A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET
Purpose: Accurate and robust image segmentation was identified as one of the most challenging issues facing PET quantification in oncological imaging. This difficulty is compounded by the low spatial resolution and high noise characteristics of PET images. The fuzzy C-means (FCM) clustering algorith...
Uloženo v:
| Vydáno v: | Medical physics (Lancaster) Ročník 37; číslo 3; s. 1309 - 1324 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Association of Physicists in Medicine
01.03.2010
|
| Témata: | |
| ISSN: | 0094-2405, 2473-4209 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose:
Accurate and robust image segmentation was identified as one of the most challenging issues facing PET quantification in oncological imaging. This difficulty is compounded by the low spatial resolution and high noise characteristics of PET images. The fuzzy C-means (FCM) clustering algorithm was largely used in various medical image segmentation approaches. However, the algorithm is sensitive to both noise and intensity heterogeneity since it does not take into account spatial contextual information.
Methods:
To overcome this limitation, a new fuzzy segmentation technique adapted to typical noisy and low resolution oncological PET data is proposed. PET images smoothed using a nonlinear anisotropic diffusion filter are added as a second input to the proposed FCM algorithm to incorporate spatial information (FCM-S). In addition, a methodology was developed to integrate theà trous wavelet transform in the standard FCM algorithm (FCM-SW) to allow handling of heterogeneous lesions’ uptake. The algorithm was applied to the simulated data of the NCAT phantom, incorporating heterogeneous lesions in the lung and clinical PET/CT images of 21 patients presenting with histologically proven nonsmall-cell lung cancer (NSCLC) and 7 patients presenting with laryngeal squamous cell carcinoma (LSCC) to assess its performance for segmenting tumors with arbitrary size, shape, and tracer uptake. For NSCLC patients, the maximal tumor diameters measured from the macroscopic examination of the surgical specimen served as the ground truth for comparison with the maximum diameter estimated by the segmentation technique, whereas for LSCC patients, the 3D macroscopic tumor volume was considered as the ground truth for comparison with the corresponding PET-based volume. The proposed algorithm was also compared to the classical FCM segmentation technique.
Results:
There is a good correlation
(
R
2
=
0.942
)
between the actual maximal diameter of primary NSCLC tumors estimated using the proposed PET segmentation procedure and those measured from the macroscopic examination, and the regression line agreed well with the line of identity
(
slope
=
1.08
)
for the group analysis of the clinical data. The standard FCM algorithm seems to underestimate actual maximal diameters of the clinical data, resulting in a mean error of −4.6 mm (relative error of
−
10.8
±
23.1
%
) for all data sets. The mean error of maximal diameter estimation was reduced to 0.1 mm
(
0.9
±
14.4
%
)
using the proposed FCM-SW algorithm. Likewise, the mean relative error on the estimated volume for LSCC patients was reduced from
21.7
±
22.0
%
for FCM to
8.6
±
28.3
%
using the proposed FCM-SW technique.
Conclusions:
A novel unsupervised PET image segmentation technique that allows the quantification of lesions in the presence of heterogeneity of tracer uptake was developed and evaluated. The technique is being further refined and assessed in clinical setting to delineate treatment volumes for the purpose of PET-guided radiation therapy treatment planning but could find other applications in clinical oncology such as the assessment of response to treatment. |
|---|---|
| AbstractList | Purpose:
Accurate and robust image segmentation was identified as one of the most challenging issues facing PET quantification in oncological imaging. This difficulty is compounded by the low spatial resolution and high noise characteristics of PET images. The fuzzy C‐means (FCM) clustering algorithm was largely used in various medical image segmentation approaches. However, the algorithm is sensitive to both noise and intensity heterogeneity since it does not take into account spatial contextual information.
Methods:
To overcome this limitation, a new fuzzy segmentation technique adapted to typical noisy and low resolution oncological PET data is proposed. PET images smoothed using a nonlinear anisotropic diffusion filter are added as a second input to the proposed FCM algorithm to incorporate spatial information (FCM‐S). In addition, a methodology was developed to integrate theà trous wavelet transform in the standard FCM algorithm (FCM‐SW) to allow handling of heterogeneous lesions’ uptake. The algorithm was applied to the simulated data of the NCAT phantom, incorporating heterogeneous lesions in the lung and clinical PET/CT images of 21 patients presenting with histologically proven nonsmall‐cell lung cancer (NSCLC) and 7 patients presenting with laryngeal squamous cell carcinoma (LSCC) to assess its performance for segmenting tumors with arbitrary size, shape, and tracer uptake. For NSCLC patients, the maximal tumor diameters measured from the macroscopic examination of the surgical specimen served as the ground truth for comparison with the maximum diameter estimated by the segmentation technique, whereas for LSCC patients, the 3D macroscopic tumor volume was considered as the ground truth for comparison with the corresponding PET‐based volume. The proposed algorithm was also compared to the classical FCM segmentation technique.
Results:
There is a good correlation (R2=0.942) between the actual maximal diameter of primary NSCLC tumors estimated using the proposed PET segmentation procedure and those measured from the macroscopic examination, and the regression line agreed well with the line of identity (slope=1.08) for the group analysis of the clinical data. The standard FCM algorithm seems to underestimate actual maximal diameters of the clinical data, resulting in a mean error of −4.6 mm (relative error of −10.8±23.1%) for all data sets. The mean error of maximal diameter estimation was reduced to 0.1 mm (0.9±14.4%) using the proposed FCM‐SW algorithm. Likewise, the mean relative error on the estimated volume for LSCC patients was reduced from 21.7±22.0% for FCM to 8.6±28.3% using the proposed FCM‐SW technique.
Conclusions:
A novel unsupervised PET image segmentation technique that allows the quantification of lesions in the presence of heterogeneity of tracer uptake was developed and evaluated. The technique is being further refined and assessed in clinical setting to delineate treatment volumes for the purpose of PET‐guided radiation therapy treatment planning but could find other applications in clinical oncology such as the assessment of response to treatment. Purpose: Accurate and robust image segmentation was identified as one of the most challenging issues facing PET quantification in oncological imaging. This difficulty is compounded by the low spatial resolution and high noise characteristics of PET images. The fuzzy C-means (FCM) clustering algorithm was largely used in various medical image segmentation approaches. However, the algorithm is sensitive to both noise and intensity heterogeneity since it does not take into account spatial contextual information. Methods: To overcome this limitation, a new fuzzy segmentation technique adapted to typical noisy and low resolution oncological PET data is proposed. PET images smoothed using a nonlinear anisotropic diffusion filter are added as a second input to the proposed FCM algorithm to incorporate spatial information (FCM-S). In addition, a methodology was developed to integrate the à trous wavelet transform in the standard FCM algorithm (FCM-SW) to allow handling of heterogeneous lesions' uptake. The algorithm was applied to the simulated data of the NCAT phantom, incorporating heterogeneous lesions in the lung and clinical PET/CT images of 21 patients presenting with histologically proven nonsmall-cell lung cancer (NSCLC) and 7 patients presenting with laryngeal squamous cell carcinoma (LSCC) to assess its performance for segmenting tumors with arbitrary size, shape, and tracer uptake. For NSCLC patients, the maximal tumor diameters measured from the macroscopic examination of the surgical specimen served as the ground truth for comparison with the maximum diameter estimated by the segmentation technique, whereas for LSCC patients, the 3D macroscopic tumor volume was considered as the ground truth for comparison with the corresponding PET-based volume. The proposed algorithm was also compared to the classical FCM segmentation technique. Results: There is a good correlation ( R 2 = 0.942 ) between the actual maximal diameter of primary NSCLC tumors estimated using the proposed PET segmentation procedure and those measured from the macroscopic examination, and the regression line agreed well with the line of identity ( slope = 1.08 ) for the group analysis of the clinical data. The standard FCM algorithm seems to underestimate actual maximal diameters of the clinical data, resulting in a mean error of −4.6 mm (relative error of − 10.8 ± 23.1 % ) for all data sets. The mean error of maximal diameter estimation was reduced to 0.1 mm ( 0.9 ± 14.4 % ) using the proposed FCM-SW algorithm. Likewise, the mean relative error on the estimated volume for LSCC patients was reduced from 21.7 ± 22.0 % for FCM to 8.6 ± 28.3 % using the proposed FCM-SW technique. Conclusions: A novel unsupervised PET image segmentation technique that allows the quantification of lesions in the presence of heterogeneity of tracer uptake was developed and evaluated. The technique is being further refined and assessed in clinical setting to delineate treatment volumes for the purpose of PET-guided radiation therapy treatment planning but could find other applications in clinical oncology such as the assessment of response to treatment. Purpose: Accurate and robust image segmentation was identified as one of the most challenging issues facing PET quantification in oncological imaging. This difficulty is compounded by the low spatial resolution and high noise characteristics of PET images. The fuzzy C-means (FCM) clustering algorithm was largely used in various medical image segmentation approaches. However, the algorithm is sensitive to both noise and intensity heterogeneity since it does not take into account spatial contextual information. Methods: To overcome this limitation, a new fuzzy segmentation technique adapted to typical noisy and low resolution oncological PET data is proposed. PET images smoothed using a nonlinear anisotropic diffusion filter are added as a second input to the proposed FCM algorithm to incorporate spatial information (FCM-S). In addition, a methodology was developed to integrate theà trous wavelet transform in the standard FCM algorithm (FCM-SW) to allow handling of heterogeneous lesions’ uptake. The algorithm was applied to the simulated data of the NCAT phantom, incorporating heterogeneous lesions in the lung and clinical PET/CT images of 21 patients presenting with histologically proven nonsmall-cell lung cancer (NSCLC) and 7 patients presenting with laryngeal squamous cell carcinoma (LSCC) to assess its performance for segmenting tumors with arbitrary size, shape, and tracer uptake. For NSCLC patients, the maximal tumor diameters measured from the macroscopic examination of the surgical specimen served as the ground truth for comparison with the maximum diameter estimated by the segmentation technique, whereas for LSCC patients, the 3D macroscopic tumor volume was considered as the ground truth for comparison with the corresponding PET-based volume. The proposed algorithm was also compared to the classical FCM segmentation technique. Results: There is a good correlation ( R 2 = 0.942 ) between the actual maximal diameter of primary NSCLC tumors estimated using the proposed PET segmentation procedure and those measured from the macroscopic examination, and the regression line agreed well with the line of identity ( slope = 1.08 ) for the group analysis of the clinical data. The standard FCM algorithm seems to underestimate actual maximal diameters of the clinical data, resulting in a mean error of −4.6 mm (relative error of − 10.8 ± 23.1 % ) for all data sets. The mean error of maximal diameter estimation was reduced to 0.1 mm ( 0.9 ± 14.4 % ) using the proposed FCM-SW algorithm. Likewise, the mean relative error on the estimated volume for LSCC patients was reduced from 21.7 ± 22.0 % for FCM to 8.6 ± 28.3 % using the proposed FCM-SW technique. Conclusions: A novel unsupervised PET image segmentation technique that allows the quantification of lesions in the presence of heterogeneity of tracer uptake was developed and evaluated. The technique is being further refined and assessed in clinical setting to delineate treatment volumes for the purpose of PET-guided radiation therapy treatment planning but could find other applications in clinical oncology such as the assessment of response to treatment. Accurate and robust image segmentation was identified as one of the most challenging issues facing PET quantification in oncological imaging. This difficulty is compounded by the low spatial resolution and high noise characteristics of PET images. The fuzzy C-means (FCM) clustering algorithm was largely used in various medical image segmentation approaches. However, the algorithm is sensitive to both noise and intensity heterogeneity since it does not take into account spatial contextual information.PURPOSEAccurate and robust image segmentation was identified as one of the most challenging issues facing PET quantification in oncological imaging. This difficulty is compounded by the low spatial resolution and high noise characteristics of PET images. The fuzzy C-means (FCM) clustering algorithm was largely used in various medical image segmentation approaches. However, the algorithm is sensitive to both noise and intensity heterogeneity since it does not take into account spatial contextual information.To overcome this limitation, a new fuzzy segmentation technique adapted to typical noisy and low resolution oncological PET data is proposed. PET images smoothed using a nonlinear anisotropic diffusion filter are added as a second input to the proposed FCM algorithm to incorporate spatial information (FCM-S). In addition, a methodology was developed to integrate the a trous wavelet transform in the standard FCM algorithm (FCM-SW) to allow handling of heterogeneous lesions' uptake. The algorithm was applied to the simulated data of the NCAT phantom, incorporating heterogeneous lesions in the lung and clinical PET/CT images of 21 patients presenting with histologically proven nonsmall-cell lung cancer (NSCLC) and 7 patients presenting with laryngeal squamous cell carcinoma (LSCC) to assess its performance for segmenting tumors with arbitrary size, shape, and tracer uptake. For NSCLC patients, the maximal tumor diameters measured from the macroscopic examination of the surgical specimen served as the ground truth for comparison with the maximum diameter estimated by the segmentation technique, whereas for LSCC patients, the 3D macroscopic tumor volume was considered as the ground truth for comparison with the corresponding PET-based volume. The proposed algorithm was also compared to the classical FCM segmentation technique.METHODSTo overcome this limitation, a new fuzzy segmentation technique adapted to typical noisy and low resolution oncological PET data is proposed. PET images smoothed using a nonlinear anisotropic diffusion filter are added as a second input to the proposed FCM algorithm to incorporate spatial information (FCM-S). In addition, a methodology was developed to integrate the a trous wavelet transform in the standard FCM algorithm (FCM-SW) to allow handling of heterogeneous lesions' uptake. The algorithm was applied to the simulated data of the NCAT phantom, incorporating heterogeneous lesions in the lung and clinical PET/CT images of 21 patients presenting with histologically proven nonsmall-cell lung cancer (NSCLC) and 7 patients presenting with laryngeal squamous cell carcinoma (LSCC) to assess its performance for segmenting tumors with arbitrary size, shape, and tracer uptake. For NSCLC patients, the maximal tumor diameters measured from the macroscopic examination of the surgical specimen served as the ground truth for comparison with the maximum diameter estimated by the segmentation technique, whereas for LSCC patients, the 3D macroscopic tumor volume was considered as the ground truth for comparison with the corresponding PET-based volume. The proposed algorithm was also compared to the classical FCM segmentation technique.There is a good correlation (R2 = 0.942) between the actual maximal diameter of primary NSCLC tumors estimated using the proposed PET segmentation procedure and those measured from the macroscopic examination, and the regression line agreed well with the line of identity (slope = 1.08) for the group analysis of the clinical data. The standard FCM algorithm seems to underestimate actual maximal diameters of the clinical data, resulting in a mean error of -4.6 mm (relative error of -10.8 +/- 23.1%) for all data sets. The mean error of maximal diameter estimation was reduced to 0.1 mm (0.9 +/- 14.4%) using the proposed FCM-SW algorithm. Likewise, the mean relative error on the estimated volume for LSCC patients was reduced from 21.7 +/- 22.0% for FCM to 8.6 +/- 28.3% using the proposed FCM-SW technique.RESULTSThere is a good correlation (R2 = 0.942) between the actual maximal diameter of primary NSCLC tumors estimated using the proposed PET segmentation procedure and those measured from the macroscopic examination, and the regression line agreed well with the line of identity (slope = 1.08) for the group analysis of the clinical data. The standard FCM algorithm seems to underestimate actual maximal diameters of the clinical data, resulting in a mean error of -4.6 mm (relative error of -10.8 +/- 23.1%) for all data sets. The mean error of maximal diameter estimation was reduced to 0.1 mm (0.9 +/- 14.4%) using the proposed FCM-SW algorithm. Likewise, the mean relative error on the estimated volume for LSCC patients was reduced from 21.7 +/- 22.0% for FCM to 8.6 +/- 28.3% using the proposed FCM-SW technique.A novel unsupervised PET image segmentation technique that allows the quantification of lesions in the presence of heterogeneity of tracer uptake was developed and evaluated. The technique is being further refined and assessed in clinical setting to delineate treatment volumes for the purpose of PET-guided radiation therapy treatment planning but could find other applications in clinical oncology such as the assessment of response to treatment.CONCLUSIONSA novel unsupervised PET image segmentation technique that allows the quantification of lesions in the presence of heterogeneity of tracer uptake was developed and evaluated. The technique is being further refined and assessed in clinical setting to delineate treatment volumes for the purpose of PET-guided radiation therapy treatment planning but could find other applications in clinical oncology such as the assessment of response to treatment. Accurate and robust image segmentation was identified as one of the most challenging issues facing PET quantification in oncological imaging. This difficulty is compounded by the low spatial resolution and high noise characteristics of PET images. The fuzzy C-means (FCM) clustering algorithm was largely used in various medical image segmentation approaches. However, the algorithm is sensitive to both noise and intensity heterogeneity since it does not take into account spatial contextual information. To overcome this limitation, a new fuzzy segmentation technique adapted to typical noisy and low resolution oncological PET data is proposed. PET images smoothed using a nonlinear anisotropic diffusion filter are added as a second input to the proposed FCM algorithm to incorporate spatial information (FCM-S). In addition, a methodology was developed to integrate the a trous wavelet transform in the standard FCM algorithm (FCM-SW) to allow handling of heterogeneous lesions' uptake. The algorithm was applied to the simulated data of the NCAT phantom, incorporating heterogeneous lesions in the lung and clinical PET/CT images of 21 patients presenting with histologically proven nonsmall-cell lung cancer (NSCLC) and 7 patients presenting with laryngeal squamous cell carcinoma (LSCC) to assess its performance for segmenting tumors with arbitrary size, shape, and tracer uptake. For NSCLC patients, the maximal tumor diameters measured from the macroscopic examination of the surgical specimen served as the ground truth for comparison with the maximum diameter estimated by the segmentation technique, whereas for LSCC patients, the 3D macroscopic tumor volume was considered as the ground truth for comparison with the corresponding PET-based volume. The proposed algorithm was also compared to the classical FCM segmentation technique. There is a good correlation (R2 = 0.942) between the actual maximal diameter of primary NSCLC tumors estimated using the proposed PET segmentation procedure and those measured from the macroscopic examination, and the regression line agreed well with the line of identity (slope = 1.08) for the group analysis of the clinical data. The standard FCM algorithm seems to underestimate actual maximal diameters of the clinical data, resulting in a mean error of -4.6 mm (relative error of -10.8 +/- 23.1%) for all data sets. The mean error of maximal diameter estimation was reduced to 0.1 mm (0.9 +/- 14.4%) using the proposed FCM-SW algorithm. Likewise, the mean relative error on the estimated volume for LSCC patients was reduced from 21.7 +/- 22.0% for FCM to 8.6 +/- 28.3% using the proposed FCM-SW technique. A novel unsupervised PET image segmentation technique that allows the quantification of lesions in the presence of heterogeneity of tracer uptake was developed and evaluated. The technique is being further refined and assessed in clinical setting to delineate treatment volumes for the purpose of PET-guided radiation therapy treatment planning but could find other applications in clinical oncology such as the assessment of response to treatment. |
| Author | Zaidi, Habib Belhassen, Saoussen |
| Author_xml | – sequence: 1 givenname: Saoussen surname: Belhassen fullname: Belhassen, Saoussen organization: Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva, Switzerland – sequence: 2 givenname: Habib surname: Zaidi fullname: Zaidi, Habib email: habib.zaidi@hcuge.ch organization: Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva, Switzerland and Geneva Neuroscience Center, Geneva University, CH-1205 Geneva, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20384268$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtrHDEQhEVwiNdODvkDQbfgwNgtaR6aS2BZnAc4xAfnkovQSi1bYUZaSzMb1r8-431ACHHIqS9fFdVVJ-QoxICEvGZwzhiTF-xcCGA1g2dkxstGFCWH9ojMANqy4CVUx-Qk5x8AUIsKXpBjDkKWvJYz8n1OQ1xjR9348LChi6JHHTLV3W1MfrjrqYuJjiGPK0xrn9HSOxwwxVsMGMdMh7GfgPtRh8E7b_TgY6A-0OvLm5fkudNdxlf7e0q-fbi8WXwqrr5-_LyYXxWmYgIKZgQuHTTCGCOd4bKVlrVOaxTYspprqEvQAmUjJLfa6ZI3tmpsa5xhS2vFKXm7812leD9iHlTvs8Gu09uIqhFCSqjbaiLf7Mlx2aNVq-R7nTbqUMcEXOwAk2LOCZ0yftj-NCTtO8VAPRaumNoXPinO_lAcTP_GFjv2p-9w8zSovlzv-fc7Ph9SPK2Zq-2MajujWqjHGSeDd_9t8C94HdNv6VbWiV8dXb9b |
| CODEN | MPHYA6 |
| CitedBy_id | crossref_primary_10_1007_s13246_017_0587_6 crossref_primary_10_1007_s00259_011_2053_0 crossref_primary_10_1097_RLU_0000000000003789 crossref_primary_10_1111_bjh_18016 crossref_primary_10_1118_1_4929561 crossref_primary_10_1016_j_cmpb_2017_07_006 crossref_primary_10_1186_2197_7364_1_12 crossref_primary_10_1007_s10044_014_0399_1 crossref_primary_10_1016_j_compbiomed_2013_07_027 crossref_primary_10_1118_1_4728219 crossref_primary_10_1109_TIM_2018_2884017 crossref_primary_10_1049_iet_ipr_2016_1024 crossref_primary_10_1016_j_ins_2015_02_015 crossref_primary_10_1088_1361_6560_ac994e crossref_primary_10_1016_j_compbiomed_2017_05_034 crossref_primary_10_1118_1_4863480 crossref_primary_10_1016_j_ins_2022_11_010 crossref_primary_10_1088_0031_9155_57_15_5035 crossref_primary_10_1007_s00259_021_05624_5 crossref_primary_10_1016_j_semcancer_2023_03_005 crossref_primary_10_1097_MNM_0000000000000317 crossref_primary_10_1118_1_4928485 crossref_primary_10_1186_s13550_018_0379_3 crossref_primary_10_1007_s11517_016_1571_0 crossref_primary_10_1016_j_cpet_2019_03_002 crossref_primary_10_1118_1_4761952 crossref_primary_10_1186_s12917_025_04591_5 crossref_primary_10_1088_0031_9155_57_17_5381 crossref_primary_10_1038_s41598_019_51096_x crossref_primary_10_3390_jimaging10010027 crossref_primary_10_1016_j_cviu_2016_10_002 crossref_primary_10_1118_1_4793721 crossref_primary_10_1088_0031_9155_61_1_227 crossref_primary_10_1109_TBME_2017_2688453 crossref_primary_10_1016_j_cmpb_2012_10_009 crossref_primary_10_1016_j_canrad_2011_07_243 crossref_primary_10_1016_j_radonc_2012_05_002 crossref_primary_10_1007_s40336_014_0068_9 crossref_primary_10_1109_TBME_2023_3297249 crossref_primary_10_1007_s00530_017_0579_0 crossref_primary_10_1118_1_4813302 crossref_primary_10_1053_j_semnuclmed_2017_09_005 crossref_primary_10_1109_JBHI_2022_3230060 crossref_primary_10_1259_bjr_20140625 crossref_primary_10_1118_1_4947123 crossref_primary_10_1002_mp_12124 crossref_primary_10_1186_2191_219X_3_85 crossref_primary_10_1155_2013_980769 crossref_primary_10_1007_s11547_014_0446_4 crossref_primary_10_1109_TBME_2015_2433397 crossref_primary_10_1016_j_artmed_2019_01_002 crossref_primary_10_1016_j_cpet_2011_02_009 crossref_primary_10_1016_j_jrmge_2025_01_057 crossref_primary_10_1118_1_4954844 crossref_primary_10_1016_j_ejmp_2017_08_012 crossref_primary_10_1155_2020_5648206 crossref_primary_10_1016_j_semradonc_2017_08_003 crossref_primary_10_1016_j_ijrobp_2014_01_047 crossref_primary_10_1016_j_compbiomed_2014_04_014 crossref_primary_10_1109_TITB_2011_2159307 crossref_primary_10_1093_jrr_rrw082 crossref_primary_10_1007_s40336_015_0135_x crossref_primary_10_1109_TMI_2012_2202322 crossref_primary_10_1118_1_4816296 crossref_primary_10_1155_2015_571473 crossref_primary_10_1371_journal_pone_0031724 crossref_primary_10_1007_s00259_015_3239_7 crossref_primary_10_1088_1361_6560_ac01f4 crossref_primary_10_1118_1_4812892 crossref_primary_10_1088_0031_9155_60_13_5123 crossref_primary_10_3390_app12104865 crossref_primary_10_1016_j_ejmp_2018_08_008 crossref_primary_10_1109_TIP_2015_2488902 crossref_primary_10_1155_2012_327861 crossref_primary_10_1088_0031_9155_61_13_4855 crossref_primary_10_1016_j_compbiomed_2018_09_002 crossref_primary_10_1109_TMI_2010_2083681 crossref_primary_10_1088_1361_6560_ab8535 crossref_primary_10_1002_ima_22154 crossref_primary_10_1109_TCBB_2023_3281638 crossref_primary_10_1007_s11307_016_1015_0 crossref_primary_10_1016_j_neucom_2016_08_042 crossref_primary_10_1109_TFUZZ_2023_3317779 crossref_primary_10_1016_j_compbiomed_2020_103701 crossref_primary_10_1109_ACCESS_2020_3003138 crossref_primary_10_1016_j_compmedimag_2021_101886 crossref_primary_10_3938_jkps_77_1049 crossref_primary_10_1016_j_engappai_2019_02_005 crossref_primary_10_1109_JBHI_2022_3186275 crossref_primary_10_1002_mp_14903 crossref_primary_10_1007_s00259_010_1688_6 crossref_primary_10_1002_widm_1474 crossref_primary_10_1109_TIP_2018_2872908 crossref_primary_10_1186_s13014_018_1163_2 crossref_primary_10_2310_7290_2014_00032 crossref_primary_10_1109_TMI_2013_2263388 crossref_primary_10_1109_JBHI_2020_3024563 crossref_primary_10_1118_1_4828836 crossref_primary_10_3389_fmed_2015_00018 crossref_primary_10_3390_cancers6041821 crossref_primary_10_1109_TNS_2013_2295975 crossref_primary_10_1016_j_media_2013_11_003 crossref_primary_10_1016_j_imu_2020_100481 crossref_primary_10_1016_j_media_2013_05_004 crossref_primary_10_1007_s00259_010_1423_3 crossref_primary_10_1016_j_ejmp_2019_04_020 crossref_primary_10_1016_j_cpet_2019_08_005 |
| Cites_doi | 10.1109/23.910837 10.1016/j.dsp.2007.11.005 10.1118/1.3160108 10.1148/radiol.2331030660 10.1109/34.56205 10.1016/j.acra.2009.02.014 10.1016/j.acra.2004.07.012 10.1016/j.compmedimag.2008.08.004 10.1016/0165-1684(94)90211-9 10.1049/ip-vis:20000218 10.1109/42.996338 10.1109/51.334636 10.1109/TPAMI.1980.4766964 10.1118/1.2791035 10.1007/s002590050425 10.1016/j.ijrobp.2007.04.065 10.1053/j.semnuclmed.2007.01.005 10.1016/S0167-8140(03)00270-6 10.1016/j.ijrobp.2008.04.019 10.1109/78.157290 10.1016/S0933-3657(98)00069-4 10.1016/j.ijrobp.2006.12.067 10.1016/j.ctrv.2006.02.002 10.1109/42.802752 10.1118/1.2799886 10.1080/01969727308546046 10.1016/j.compmedimag.2005.10.001 10.1007/s00259-008-0943-6 10.1118/1.2938518 10.1109/TSMCB.2004.831165 10.1109/TMI.2003.816956 10.1155/2007/25182 10.1016/0895-6111(96)00025-0 10.1016/S0360-3016(00)00467-3 10.1056/NEJMra050276 10.1109/JPROC.2003.817883 10.1109/TMI.2008.2012036 10.1016/j.acra.2005.08.035 10.1006/cviu.2001.0951 10.1007/s00259-006-0363-4 10.1109/TPAMI.1986.4767851 10.1016/j.lungcan.2007.03.020 10.2967/jnumed.106.035774 10.1088/0031-9155/53/16/001 10.1016/j.asoc.2007.10.025 10.1118/1.2432404 10.1088/0031-9155/47/7/310 10.1016/j.radonc.2003.10.009 10.47102/annals-acadmedsg.V33N2p183 10.1007/978-3-642-97177-8_28 10.1109/TSMC.1987.6499296 10.1017/CBO9780511564352 |
| ContentType | Journal Article |
| Copyright | American Association of Physicists in Medicine 2010 American Association of Physicists in Medicine |
| Copyright_xml | – notice: American Association of Physicists in Medicine – notice: 2010 American Association of Physicists in Medicine |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1118/1.3301610 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 2473-4209 |
| EndPage | 1324 |
| ExternalDocumentID | 20384268 10_1118_1_3301610 MP1610 |
| Genre | article Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NSF-CH grantid: SNSF 3152A0-102143 – fundername: Swiss National Science Foundation funderid: SNSF 3152A0‐102143 |
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 476 53G 5GY 5RE 5VS AAHHS AANLZ AAQQT AASGY AAXRX AAZKR ABCUV ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACSMX ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AHBTC AIACR AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P G8K HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAHQN AAIPD AAMNL AAYCA ABDPE AFWVQ AITYG ALVPJ AAMMB AAYXX ABUFD ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c5130-1c3ebf073ccc8fc2898d19faae3e9162a0640a3e87382dafa427d57d9cfc1bdd3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 146 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000275160300038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-2405 |
| IngestDate | Fri Sep 05 14:02:17 EDT 2025 Thu Apr 03 07:04:56 EDT 2025 Tue Nov 18 21:38:34 EST 2025 Sat Nov 29 03:54:18 EST 2025 Wed Jan 22 16:38:45 EST 2025 Fri Jun 21 00:19:59 EDT 2024 Sun Jul 14 10:05:20 EDT 2019 Fri Jun 21 00:28:29 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | intensity heterogeneity à trous wavelet transform FCM segmentation positron emission tomography (PET) anisotropic diffusion filtering |
| Language | English |
| License | 0094-2405/2010/37(3)/1309/16/$30.00 http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5130-1c3ebf073ccc8fc2898d19faae3e9162a0640a3e87382dafa427d57d9cfc1bdd3 |
| Notes | habib.zaidi@hcuge.ch Telephone: +41 22 372 7258; Fax: +41 22 372 7169. 0094‐2405/2010/37(3)/1309/16/$30.00 Author to whom correspondence should be addressed. Electronic mail ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| PMID | 20384268 |
| PQID | 733880695 |
| PQPubID | 23479 |
| PageCount | 16 |
| ParticipantIDs | scitation_primary_10_1118_1_3301610A_novel_fuzzy_C_mean crossref_citationtrail_10_1118_1_3301610 scitation_primary_10_1118_1_3301610 proquest_miscellaneous_733880695 wiley_primary_10_1118_1_3301610_MP1610 pubmed_primary_20384268 crossref_primary_10_1118_1_3301610 |
| PublicationCentury | 2000 |
| PublicationDate | March 2010 |
| PublicationDateYYYYMMDD | 2010-03-01 |
| PublicationDate_xml | – month: 03 year: 2010 text: March 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Medical physics (Lancaster) |
| PublicationTitleAlternate | Med Phys |
| PublicationYear | 2010 |
| Publisher | American Association of Physicists in Medicine |
| Publisher_xml | – name: American Association of Physicists in Medicine |
| References | Juweid, Cheson (c5) 2006; 354 Pham, Prince (c15) 1999; 18 Clark (c23) 1994; 13 Aristophanous, Penney, Martel, Pelizzari (c61) 2007; 34 Bezdek, Hathaway, Sabin, Tucker (c36) 1987; 17 Bezdek (c37) 1980; PAMI-2 Pham (c28) 2001; 84 Liew, Hong (c17) 2003; 22 Tan, Ong (c50) 2004; 33 Ahmed, Yamany, Mohamed, Farag, Moriarty (c29) 2002; 21 Gregoire, Haustermans, Geets, Roels, Lonneux (c3) 2007; 48 van Baardwijk (c7) 2006; 32 Hatt, Cheze le Rest, Turzo, Roux, Visvikis (c11) 2009; 28 Masulli, Schenone (c14) 1999; 16 van Baardwijk (c51) 2007; 68 Boucek (c57) 2008; 53 Liew, Leung, Lau (c27) 2000; 147 Rahmim, Tang, Zaidi (c42) 2009; 36 Kang, Min, Luan, Li, Liu (c31) 2009; 19 Udupa, Saha (c59) 2003; 91 Soret, Bacharach, Buvat (c12) 2007; 48 Daisne (c54) 2003; 69 Montgomery, Amira, Zaidi (c9) 2007; 34 Geets, Lee, Bol, Lonneux, Gregoire (c53) 2007; 34 Dunn (c35) 1973; 3 Stroom (c63) 2007; 69 Chen, Zhang (c30) 2004; 34 Perona, Malik (c38) 1990; 12 Chen, Giger, Bick (c22) 2006; 13 El Naqa (c10) 2007; 34 Shensa (c43) 1992; 40 Kannan (c32) 2008; 8 Starck, Bijaoui (c44) 1994; 35 Aristophanous, Penney, Pelizzari (c62) 2008; 35 Czernin, Allen-Auerbach, Schelbert (c1) 2007; 48 Wang, Kong, Lu, Qi, Zhang (c20) 2008; 32 Yu, Wang (c19) 2007; 2007 Bijaoui, Starck, Murtagh (c47) 1994; 3 Canny (c40) 1986; PAMI-8 Chuang, Tzeng, Chen, Wu, Chen (c18) 2006; 30 Vees, Senthamizhchelvan, Miralbell, Weber, Ratib, Zaidi (c8) 2009; 36 Basu (c13) 2007; 37 Acton, Pilowsky, Kung, Ell (c21) 1999; 26 Zaidi, Diaz-Gomez, Boudraa, Slosman (c16) 2002; 47 Daisne (c58) 2003; 69 Zaidi, El Naqa (c4) Janssen (c60) 2009; 73 Boudraa (c24) 1996; 20 Segars, Lalush, Tsui (c49) 2001; 48 Ling (c2) 2000; 47 Greco, Rosenzweig, Cascini, Tamburrini (c6) 2007; 57 Daisne (c52) 2004; 233 Belhassen (c55) 2009; 50 Demirkaya (c41) 2004; 11 Zaidi, Vees, Wissmeyer (c56) 2009; 16 Pham, D. 2001; 84 Bezdek, J.; Hathaway, R.; Sabin, M.; Tucker, W. 1987; 17 Aristophanous, M.; Penney, B.; Pelizzari, C. 2008; 35 Segars, W.; Lalush, D.; Tsui, B. 2001; 48 Kang, J.; Min, L.; Luan, Q.; Li, X.; Liu, J. 2009; 19 Demirkaya, O. 2004; 11 Starck, J.; Bijaoui, A. 1994; 35 Kannan, S. 2008; 8 El Naqa, I. 2007; 34 Chuang, K.; Tzeng, H.; Chen, S.; Wu, J.; Chen, T. 2006; 30 Boucek, J. 2008; 53 Bezdek, J. 1980; PAMI-2 Udupa, J.; Saha, P. 2003; 91 Vees, H.; Senthamizhchelvan, S.; Miralbell, R.; Weber, D.; Ratib, O.; Zaidi, H. 2009; 36 Wang, J.; Kong, J.; Lu, Y.; Qi, M.; Zhang, B. 2008; 32 van Baardwijk, A. 2007; 68 Czernin, J.; Allen-Auerbach, M.; Schelbert, H. 2007; 48 Liew, A.; Hong, Y. 2003; 22 Stroom, J. 2007; 69 Acton, P.; Pilowsky, L.; Kung, H.; Ell, P. 1999; 26 Liew, A.; Leung, S.; Lau, W. 2000; 147 Juweid, M.; Cheson, B. 2006; 354 Boudraa, A. 1996; 20 Soret, M.; Bacharach, S.; Buvat, I. 2007; 48 Zaidi, H.; Vees, H.; Wissmeyer, M. 2009; 16 Montgomery, D.; Amira, A.; Zaidi, H. 2007; 34 Gregoire, V.; Haustermans, K.; Geets, X.; Roels, S.; Lonneux, M. 2007; 48 Janssen, M. 2009; 73 Masulli, F.; Schenone, A. 1999; 16 Bijaoui, A.; Starck, J.; Murtagh, F. 1994; 3 Daisne, J. 2003; 69 Pham, D.; Prince, J. 1999; 18 Canny, J. 1986; PAMI-8 Perona, P.; Malik, J. 1990; 12 Zaidi, H.; Diaz-Gomez, M.; Boudraa, A.; Slosman, D. 2002; 47 Clark, M. 1994; 13 van Baardwijk, A. 2006; 32 Zaidi, H.; El Naqa, I. Geets, X.; Lee, J.; Bol, A.; Lonneux, M.; Gregoire, V. 2007; 34 Basu, S. 2007; 37 Hatt, M.; Cheze le Rest, C.; Turzo, A.; Roux, C.; Visvikis, D. 2009; 28 Greco, C.; Rosenzweig, K.; Cascini, G.; Tamburrini, O. 2007; 57 Ling, C. 2000; 47 Ahmed, M.; Yamany, S.; Mohamed, N.; Farag, A.; Moriarty, T. 2002; 21 Belhassen, S. 2009; 50 Chen, S.; Zhang, D. 2004; 34 Rahmim, A.; Tang, J.; Zaidi, H. 2009; 36 Tan, L.; Ong, K. 2004; 33 Chen, W.; Giger, M.; Bick, U. 2006; 13 Dunn, J. 1973; 3 Shensa, M. 1992; 40 Yu, J.; Wang, Y. 2007; 2007 Daisne, J. 2004; 233 Aristophanous, M.; Penney, B.; Martel, M.; Pelizzari, C. 2007; 34 2006; 30 1990; 12 2000; 47 2006; 32 2008; 8 2008; 35 2008; 32 2001; 48 2007; 34 2001; 84 2007; 37 2004; 33 2002; 47 2003; 91 2009; 50 1999; 18 1999; 16 2004; 34 2003; 4 2007; 6 1994; 35 1986; PAMI‐8 2009; 19 2007; 68 2009; 16 1996; 20 2007; 69 1992; 40 1989 2006; 13 1999; 26 1998 2007 2008; 53 2006; 354 2007; 57 1987; 17 2009; 28 2004; 233 2004; 11 2009; 36 2009; 73 2000; 147 1980; PAMI‐2 2007; 2007 2002; 21 2005; 4 2003; 69 1994; 13 1998; 2 1994; 3 2007; 48 2003; 22 1973; 3 e_1_2_7_3_1 e_1_2_7_9_1 Czernin J. (e_1_2_7_2_1) 2007; 48 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_28_1 Zhu W. (e_1_2_7_26_1) 2003 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 Belhassen S. (e_1_2_7_56_1) 2009; 50 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 Tan L. (e_1_2_7_51_1) 2004; 33 Zaidi H. (e_1_2_7_5_1) e_1_2_7_8_1 Congdon P. (e_1_2_7_34_1) 2007 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_61_1 Gregoire V. (e_1_2_7_4_1) 2007; 48 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 Kim J. (e_1_2_7_27_1) 2007 e_1_2_7_10_1 e_1_2_7_29_1 Montgomery D. W. G. (e_1_2_7_49_1) 2005 Holschneider M. (e_1_2_7_46_1) 1989 Weickert J. (e_1_2_7_40_1) 1998 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_59_1 Dunn J. C. (e_1_2_7_36_1) 1973; 3 e_1_2_7_38_1 Bijaoui A. (e_1_2_7_48_1) 1994; 3 Chen S. S. (e_1_2_7_35_1) 1998 |
| References_xml | – volume: 20 start-page: 31 issn: 0895-6111 year: 1996 ident: c24 article-title: Delineation and quantitation of brain lesions by fuzzy clustering in positron emission tomography publication-title: Comput. Med. Imaging Graph. – volume: 26 start-page: 581 issn: 0340-6997 year: 1999 ident: c21 article-title: Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering publication-title: Eur. J. Nucl. Med. – volume: 48 start-page: 78S issn: 0161-5505 year: 2007 ident: c1 article-title: Improvements in cancer staging with PET/CT: Literature-based evidence as of September 2006 publication-title: J. Nucl. Med. – volume: 16 start-page: 1108 issn: 1076-6332 year: 2009 ident: c56 article-title: Molecular PET/CT imaging-guided radiation therapy treatment planning publication-title: Acad. Radiol. – volume: PAMI-2 start-page: 1 issn: 0162-8828 year: 1980 ident: c37 article-title: A convergence theorem for the fuzzy ISODATA clustering algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 35 start-page: 195 issn: 0165-1684 year: 1994 ident: c44 article-title: Filtering and deconvolution by the wavelet transform publication-title: Signal Process. – volume: 3 start-page: 32 issn: 0018-9472 year: 1973 ident: c35 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: IEEE Trans. Syst. Man Cybern. – volume: 34 start-page: 722 issn: 0094-2405 year: 2007 ident: c9 article-title: Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model publication-title: Med. Phys. – volume: 48 start-page: 89 issn: 0018-9499 year: 2001 ident: c49 article-title: Modeling respiratory mechanics in the MCAT and spline-based MCAT phantoms publication-title: IEEE Trans. Nucl. Sci. – volume: 36 start-page: 3654 issn: 0094-2405 year: 2009 ident: c42 article-title: Four-dimensional (4D) image reconstruction strategies in dynamic PET: Beyond conventional independent frame reconstruction publication-title: Med. Phys. – volume: 30 start-page: 9 issn: 0895-6111 year: 2006 ident: c18 article-title: Fuzzy c-means clustering with spatial information for image segmentation publication-title: Comput. Med. Imaging Graph. – volume: 69 start-page: 267 issn: 0360-3016 year: 2007 ident: c63 article-title: Feasibility of pathology-correlated lung imaging for accurate target definition of lung tumors publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 57 start-page: 125 issn: 0169-5002 year: 2007 ident: c6 article-title: Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC) publication-title: Lung Cancer – volume: 16 start-page: 129 issn: 0933-3657 year: 1999 ident: c14 article-title: A fuzzy clustering based segmentation system as support to diagnosis in medical imaging publication-title: Artif. Intell. Med. – volume: 40 start-page: 2464 issn: 1053-587X year: 1992 ident: c43 article-title: The discrete wavelet transform: Wedding the a trous and Mallat algorithms publication-title: IEEE Trans. Signal Process. – volume: 47 start-page: 551 issn: 0360-3016 year: 2000 ident: c2 article-title: Towards multidimensional radiotherapy (MD-CRT): Biological imaging and biological conformality publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 32 start-page: 245 issn: 0305-7372 year: 2006 ident: c7 article-title: The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning publication-title: Cancer Treat Rev. – volume: 47 start-page: 1143 issn: 0031-9155 year: 2002 ident: c16 article-title: Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging publication-title: Phys. Med. Biol. – volume: 32 start-page: 685 issn: 0895-6111 year: 2008 ident: c20 article-title: A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints publication-title: Comput. Med. Imaging Graph. – volume: 68 start-page: 771 issn: 0360-3016 year: 2007 ident: c51 article-title: PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 91 start-page: 1649 issn: 0018-9219 year: 2003 ident: c59 article-title: Fuzzy connectedness and image segmentation publication-title: Proc. IEEE – volume: 354 start-page: 496 issn: 0028-4793 year: 2006 ident: c5 article-title: Positron-emission tomography and assessment of cancer therapy publication-title: N. Engl. J. Med. – volume: 34 start-page: 4738 issn: 0094-2405 year: 2007 ident: c10 article-title: Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning publication-title: Med. Phys. – volume: 50 start-page: 27P issn: 0161-5505 year: 2009 ident: c55 article-title: Comparative methods for 18F-FDG PET-based delineation of target volumes in non-small-cell lung cancer [abstract] publication-title: J. Nucl. Med. – volume: 48 start-page: 932 issn: 0161-5505 year: 2007 ident: c12 article-title: Partial-volume effect in PET tumor imaging publication-title: J. Nucl. Med. – volume: 69 start-page: 237 issn: 0167-8140 year: 2003 ident: c54 article-title: Evaluation of a multimodality image (CT, MRI and PET) coregistration procedure on phantom and head and neck cancer patients: Accuracy, reproducibility and consistency publication-title: Radiother. Oncol. – volume: 73 start-page: 456 issn: 0360-3016 year: 2009 ident: c60 article-title: Tumor delineation based on time-activity curve differences assessed with dynamic fluorodeoxyglucose positron emission tomography-computed tomography in rectal cancer patients publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 33 start-page: 183 issn: 0304-4602 year: 2004 ident: c50 article-title: Semi-quantitative measurements of normal organs with variable metabolic activity on FDG PET imaging publication-title: Ann. Acad. Med. Singapore – issn: 1619-7070 ident: c4 article-title: PET-guided delineation of radiation therapy treatment volumes: A survey of image segmentation techniques publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 35 start-page: 3331 issn: 0094-2405 year: 2008 ident: c62 article-title: The development and testing of a digital PET phantom for the evaluation of tumor volume segmentation techniques publication-title: Med. Phys. – volume: 37 start-page: 223 issn: 0001-2998 year: 2007 ident: c13 article-title: Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: Implications for normal variation, aging and diseased states publication-title: Semin Nucl. Med. – volume: 18 start-page: 737 issn: 0278-0062 year: 1999 ident: c15 article-title: Adaptive fuzzy segmentation of magnetic resonance images publication-title: IEEE Trans. Med. Imaging – volume: 69 start-page: 247 issn: 0167-8140 year: 2003 ident: c58 article-title: Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: Influence of reconstruction algorithms publication-title: Radiother. Oncol. – volume: 36 start-page: 182 issn: 1619-7070 year: 2009 ident: c8 article-title: Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 147 start-page: 185 issn: 1350-245X year: 2000 ident: c27 article-title: Fuzzy image clustering incorporating spatial continuity publication-title: IEEE Proc. Vision Image Signal Process – volume: 34 start-page: 4223 issn: 0094-2405 year: 2007 ident: c61 article-title: A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography publication-title: Med. Phys. – volume: 13 start-page: 730 issn: 0739-5175 year: 1994 ident: c23 article-title: MRI segmentation using fuzzy clustering techniques publication-title: IEEE Eng. Med. Biol. Mag. – volume: PAMI-8 start-page: 679 issn: 0162-8828 year: 1986 ident: c40 article-title: A computational approach to edge detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 34 start-page: 1427 issn: 1619-7070 year: 2007 ident: c53 article-title: A gradient-based method for segmenting FDG-PET images: Methodology and validation publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 84 start-page: 285 issn: 1077-3142 year: 2001 ident: c28 article-title: “Spatial models for fuzzy clustering publication-title: Comput. Vis. Image Underst. – volume: 21 start-page: 193 issn: 0278-0062 year: 2002 ident: c29 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging – volume: 53 start-page: 4213 issn: 0031-9155 year: 2008 ident: c57 article-title: Assessment of tumour response with 18F-fluorodeoxyglucose positron emission tomography using 3-dimensional measures compared to SUVmax—A phantom study publication-title: Phys. Med. Biol. – volume: 13 start-page: 63 issn: 1076-6332 year: 2006 ident: c22 article-title: A fuzzy C-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images publication-title: Acad. Radiol. – volume: 28 start-page: 881 issn: 0278-0062 year: 2009 ident: c11 article-title: A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET publication-title: IEEE Trans. Med. Imaging – volume: 11 start-page: 1105 issn: 1076-6332 year: 2004 ident: c41 article-title: Post-reconstruction filtering of positron emission tomography whole-body emission images and attenuation maps using nonlinear diffusion filtering publication-title: Acad. Radiol. – volume: 19 start-page: 309 issn: 1051-2004 year: 2009 ident: c31 article-title: Novel modified fuzzy c-means algorithm with applications publication-title: Digit. Signal Process. – volume: 22 start-page: 1063 issn: 0278-0062 year: 2003 ident: c17 article-title: An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation publication-title: IEEE Trans. Med. Imaging – volume: 8 start-page: 1599 issn: 1568-4946 year: 2008 ident: c32 article-title: A new segmentation system for brain MR images based on fuzzy techniques publication-title: Appl. Soft Comput. – volume: 233 start-page: 93 issn: 0033-8419 year: 2004 ident: c52 article-title: Tumor volume in pharyngolaryngeal squamous cell carcinoma: Comparison at CT, MR imaging, and FDG PET and validation with surgical specimen publication-title: Radiology – volume: 12 start-page: 629 issn: 0162-8828 year: 1990 ident: c38 article-title: Scale-space and edge detection using anisotropic diffusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 34 start-page: 1907 issn: 1083-4419 year: 2004 ident: c30 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst., Man, Cybern., Part B: Cybern. – volume: 17 start-page: 873 issn: 0018-9472 year: 1987 ident: c36 article-title: Convergence theory for fuzzy c-means: Counterexamples and repairs publication-title: IEEE Trans. Syst. Man Cybern. – volume: 2007 issn: 1687-4188 year: 2007 ident: c19 article-title: Molecular image segmentation based on improved fuzzy clustering publication-title: Int. J. Biomed. Imaging – volume: 3 start-page: 229 issn: 0765-0019 year: 1994 ident: c47 article-title: Restauration des images multi-échelles par l’algorithme à trous publication-title: Trait. Signal – volume: 48 start-page: 68S issn: 0161-5505 year: 2007 ident: c3 article-title: PET-based treatment planning in radiotherapy: A new standard? publication-title: J. Nucl. Med. – volume: 33 start-page: 183-185 year: 2004 publication-title: Ann. Acad. Med. Singapore – volume: 48 start-page: 89-97 year: 2001 publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.910837 – volume: 19 start-page: 309-319 year: 2009 publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2007.11.005 – volume: 36 start-page: 3654-3670 year: 2009 publication-title: Med. Phys. doi: 10.1118/1.3160108 – volume: 233 start-page: 93-100 year: 2004 publication-title: Radiology doi: 10.1148/radiol.2331030660 – volume: 12 start-page: 629-639 year: 1990 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.56205 – volume: 16 start-page: 1108-1133 year: 2009 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2009.02.014 – volume: 11 start-page: 1105-1114 year: 2004 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2004.07.012 – volume: 32 start-page: 685-698 year: 2008 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2008.08.004 – volume: 35 start-page: 195-211 year: 1994 publication-title: Signal Process. doi: 10.1016/0165-1684(94)90211-9 – volume: 147 start-page: 185-192 year: 2000 publication-title: IEEE Proc. Vision Image Signal Process doi: 10.1049/ip-vis:20000218 – volume: 21 start-page: 193-199 year: 2002 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.996338 – volume: 17 start-page: 873-877 year: 1987 publication-title: IEEE Trans. Syst. Man Cybern. – volume: 13 start-page: 730-742 year: 1994 publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.334636 – volume: PAMI-2 start-page: 1-8 year: 1980 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1980.4766964 – volume: 34 start-page: 4223-4235 year: 2007 publication-title: Med. Phys. doi: 10.1118/1.2791035 – volume: 26 start-page: 581-590 year: 1999 publication-title: Eur. J. Nucl. Med. doi: 10.1007/s002590050425 – volume: 69 start-page: 267-275 year: 2007 publication-title: Int. J. Radiat. Oncol., Biol., Phys. doi: 10.1016/j.ijrobp.2007.04.065 – volume: 37 start-page: 223-239 year: 2007 publication-title: Semin Nucl. Med. doi: 10.1053/j.semnuclmed.2007.01.005 – volume: 69 start-page: 247-250 year: 2003 publication-title: Radiother. Oncol. doi: 10.1016/S0167-8140(03)00270-6 – volume: 73 start-page: 456-465 year: 2009 publication-title: Int. J. Radiat. Oncol., Biol., Phys. doi: 10.1016/j.ijrobp.2008.04.019 – volume: 40 start-page: 2464-2482 year: 1992 publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.157290 – volume: 16 start-page: 129-147 year: 1999 publication-title: Artif. Intell. Med. doi: 10.1016/S0933-3657(98)00069-4 – volume: 68 start-page: 771-778 year: 2007 publication-title: Int. J. Radiat. Oncol., Biol., Phys. doi: 10.1016/j.ijrobp.2006.12.067 – volume: 32 start-page: 245-260 year: 2006 publication-title: Cancer Treat Rev. doi: 10.1016/j.ctrv.2006.02.002 – volume: 18 start-page: 737-752 year: 1999 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.802752 – volume: 34 start-page: 4738-4749 year: 2007 publication-title: Med. Phys. doi: 10.1118/1.2799886 – volume: 3 start-page: 32-57 year: 1973 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1080/01969727308546046 – volume: 30 start-page: 9-15 year: 2006 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2005.10.001 – volume: 36 start-page: 182-193 year: 2009 publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-008-0943-6 – volume: 35 start-page: 3331-3342 year: 2008 publication-title: Med. Phys. doi: 10.1118/1.2938518 – volume: 34 start-page: 1907-1916 year: 2004 publication-title: IEEE Trans. Syst., Man, Cybern., Part B: Cybern. doi: 10.1109/TSMCB.2004.831165 – volume: 22 start-page: 1063-1075 year: 2003 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.816956 – volume: 2007 year: 2007 publication-title: Int. J. Biomed. Imaging doi: 10.1155/2007/25182 – volume: 20 start-page: 31-41 year: 1996 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/0895-6111(96)00025-0 – volume: 47 start-page: 551-560 year: 2000 publication-title: Int. J. Radiat. Oncol., Biol., Phys. doi: 10.1016/S0360-3016(00)00467-3 – volume: 48 start-page: 68S-77S year: 2007 publication-title: J. Nucl. Med. – volume: 354 start-page: 496-507 year: 2006 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra050276 – volume: 91 start-page: 1649-1669 year: 2003 publication-title: Proc. IEEE doi: 10.1109/JPROC.2003.817883 – volume: 28 start-page: 881-893 year: 2009 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2008.2012036 – volume: 13 start-page: 63-72 year: 2006 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2005.08.035 – volume: 3 start-page: 229-243 year: 1994 publication-title: Trait. Signal – volume: 84 start-page: 285-297 year: 2001 publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.2001.0951 – volume: 34 start-page: 1427-1438 year: 2007 publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-006-0363-4 – volume: PAMI-8 start-page: 679-698 year: 1986 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 – volume: 57 start-page: 125-134 year: 2007 publication-title: Lung Cancer doi: 10.1016/j.lungcan.2007.03.020 – volume: 48 start-page: 932-945 year: 2007 publication-title: J. Nucl. Med. doi: 10.2967/jnumed.106.035774 – volume: 53 start-page: 4213-4230 year: 2008 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/16/001 – volume: 48 start-page: 78S-88S year: 2007 publication-title: J. Nucl. Med. – volume: 8 start-page: 1599-1606 year: 2008 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.10.025 – volume: 34 start-page: 722-736 year: 2007 publication-title: Med. Phys. doi: 10.1118/1.2432404 – publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 47 start-page: 1143-1160 year: 2002 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/47/7/310 – volume: 50 start-page: 27P year: 2009 publication-title: J. Nucl. Med. – volume: 69 start-page: 237-245 year: 2003 publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2003.10.009 – volume: 34 start-page: 4738 year: 2007 end-page: 4749 article-title: Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning publication-title: Med. Phys. – volume: 2007 year: 2007 article-title: Molecular image segmentation based on improved fuzzy clustering publication-title: Int. J. Biomed. Imaging – volume: 32 start-page: 245 year: 2006 end-page: 260 article-title: The current status of FDG‐PET in tumour volume definition in radiotherapy treatment planning publication-title: Cancer Treat Rev. – volume: 16 start-page: 1108 year: 2009 end-page: 1133 article-title: Molecular PET/CT imaging‐guided radiation therapy treatment planning publication-title: Acad. Radiol. – article-title: PET‐guided delineation of radiation therapy treatment volumes: A survey of image segmentation techniques publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 84 start-page: 285 year: 2001 end-page: 297 article-title: “Spatial models for fuzzy clustering publication-title: Comput. Vis. Image Underst. – volume: 21 start-page: 193 year: 2002 end-page: 199 article-title: A modified fuzzy c‐means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging – volume: 34 start-page: 1427 year: 2007 end-page: 1438 article-title: A gradient‐based method for segmenting FDG‐PET images: Methodology and validation publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 16 start-page: 129 year: 1999 end-page: 147 article-title: A fuzzy clustering based segmentation system as support to diagnosis in medical imaging publication-title: Artif. Intell. Med. – volume: 2 start-page: 645 year: 1998 end-page: 648 article-title: Clustering via the Bayesian information criterion with applications in speech recognition – volume: 354 start-page: 496 year: 2006 end-page: 507 article-title: Positron‐emission tomography and assessment of cancer therapy publication-title: N. Engl. J. Med. – year: 1998 – volume: 73 start-page: 456 year: 2009 end-page: 465 article-title: Tumor delineation based on time‐activity curve differences assessed with dynamic fluorodeoxyglucose positron emission tomography‐computed tomography in rectal cancer patients publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 34 start-page: 722 year: 2007 end-page: 736 article-title: Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model publication-title: Med. Phys. – volume: 40 start-page: 2464 year: 1992 end-page: 2482 article-title: The discrete wavelet transform: Wedding the a trous and Mallat algorithms publication-title: IEEE Trans. Signal Process. – volume: 37 start-page: 223 year: 2007 end-page: 239 article-title: Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: Implications for normal variation, aging and diseased states publication-title: Semin Nucl. Med. – volume: 233 start-page: 93 year: 2004 end-page: 100 article-title: Tumor volume in pharyngolaryngeal squamous cell carcinoma: Comparison at CT, MR imaging, and FDG PET and validation with surgical specimen publication-title: Radiology – volume: 33 start-page: 183 year: 2004 end-page: 185 article-title: Semi‐quantitative measurements of normal organs with variable metabolic activity on FDG PET imaging publication-title: Ann. Acad. Med. Singapore – volume: 20 start-page: 31 year: 1996 end-page: 41 article-title: Delineation and quantitation of brain lesions by fuzzy clustering in positron emission tomography publication-title: Comput. Med. Imaging Graph. – volume: 69 start-page: 267 year: 2007 end-page: 275 article-title: Feasibility of pathology‐correlated lung imaging for accurate target definition of lung tumors publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 36 start-page: 3654 year: 2009 end-page: 3670 article-title: Four‐dimensional (4D) image reconstruction strategies in dynamic PET: Beyond conventional independent frame reconstruction publication-title: Med. Phys. – volume: 22 start-page: 1063 year: 2003 end-page: 1075 article-title: An adaptive spatial fuzzy clustering algorithm for 3‐D MR image segmentation publication-title: IEEE Trans. Med. Imaging – volume: 3 start-page: 32 year: 1973 end-page: 57 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well‐separated clusters publication-title: IEEE Trans. Syst. Man Cybern. – volume: 35 start-page: 195 year: 1994 end-page: 211 article-title: Filtering and deconvolution by the wavelet transform publication-title: Signal Process. – volume: 53 start-page: 4213 year: 2008 end-page: 4230 article-title: Assessment of tumour response with 18F‐fluorodeoxyglucose positron emission tomography using 3‐dimensional measures compared to SUVmax—A phantom study publication-title: Phys. Med. Biol. – volume: 19 start-page: 309 year: 2009 end-page: 319 article-title: Novel modified fuzzy c‐means algorithm with applications publication-title: Digit. Signal Process. – start-page: 286 year: 1989 end-page: 297 – volume: 11 start-page: 1105 year: 2004 end-page: 1114 article-title: Post‐reconstruction filtering of positron emission tomography whole‐body emission images and attenuation maps using nonlinear diffusion filtering publication-title: Acad. Radiol. – volume: PAMI‐2 start-page: 1 year: 1980 end-page: 8 article-title: A convergence theorem for the fuzzy ISODATA clustering algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 13 start-page: 63 year: 2006 end-page: 72 article-title: A fuzzy C‐means (FCM)‐based approach for computerized segmentation of breast lesions in dynamic contrast‐enhanced MR images publication-title: Acad. Radiol. – volume: 28 start-page: 881 year: 2009 end-page: 893 article-title: A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET publication-title: IEEE Trans. Med. Imaging – volume: 47 start-page: 551 year: 2000 end-page: 560 article-title: Towards multidimensional radiotherapy (MD‐CRT): Biological imaging and biological conformality publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 34 start-page: 1907 year: 2004 end-page: 1916 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel‐induced distance measure publication-title: IEEE Trans. Syst., Man, Cybern., Part B: Cybern. – volume: 50 start-page: 27P year: 2009 article-title: Comparative methods for 18F‐FDG PET‐based delineation of target volumes in non‐small‐cell lung cancer [abstract] publication-title: J. Nucl. Med. – volume: 4 start-page: 2627 year: 2003 end-page: 2629 article-title: Automation segmentation of PET image for brain tumors – volume: 35 start-page: 3331 year: 2008 end-page: 3342 article-title: The development and testing of a digital PET phantom for the evaluation of tumor volume segmentation techniques publication-title: Med. Phys. – volume: 47 start-page: 1143 year: 2002 end-page: 1160 article-title: Fuzzy clustering‐based segmented attenuation correction in whole‐body PET imaging publication-title: Phys. Med. Biol. – year: 2007 – volume: 68 start-page: 771 year: 2007 end-page: 778 article-title: PET‐CT‐based auto‐contouring in non‐small‐cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes publication-title: Int. J. Radiat. Oncol., Biol., Phys. – volume: 6 start-page: 4242 year: 2007 end-page: 4245 article-title: Use of anatomical priors in the segmentation of PET lung tumor images – volume: 34 start-page: 4223 year: 2007 end-page: 4235 article-title: A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography publication-title: Med. Phys. – volume: 3 start-page: 229 year: 1994 end-page: 243 article-title: Restauration des images multi‐échelles par l'algorithme à trous publication-title: Trait. Signal – volume: 4 start-page: 3789 year: 2005 end-page: 3792 article-title: An automated volumetric segmentation system combining multiscale and statistical reasoning – volume: 13 start-page: 730 year: 1994 end-page: 742 article-title: MRI segmentation using fuzzy clustering techniques publication-title: IEEE Eng. Med. Biol. Mag. – volume: 17 start-page: 873 year: 1987 end-page: 877 article-title: Convergence theory for fuzzy c‐means: Counterexamples and repairs publication-title: IEEE Trans. Syst. Man Cybern. – volume: 48 start-page: 89 year: 2001 end-page: 97 article-title: Modeling respiratory mechanics in the MCAT and spline‐based MCAT phantoms publication-title: IEEE Trans. Nucl. Sci. – volume: 69 start-page: 247 year: 2003 end-page: 250 article-title: Tri‐dimensional automatic segmentation of PET volumes based on measured source‐to‐background ratios: Influence of reconstruction algorithms publication-title: Radiother. Oncol. – volume: 18 start-page: 737 year: 1999 end-page: 752 article-title: Adaptive fuzzy segmentation of magnetic resonance images publication-title: IEEE Trans. Med. Imaging – volume: 147 start-page: 185 year: 2000 end-page: 192 article-title: Fuzzy image clustering incorporating spatial continuity publication-title: IEEE Proc. Vision Image Signal Process – volume: 8 start-page: 1599 year: 2008 end-page: 1606 article-title: A new segmentation system for brain MR images based on fuzzy techniques publication-title: Appl. Soft Comput. – volume: 48 start-page: 78S year: 2007 end-page: 88S article-title: Improvements in cancer staging with PET/CT: Literature‐based evidence as of September 2006 publication-title: J. Nucl. Med. – volume: 91 start-page: 1649 year: 2003 end-page: 1669 article-title: Fuzzy connectedness and image segmentation publication-title: Proc. IEEE – volume: 30 start-page: 9 year: 2006 end-page: 15 article-title: Fuzzy c‐means clustering with spatial information for image segmentation publication-title: Comput. Med. Imaging Graph. – volume: 69 start-page: 237 year: 2003 end-page: 245 article-title: Evaluation of a multimodality image (CT, MRI and PET) coregistration procedure on phantom and head and neck cancer patients: Accuracy, reproducibility and consistency publication-title: Radiother. Oncol. – volume: 32 start-page: 685 year: 2008 end-page: 698 article-title: A modified FCM algorithm for MRI brain image segmentation using both local and non‐local spatial constraints publication-title: Comput. Med. Imaging Graph. – volume: 48 start-page: 68S year: 2007 end-page: 77S article-title: PET‐based treatment planning in radiotherapy: A new standard? publication-title: J. Nucl. Med. – volume: 12 start-page: 629 year: 1990 end-page: 639 article-title: Scale‐space and edge detection using anisotropic diffusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 57 start-page: 125 year: 2007 end-page: 134 article-title: Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non‐small cell lung cancer (NSCLC) publication-title: Lung Cancer – volume: 48 start-page: 932 year: 2007 end-page: 945 article-title: Partial‐volume effect in PET tumor imaging publication-title: J. Nucl. Med. – volume: 36 start-page: 182 year: 2009 end-page: 193 article-title: Assessment of various strategies for 18F‐FET PET‐guided delineation of target volumes in high‐grade glioma patients publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: PAMI‐8 start-page: 679 year: 1986 end-page: 698 article-title: A computational approach to edge detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 26 start-page: 581 year: 1999 end-page: 590 article-title: Automatic segmentation of dynamic neuroreceptor single‐photon emission tomography images using fuzzy clustering publication-title: Eur. J. Nucl. Med. – start-page: 2627 year: 2003 ident: e_1_2_7_26_1 – ident: e_1_2_7_17_1 doi: 10.1088/0031-9155/47/7/310 – ident: e_1_2_7_38_1 doi: 10.1109/TPAMI.1980.4766964 – ident: e_1_2_7_25_1 doi: 10.1016/0895-6111(96)00025-0 – ident: e_1_2_7_61_1 doi: 10.1016/j.ijrobp.2008.04.019 – volume: 3 start-page: 229 year: 1994 ident: e_1_2_7_48_1 article-title: Restauration des images multi‐échelles par l'algorithme à trous publication-title: Trait. Signal – ident: e_1_2_7_20_1 doi: 10.1155/2007/25182 – ident: e_1_2_7_58_1 doi: 10.1088/0031-9155/53/16/001 – ident: e_1_2_7_33_1 doi: 10.1016/j.asoc.2007.10.025 – start-page: 4242 year: 2007 ident: e_1_2_7_27_1 – ident: e_1_2_7_44_1 doi: 10.1109/78.157290 – ident: e_1_2_7_53_1 doi: 10.1148/radiol.2331030660 – ident: e_1_2_7_63_1 doi: 10.1118/1.2938518 – ident: e_1_2_7_64_1 doi: 10.1016/j.ijrobp.2007.04.065 – volume-title: Anisotropic Diffusion in Image Processing year: 1998 ident: e_1_2_7_40_1 – start-page: 3789 year: 2005 ident: e_1_2_7_49_1 – volume: 48 start-page: 78S year: 2007 ident: e_1_2_7_2_1 article-title: Improvements in cancer staging with PET/CT: Literature‐based evidence as of September 2006 publication-title: J. Nucl. Med. – ident: e_1_2_7_14_1 doi: 10.1053/j.semnuclmed.2007.01.005 – volume-title: Bayesian Statistical Modelling year: 2007 ident: e_1_2_7_34_1 – ident: e_1_2_7_22_1 doi: 10.1007/s002590050425 – ident: e_1_2_7_5_1 article-title: PET‐guided delineation of radiation therapy treatment volumes: A survey of image segmentation techniques publication-title: Eur. J. Nucl. Med. Mol. Imaging – ident: e_1_2_7_24_1 doi: 10.1109/51.334636 – start-page: 645 year: 1998 ident: e_1_2_7_35_1 – ident: e_1_2_7_29_1 doi: 10.1006/cviu.2001.0951 – ident: e_1_2_7_41_1 doi: 10.1109/TPAMI.1986.4767851 – ident: e_1_2_7_15_1 doi: 10.1016/S0933-3657(98)00069-4 – volume: 33 start-page: 183 year: 2004 ident: e_1_2_7_51_1 article-title: Semi‐quantitative measurements of normal organs with variable metabolic activity on FDG PET imaging publication-title: Ann. Acad. Med. Singapore doi: 10.47102/annals-acadmedsg.V33N2p183 – ident: e_1_2_7_21_1 doi: 10.1016/j.compmedimag.2008.08.004 – volume: 48 start-page: 68S year: 2007 ident: e_1_2_7_4_1 article-title: PET‐based treatment planning in radiotherapy: A new standard? publication-title: J. Nucl. Med. – ident: e_1_2_7_43_1 doi: 10.1118/1.3160108 – ident: e_1_2_7_8_1 doi: 10.1016/j.ctrv.2006.02.002 – ident: e_1_2_7_6_1 doi: 10.1056/NEJMra050276 – ident: e_1_2_7_10_1 doi: 10.1118/1.2432404 – ident: e_1_2_7_62_1 doi: 10.1118/1.2791035 – ident: e_1_2_7_59_1 doi: 10.1016/S0167-8140(03)00270-6 – ident: e_1_2_7_9_1 doi: 10.1007/s00259-008-0943-6 – ident: e_1_2_7_32_1 doi: 10.1016/j.dsp.2007.11.005 – ident: e_1_2_7_42_1 doi: 10.1016/j.acra.2004.07.012 – start-page: 286 volume-title: Wavelets, Time‐Frequency Methods and Phase Space year: 1989 ident: e_1_2_7_46_1 doi: 10.1007/978-3-642-97177-8_28 – ident: e_1_2_7_18_1 doi: 10.1109/TMI.2003.816956 – ident: e_1_2_7_12_1 doi: 10.1109/TMI.2008.2012036 – ident: e_1_2_7_55_1 doi: 10.1016/j.radonc.2003.10.009 – ident: e_1_2_7_7_1 doi: 10.1016/j.lungcan.2007.03.020 – ident: e_1_2_7_19_1 doi: 10.1016/j.compmedimag.2005.10.001 – ident: e_1_2_7_50_1 doi: 10.1109/23.910837 – ident: e_1_2_7_37_1 doi: 10.1109/TSMC.1987.6499296 – ident: e_1_2_7_45_1 doi: 10.1016/0165-1684(94)90211-9 – ident: e_1_2_7_31_1 doi: 10.1109/TSMCB.2004.831165 – ident: e_1_2_7_13_1 doi: 10.2967/jnumed.106.035774 – ident: e_1_2_7_16_1 doi: 10.1109/42.802752 – ident: e_1_2_7_30_1 doi: 10.1109/42.996338 – ident: e_1_2_7_28_1 doi: 10.1049/ip-vis:20000218 – ident: e_1_2_7_54_1 doi: 10.1007/s00259-006-0363-4 – ident: e_1_2_7_60_1 doi: 10.1109/JPROC.2003.817883 – ident: e_1_2_7_57_1 doi: 10.1016/j.acra.2009.02.014 – ident: e_1_2_7_39_1 doi: 10.1109/34.56205 – volume: 50 start-page: 27P year: 2009 ident: e_1_2_7_56_1 article-title: Comparative methods for 18F‐FDG PET‐based delineation of target volumes in non‐small‐cell lung cancer [abstract] publication-title: J. Nucl. Med. – ident: e_1_2_7_23_1 doi: 10.1016/j.acra.2005.08.035 – ident: e_1_2_7_3_1 doi: 10.1016/S0360-3016(00)00467-3 – volume: 3 start-page: 32 year: 1973 ident: e_1_2_7_36_1 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well‐separated clusters publication-title: IEEE Trans. Syst. Man Cybern. – ident: e_1_2_7_52_1 doi: 10.1016/j.ijrobp.2006.12.067 – ident: e_1_2_7_47_1 doi: 10.1017/CBO9780511564352 – ident: e_1_2_7_11_1 doi: 10.1118/1.2799886 |
| SSID | ssj0006350 |
| Score | 2.3944771 |
| Snippet | Purpose:
Accurate and robust image segmentation was identified as one of the most challenging issues facing PET quantification in oncological imaging. This... Accurate and robust image segmentation was identified as one of the most challenging issues facing PET quantification in oncological imaging. This difficulty... |
| SourceID | proquest pubmed crossref wiley scitation |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1309 |
| SubjectTerms | Algorithms anisotropic diffusion filtering Artificial Intelligence cancer Carcinoma, Non-Small-Cell Lung - diagnostic imaging cellular biophysics Computed tomography Diffusion discrete wavelet transforms FCM segmentation Fuzzy Logic Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods image segmentation Integral transforms intensity heterogeneity lung Lung Neoplasms - diagnostic imaging Medical image noise medical image processing Medical image segmentation Medical image spatial resolution Medical imaging Neural networks, fuzzy logic, artificial intelligence Pattern Recognition, Automated - methods phantoms Phantoms, Imaging positron emission tomography positron emission tomography (PET) Positron-Emission Tomography - instrumentation Positron-Emission Tomography - methods Reproducibility of Results Segmentation Sensitivity and Specificity tumours Wavelet transform Wavelets à trous wavelet transform |
| Title | A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET |
| URI | http://dx.doi.org/10.1118/1.3301610 https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.3301610 https://www.ncbi.nlm.nih.gov/pubmed/20384268 https://www.proquest.com/docview/733880695 |
| Volume | 37 |
| WOSCitedRecordID | wos000275160300038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2473-4209 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLc8Dj_IKj8oCVHEJbOykdsRptXTFgVYr1Ep7QLIc26Er7SbLZrMSPfET-I38EsZxNqiioEqcchk7ief1TWYyA_BKc5MzBOKhTbgJ48joMBMJqrsRNNu3CRWZHzbBj47EZJKOt-Dd5l8Y3x-i--DmNKOx107BVdZOIYlc4Xr0BkNxxCsYr29TlNu4B9vvP41OPnaGGH2p_wMljV0SIWkbC-Hyt93i8-7oD4x5C26gJ_JJ8fPwtfE_ozv_9eR34XYLO8nAy8k92LLFDlw_bBPrO3CtqQTV1X34PCBFubYzktdnZ9_I8Of3H3OL_oyo2ZdyOV2dzgniXFIXVb1wdqayhpy6mpoSRdGWdUVW9RwJvtbK1yE1b0WmBRkfHD-Ak9HB8fBD2I5gCHWC3i2MNLNZjmZAay1yjdGZMFGaK2WZRWBJlUsEKmYFZ4IalauYcoNcT3Wuo8wY9hB6RVnYx0AijdF2joBGM4RglqsspjGPNWVpRnW_H8DrDSfk5sjdmIyZ9HGKkJFszy2AFx3pwjfluIiIbNgpUWVcHkQ1xyA5cx1w9tMkgEeezd0utM8EYhYRwMuO7_-6Bb8E1UA2bJMN2-RQOqZduP-6XP5eJRcmD2CvkaO_7y0Px-7y5LKET-GmL39wRXTPoLda1vY5XNXr1bRa7sIVPhG7rRr9AkPkG3o |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NHTB44GMMCJ8WIMRLoImTxZF4qcqqIdqqQp20h0mWYztbpTYpTVOJPe1P2N-4v2TnOA2aGGgST3k5O4nv63e-8xngvYxUShGIuzqMlBt4SroJC1HdFfOTXR36LLGXTUTDITs8jEcb8GV9Fsb2h2g23IxmVPbaKLjZkK613FSue58wFkfAggH7ZoBiFLZg8-uP3kG_scToTO0RlDgwWYSw7iyEwz83g6_6oz9A5j3YQldks-JX8WvlgHoP_u_TH8L9GniSjpWUR7Chs224M6hT69twu6oFlcVjOOqQLF_pKUnL09NfpHtxdj7T6NGImB7ni8nyZEYQ6ZIyK8q5sTSFVuTEVNXkKIw6LwuyLGdI8LMUthKp-i0yychob7wDB729cXffrS9hcGWI_s31JNVJioZASslSifEZU16cCqGpRmjpC5MKFFSziDJfiVQEfqSQ77FMpZcoRZ9AK8sz_QyIJzHeThHSSIogTEciCfwgCqRP48SX7bYDH9es4Os1NxdlTLmNVBj3eL1uDrxtSOe2Lcd1RGTNT45KYzIholoGHlHTA2c3Dh14avnczOK3KUPUwhx41zD-X6-IbkDV4RXbeMU23uWGadfOv8oXv0fxuUod-FAJ0t_n5oOReTy_KeEb2NofD_q8_234_QXctcUQpqTuJbSWi1K_gltytZwUi9e1Nl0CjLYegg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VLZRy4FEeNc8VIMTFEHvteC1xidJGINooQq3UQ6XVeh80UmKncRypPfET-I38Ema9jlFFQZU4-TK7tveb2fnGM54FeCMTZSgScV_HifKjQEk_YzGau2Jh1tVxyDJ32EQyHLLj43S0Bh9X_8K4_hDtBzdrGfV-bQ1cz5RprNxWrgfvMRZHwoIB-0YUp100y43dr4Oj_XYnRmfqfkFJI5tFiJvOQjj8Qzv4sj_6g2TehlvoilxW_DJ_rR3Q4O7_Pfo9uNMQT9JzmnIf1nS-DZsHTWp9G27WtaCyfAAnPZIXSz0hprq4OCf9n99_TDV6NCIm34r5eHE6Jch0SZWX1czuNKVW5NRW1RSojLqoSrKopihwVglXiVS_FhnnZLR3-BCOBnuH_U9-cwiDL2P0b34gqc4MbgRSSmYkxmdMBakRQlON1DIUNhUoqGYJZaESRkRhohD3VBoZZErRR7CeF7neARJIjLcNUhpJkYTpRGRRGCWRDGmahbLT8eDdCgq-WnN7UMaEu0iF8YA36-bBq1Z05tpyXCVEVnhyNBqbCRH1MvCE2h443TT24LHDuZ0l7FCGrIV58LoF_l-3SK4h1eM1bLyGjfe5Be3K-ZfF_Pcojjrjwdtakf4-Nz8Y2cuT6wq-hM3R7oDvfx5-eQpbrhbCVtQ9g_XFvNLP4YZcLsbl_EVjTL8A6h4d_Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fuzzy+C-means+algorithm+for+unsupervised+heterogeneous+tumor+quantification+in+PET&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Belhassen%2C+Saoussen&rft.au=Zaidi%2C+Habib&rft.date=2010-03-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=37&rft.issue=3&rft.spage=1309&rft.epage=1324&rft_id=info:doi/10.1118%2F1.3301610 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |