlZq_HRN79u83Od4jFwWSg-7wYDjjByADhil9WMX8yGRI-RsJx5EEkqAwy6pVnK1bg797u6c6-W8szuDLyg9jicqUtnuQi0ikV2o8l5qNGgdGCUR5yaYyQKjXGpCb2hZKCMyNDwTzjxYmgwWeYK4aF_gpEhTKyRWmaCB2GQopIJTyWSnFhMRkVDmxOhyaXNXc5Smj0c9zDYNfl2HF503EObDQPXFa0Hc8XXZ2OdV777zhHRW6MEXueA2vNbet52Gm80MMrLJMwu3mzGMeBL5VpNO8KEMZZrOcAaxlNUwBZvdt3it5Fye7NkMEx9h34PTWvh896tglBaVUvNTXfzf6cNFffXvXUL3i7f5od5UcHncPvsEQxxQdT8oJVmJuMrvQPWJDXk9549LP0w3sZODRW
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTtwwFL2iQ0HdlJZXU2hrpC5gEUich5MlrxEVzAghUIdV5KcYicmMZoZK3fUT-o18Cb5JJjRCCAl1GcVxYvte-zj3-hyA7zoVSCETu3b14G6oVeAmkYxcFnpIT6cY56IQm2DdbtLrpf-ehSn5IeofbugZxXyNDq5Hyswke5A2VA8EMnpSpPAO4jcwH6KUTAvmjy7aV2ePiR5pMR_bKSF1KfV7FcEPVrLXrKK5Nj0BnE_zJuvgaRPaFmtTe-l_tOoDvK-QKdkvTekjzOl8GRZKrcrfy7DYqaLwK_Czs39-SjDzg-NhdjIu9ez1hMj7P38714fEImEy0Lc8Hw44wdgA4YqPyqg_mQ4JnyDlODIhEtQGGfeL0xWrcNU-vjw8cSuBBldGfhBbZK60RZRcRDqlQvuxxIzUKDBaMMpDLo0RUqXGmNTEvlBScGZkKJhnvDgRNFiDVj7M9ScgKpSRLUrTROgwFFJEKuGxVIoLi8qocGB3NjSZrNjLUUTjNsNdDHZdhh2X1R3nwHb9wKgk7ni-6OZsrLPKgycZanJjlNjzHNiqb1vfw07juR7eYZmE2e2bRTkOrJemUb8rQCBn0Z4DrGE0dQHk9W7eyfs3Bb83Qw7H2HdgZ2Zej5_1bBOCwqpeamp23Dm4qK8-v-qpb7B4ftTOzn50TzfgHcUcH8zJCzahNR3f6S_wVv6a9ifjr5UjPgA08TT_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MAPK+signaling+regulates+c%E2%80%90MYC+for+melanoma+cell+adaptation+to+asparagine+restriction&rft.jtitle=EMBO+reports&rft.au=Pathria%2C+Gaurav&rft.au=Verma%2C+Sachin&rft.au=Yin%2C+Jun&rft.au=Scott%2C+David+A&rft.date=2021-03-03&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=22&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fembr.202051436&rft.externalDBID=10.15252%252Fembr.202051436&rft.externalDocID=EMBR202051436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon