A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets

Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 21; H. 22; S. 7731
Hauptverfasser: Pintelas, Emmanuel, Livieris, Ioannis E., Pintelas, Panagiotis E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 20.11.2021
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencoders constitute an unsupervised dimensionality reduction technique, proven to filter out noise and redundant information and create robust and stable feature representations. In this work, in order to resolve the problem of DL models’ vulnerability, we propose a convolutional autoencoder topological model for compressing and filtering out noise and redundant information from initial high dimensionality input images and then feeding this compressed output into convolutional neural networks. Our results reveal the efficiency of the proposed approach, leading to a significant performance improvement compared to Deep Learning models trained with the initial raw images.
AbstractList Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencoders constitute an unsupervised dimensionality reduction technique, proven to filter out noise and redundant information and create robust and stable feature representations. In this work, in order to resolve the problem of DL models' vulnerability, we propose a convolutional autoencoder topological model for compressing and filtering out noise and redundant information from initial high dimensionality input images and then feeding this compressed output into convolutional neural networks. Our results reveal the efficiency of the proposed approach, leading to a significant performance improvement compared to Deep Learning models trained with the initial raw images.Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencoders constitute an unsupervised dimensionality reduction technique, proven to filter out noise and redundant information and create robust and stable feature representations. In this work, in order to resolve the problem of DL models' vulnerability, we propose a convolutional autoencoder topological model for compressing and filtering out noise and redundant information from initial high dimensionality input images and then feeding this compressed output into convolutional neural networks. Our results reveal the efficiency of the proposed approach, leading to a significant performance improvement compared to Deep Learning models trained with the initial raw images.
Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencoders constitute an unsupervised dimensionality reduction technique, proven to filter out noise and redundant information and create robust and stable feature representations. In this work, in order to resolve the problem of DL models’ vulnerability, we propose a convolutional autoencoder topological model for compressing and filtering out noise and redundant information from initial high dimensionality input images and then feeding this compressed output into convolutional neural networks. Our results reveal the efficiency of the proposed approach, leading to a significant performance improvement compared to Deep Learning models trained with the initial raw images.
Author Livieris, Ioannis E.
Pintelas, Emmanuel
Pintelas, Panagiotis E.
AuthorAffiliation 2 Core Innovation and Technology O.E., 11745 Athens, Greece; livieris@upatras.gr
1 Department of Mathematics, University of Patras, 26500 Patras, Greece; pintelas@math.upatras.gr
AuthorAffiliation_xml – name: 1 Department of Mathematics, University of Patras, 26500 Patras, Greece; pintelas@math.upatras.gr
– name: 2 Core Innovation and Technology O.E., 11745 Athens, Greece; livieris@upatras.gr
Author_xml – sequence: 1
  givenname: Emmanuel
  surname: Pintelas
  fullname: Pintelas, Emmanuel
– sequence: 2
  givenname: Ioannis E.
  orcidid: 0000-0002-3996-3301
  surname: Livieris
  fullname: Livieris, Ioannis E.
– sequence: 3
  givenname: Panagiotis E.
  orcidid: 0000-0001-8436-2743
  surname: Pintelas
  fullname: Pintelas, Panagiotis E.
BookMark eNptkktr3DAQgE1JaR7tof_A0Et72EQaybZ8KSybtlkI7WXv6lgPR4ssbSU7sP8-zm4ISehJg_TNx2hmzouTEIMpis-UXDLWkqsMFKBpGH1XnFEOfCEAyMmL-LQ4z3lLCDDGxIfilHExB6Q6K_4uy1UM99FPo4sBfbmcxmiCitqkchN30cd-X9qYypXHnJ11Ch_J0oXyxvV3i2s3mJCPub-jy_tyPWBvymscMZsxfyzeW_TZfHo6L4rNzx-b1c3i9s-v9Wp5u1AVhXFhG85Zx2vSdqa1vDYokHeaQ4O0gU50QlneaIMtQE1IBYQogrUWIKDhyC6K9VGrI27lLrkB015GdPJwEVMvMY1OeSMrralRAi2rkFfAEEBrrsGKtq4aS2bX96NrN3WD0cqEMaF_JX39Etyd7OO9FDUAq9tZ8PVJkOK_yeRRDi4r4z0GE6cs5x9wQlrR8hn98gbdxinNzTxQQEVFGjpT346USjHnZOxzMZTIxxWQzysws1dvWOXGw8zmWp3_T8YDnD-zNA
CitedBy_id crossref_primary_10_1007_s10278_023_00933_7
crossref_primary_10_1016_j_csbj_2022_10_016
crossref_primary_10_3390_rs15010185
crossref_primary_10_1016_j_tcs_2022_05_017
crossref_primary_10_3390_jimaging9100224
crossref_primary_10_1109_JRFID_2024_3487303
crossref_primary_10_3390_s25113515
crossref_primary_10_1002_nbm_5012
crossref_primary_10_1016_j_engappai_2022_104978
crossref_primary_10_1038_s41698_025_00866_0
crossref_primary_10_4018_JOEUC_377798
crossref_primary_10_1371_journal_pdig_0000391
crossref_primary_10_3390_math11143063
crossref_primary_10_1145_3703457
crossref_primary_10_3390_s23249697
crossref_primary_10_3390_electronics14081556
crossref_primary_10_3390_w14142211
crossref_primary_10_3233_IDT_230382
crossref_primary_10_1080_17686733_2025_2458952
crossref_primary_10_1155_2023_1495642
crossref_primary_10_3390_inventions8050129
crossref_primary_10_3390_electronics12092088
crossref_primary_10_3390_s23052770
Cites_doi 10.1007/978-3-030-58610-2_6
10.1007/s10994-019-05855-6
10.1007/978-3-319-70096-0_39
10.1109/CVPR.2017.243
10.1109/CVPR.2007.383092
10.1109/ICCV.2019.00009
10.1109/ACCESS.2019.2905015
10.1007/978-3-030-79150-6_17
10.1080/01621459.1993.10476358
10.1007/978-1-4419-9326-7
10.1109/CVPR.2016.90
10.3390/jimaging6060037
10.1109/TGRS.2019.2908756
10.1109/ACCESS.2021.3064819
10.1007/s00521-015-1939-3
10.1109/CVPR.2009.5206811
10.1109/EMBC.2018.8513469
10.1007/s00521-021-06141-0
10.1109/TAES.2018.2799758
10.1109/TIP.2003.818640
10.1007/s40747-021-00428-4
10.1016/j.tplants.2015.10.015
10.1109/CVPR.2018.00474
10.1007/978-981-13-5841-8_59
10.1007/978-1-4419-9326-7_1
10.1109/TNNLS.2014.2330900
10.1016/j.neucom.2015.11.044
10.3390/electronics10030287
10.1109/TMI.2013.2239307
10.1214/aoms/1177704575
10.1007/978-3-319-43162-8
10.5201/ipol.2011.bcm_nlm
10.1109/CVPR.2007.382979
10.1109/TNNLS.2018.2876865
10.1007/978-3-030-12939-2_43
10.1007/978-3-030-49190-1_15
10.1109/GlobalSIP.2013.6737083
10.3390/s20061546
10.1109/BHI50953.2021.9508577
10.3390/a13010017
10.3390/a13060140
10.1007/s12530-019-09324-2
10.1109/CVPR42600.2020.00505
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21227731
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_5dd1ec8af35a4523a22dd4d2f89657f0
PMC8622369
10_3390_s21227731
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c512t-f7443b4609be9f46ea8a4bd427a172b8b8cf47dea9226005200c0a6d828274a3
IEDL.DBID PIMPY
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778251600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:37:04 EDT 2025
Tue Nov 04 01:48:24 EST 2025
Fri Sep 05 13:52:55 EDT 2025
Tue Oct 07 07:07:44 EDT 2025
Sat Nov 29 07:15:46 EST 2025
Tue Nov 18 22:39:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-f7443b4609be9f46ea8a4bd427a172b8b8cf47dea9226005200c0a6d828274a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3996-3301
0000-0001-8436-2743
OpenAccessLink https://www.proquest.com/publiccontent/docview/2602185071?pq-origsite=%requestingapplication%
PMID 34833805
PQID 2602185071
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_5dd1ec8af35a4523a22dd4d2f89657f0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8622369
proquest_miscellaneous_2604009894
proquest_journals_2602185071
crossref_primary_10_3390_s21227731
crossref_citationtrail_10_3390_s21227731
PublicationCentury 2000
PublicationDate 20211120
PublicationDateYYYYMMDD 2021-11-20
PublicationDate_xml – month: 11
  year: 2021
  text: 20211120
  day: 20
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Wickramasinghe (ref_5) 2021; 9
Pintelas (ref_55) 2021; 33
Powers (ref_41) 2011; 2
Shao (ref_2) 2014; 26
ref_14
ref_13
ref_12
ref_56
ref_11
ref_54
ref_52
ref_51
Sun (ref_17) 2016; 27
ref_19
Singh (ref_32) 2016; 21
ref_16
ref_15
Livieris (ref_49) 2020; 12
ref_25
Finner (ref_47) 1993; 88
ref_23
Hoos (ref_53) 2020; 109
ref_22
ref_21
ref_20
Xu (ref_31) 2014; 27
ref_29
ref_28
ref_27
ref_26
Sadeghi (ref_33) 2013; 32
Zabalza (ref_6) 2016; 185
Hodges (ref_46) 1962; 33
ref_36
ref_35
ref_34
ref_30
(ref_24) 2018; 54
Mei (ref_18) 2019; 57
ref_39
ref_38
ref_37
Pan (ref_40) 2019; 7
Zhao (ref_1) 2019; 30
ref_44
ref_43
ref_42
ref_3
Ilesanmi (ref_7) 2021; 7
ref_48
ref_9
ref_8
Portilla (ref_10) 2003; 12
ref_4
Buades (ref_45) 2011; 1
References_xml – ident: ref_9
– ident: ref_39
  doi: 10.1007/978-3-030-58610-2_6
– volume: 109
  start-page: 373
  year: 2020
  ident: ref_53
  article-title: A survey on semi-supervised learning
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-019-05855-6
– ident: ref_14
  doi: 10.1007/978-3-319-70096-0_39
– ident: ref_26
  doi: 10.1109/CVPR.2017.243
– ident: ref_12
  doi: 10.1109/CVPR.2007.383092
– ident: ref_36
  doi: 10.1109/ICCV.2019.00009
– volume: 7
  start-page: 36322
  year: 2019
  ident: ref_40
  article-title: Recent progress on generative adversarial networks (GANs): A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2905015
– ident: ref_28
  doi: 10.1007/978-3-030-79150-6_17
– volume: 88
  start-page: 920
  year: 1993
  ident: ref_47
  article-title: On a monotonicity problem in step-down multiple test procedures
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476358
– ident: ref_51
  doi: 10.1007/978-1-4419-9326-7
– ident: ref_35
– ident: ref_23
– ident: ref_25
  doi: 10.1109/CVPR.2016.90
– ident: ref_54
  doi: 10.3390/jimaging6060037
– volume: 57
  start-page: 6808
  year: 2019
  ident: ref_18
  article-title: Unsupervised spatial–spectral feature learning by 3D convolutional autoencoder for hyperspectral classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2908756
– volume: 9
  start-page: 40511
  year: 2021
  ident: ref_5
  article-title: ResNet Autoencoders for Unsupervised Feature Learning From High-Dimensional Data: Deep Models Resistant to Performance Degradation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064819
– ident: ref_8
– volume: 27
  start-page: 1361
  year: 2016
  ident: ref_17
  article-title: Learning a good representation with unsymmetrical auto-encoder
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1939-3
– ident: ref_4
– ident: ref_21
  doi: 10.1109/CVPR.2009.5206811
– ident: ref_13
  doi: 10.1109/EMBC.2018.8513469
– volume: 33
  start-page: 15171
  year: 2021
  ident: ref_55
  article-title: A novel explainable image classification framework: Case study on skin cancer and plant disease prediction
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06141-0
– volume: 54
  start-page: 1709
  year: 2018
  ident: ref_24
  article-title: Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2018.2799758
– volume: 12
  start-page: 1338
  year: 2003
  ident: ref_10
  article-title: Image denoising using scale mixtures of Gaussians in the wavelet domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.818640
– volume: 27
  start-page: 1790
  year: 2014
  ident: ref_31
  article-title: Deep convolutional neural network for image deconvolution
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  start-page: 2179
  year: 2021
  ident: ref_7
  article-title: Methods for image denoising using convolutional neural network: A review
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00428-4
– volume: 21
  start-page: 110
  year: 2016
  ident: ref_32
  article-title: Machine learning for high-throughput stress phenotyping in plants
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.10.015
– ident: ref_38
– ident: ref_27
  doi: 10.1109/CVPR.2018.00474
– ident: ref_20
  doi: 10.1007/978-981-13-5841-8_59
– ident: ref_52
  doi: 10.1007/978-1-4419-9326-7_1
– volume: 26
  start-page: 1019
  year: 2014
  ident: ref_2
  article-title: Transfer learning for visual categorization: A survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2330900
– volume: 185
  start-page: 1
  year: 2016
  ident: ref_6
  article-title: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.044
– volume: 2
  start-page: 37
  year: 2011
  ident: ref_41
  article-title: Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation
  publication-title: J. Mach. Learn. Technol.
– ident: ref_43
  doi: 10.3390/electronics10030287
– ident: ref_3
– volume: 32
  start-page: 849
  year: 2013
  ident: ref_33
  article-title: Detection and analysis of irregular streaks in dermoscopic images of skin lesions
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2239307
– volume: 33
  start-page: 482
  year: 1962
  ident: ref_46
  article-title: Rank methods for combination of independent experiments in analysis of variance
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704575
– ident: ref_16
  doi: 10.1007/978-3-319-43162-8
– volume: 1
  start-page: 208
  year: 2011
  ident: ref_45
  article-title: Non-local means denoising, image processing on line
  publication-title: Image Process. On Line
  doi: 10.5201/ipol.2011.bcm_nlm
– ident: ref_11
  doi: 10.1109/CVPR.2007.382979
– ident: ref_37
– ident: ref_44
– volume: 30
  start-page: 3212
  year: 2019
  ident: ref_1
  article-title: Object detection with deep learning: A review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– ident: ref_30
  doi: 10.1007/978-3-030-12939-2_43
– ident: ref_42
  doi: 10.1007/978-3-030-49190-1_15
– ident: ref_22
  doi: 10.1109/GlobalSIP.2013.6737083
– ident: ref_15
  doi: 10.3390/s20061546
– ident: ref_48
  doi: 10.1109/BHI50953.2021.9508577
– ident: ref_29
– ident: ref_19
– ident: ref_56
  doi: 10.3390/a13010017
– ident: ref_50
  doi: 10.3390/a13060140
– volume: 12
  start-page: 155
  year: 2020
  ident: ref_49
  article-title: On ensemble techniques of weight-constrained neural networks
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-019-09324-2
– ident: ref_34
  doi: 10.1109/CVPR42600.2020.00505
SSID ssj0023338
Score 2.5284836
Snippet Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7731
SubjectTerms Classification
computer vision
convolutional autoencoders
convolutional neural networks
Datasets
Deep learning
dimensionality reduction
image classification
Machine learning
Noise
Parameter estimation
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KyKE9lDRtqZs0KKWHXkzWkmxZxzQfJBCWHpaSm6sv04XWLmtvIP--M7J3WUOgl1ytsZFGI817eHgD8KXInQozr9PglEhljSfdYppLs-CMzXMfitiS5cedms_L-3v9fafVF9WEDfLAg-POcu_xvdLUIjcSWZPh3HvpeV1q_Ewd2Tqing2ZGqmWQOY16AgJJPVnHV7QXCmRTbJPFOmfIMtpXeROork-gNcjQmTnw8zewIvQHMKrHd3At_DznF20zcMYNWS87ltSpPRhxRZD24NHhnCUxZ6XVA0UN4AtG0aFHeklafoPehxs3i67R3b7By8Wdml6zGp99w4W11eLi5t0bJWQOszYfVorKYWVxUzboGtZBFMaab3kyiBCsaUtXS2VD0ZzUqQnrSU3M4VHvoW01Ij3sNe0TfgAzAtbzzIXfIlIiZvcOKkDydZZk2snVQJfNx6s3CgjTt0sfldIJ8jZ1dbZCXzemv4dtDOeMvpG27A1ILnr-ACDoBqDoPpfECRwvNnEajyDXYULRfxCeDeB0-0wnh76JWKa0K6jjSRJVS0TUJPNn0xoOtIsf0UdbiSDXBT643Os4AhecqqWyTK8t45hr1-twyfYdw_9sludxOD-B26gAl0
  priority: 102
  providerName: Directory of Open Access Journals
Title A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
URI https://www.proquest.com/docview/2602185071
https://www.proquest.com/docview/2604009894
https://pubmed.ncbi.nlm.nih.gov/PMC8622369
https://doaj.org/article/5dd1ec8af35a4523a22dd4d2f89657f0
Volume 21
WOSCitedRecordID wos000778251600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc48EYElsogDlyiNokTxye0j65Yia0qVKFyCo7tQCVIliZdaS_8dmacNGwkxImLD8lIsTRve_J9AG-SWAs7M9K3WkQ-L9DTc0xzfmC1yuPY2MRRsnz6IBaLdL2Wy-736Lobq9zHRBeoW7RnmtvGIDw1laYT8ylW4ZibqJZ5d_nTJw4pumvtCDUOYEzAW-kIxsvzi-XnvgGLsB9r0YUibPWnNYbtUIgoGOQkB90_qDeH05I30s_Z_f-78QdwrytD2VFrNw_hli0fwd0b4ISP4csRO6nKq840SXjXVAR7aeyWrVpuhWuGNS9zxJo0cuS0zDYlo-kR_5SIA1rQD7aoNvU1O_-B0YudqgZTZ1M_gdXZfHXy3u_4GHyNZUHjF4LzKOfJTOZWFjyxKlU8NzwUCsugPM1TXXBhrJIhwd4ToJOeqcRgU4e9r4qewqisSvsMmInyYhZoa1Isx0IVK82lJWy8XMVSc-HB271CMt1hlRNlxvcMexbSXdbrzoPXvehlC9DxN6Fj0movQJja7kG1_Zp1LprFxqCFpqqIYsWxP1dhaAw3YZFKNNhi5sHhXsFZ5-h19kefHrzqX6OL0r2LKm21czKccFsl90AMbGmwoeGbcvPNgX1jxxlGiXz-74-_gDshDdsEAYa9Qxg12519Cbf1VbOptxM4EGvh1nQC4-P5Yvlx4g4fcL34NZ90fvIbtj0iYg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceCMCBRYEEherzu7a6z0gVBqqRg0RhwjlZta7a4gEdomdovwo_iMztpPWEuLWA1d75Oc3L-_4-wBexZFVPnQ68FaJQObo6RmmuWDorcmiyPm4kWT5PFHTaTKf60878HvzLwyNVW5iYhOoXWnpG_k-1t2Yjah6eXf6MyDVKFpd3UhotLA48etf2LJVb8cjfL-vOT_6MDs8DjpVgcBicquDXEkpMhmHOvM6l7E3iZGZk1wZTOZZkiU2l8p5ozmRtxMtkQ1N7LA1wQ7OCDzsFbiKYVzRBJman_d3Atu9lrxICB3uV5gVuFJi2Et5jTJAr5ztD2NeyG5Ht_-z53IHbnVlNDtocX8XdnxxD25eIFe8D18O2GFZnHWuRcaruiTaTueXbNZqQ6wZ1uysEQalkakGpWxRMJp-CUYkfNCSlrBpuajWbPwDoy8bmRpTf109gNll3OFD2C3Kwj8C5kSWh0PrXYLlJDeRsVJ74vbLTKStVAN4s3njqe241kny43uKPReBI92CYwAvt6anLcHI34zeE2y2BsQJ3mwol1_TLsSkkXPoYYnJRWRkxIXh3DnpeJ5odLg8HMDeBkFpF6iq9Bw-A3ix3Y0hhtaNTOHLVWMjiXdWywGoHlh7F9TfUyy-NWTl2DFzEevH_z75c7h-PPs4SSfj6ckTuMFpcGg4xBC-B7v1cuWfwjV7Vi-q5bPG5RiklwzlPzUyaok
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceBYRKLAgkLhYcXbXXu8BodIQEbWKeohQb2a9u4ZIYJfYKcpP498xYztpLSFuPXC1R35-8_KOvw_gdRxZ5UOnA2-VCGSOnp5hmgtG3posipyPG0mWz8dqNktOT_XJDvze_AtDY5WbmNgEalda-kY-xLobsxFVL8O8G4s4GU_en_0MSEGKVlo3chotRI78-he2b9W76Rjf9RvOJx_nh5-CTmEgsJjo6iBXUopMxqHOvM5l7E1iZOYkVwYTe5Zkic2lct5oTkTuRFFkQxM7bFOwmzMCD3sNrishFKlGqNOLXk9g69cSGQmhw2GFGYIrJUa99NeoBPRK2_5g5qVMN7n7Hz-je3CnK6_ZQesP92HHFw_g9iXSxYfw5YAdlsV553JkvKpLovN0fsnmrWbEmmEtzxrBUBqlatDLFgWjqZhgTIIILZkJm5WLas2mPzAqs7GpsSSoqz2YX8UdPoLdoiz8Y2BOZHk4st4lWGZyExkrtSfOv8xE2ko1gLebt5_ajoOdpEC-p9iLEVDSLVAG8GpretYSj_zN6ANBaGtAXOHNhnL5Ne1CTxo5h56XmFxERkZcGM6dk47niUZHzMMB7G_QlHYBrEovoDSAl9vdGHpoPckUvlw1NpL4aLUcgOoBt3dB_T3F4ltDYo6dNBexfvLvk7-Am4jg9Hg6O3oKtzjNE41GGNn3YbdervwzuGHP60W1fN54H4P0ipH8B0mBcz0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convolutional+Autoencoder+Topology+for+Classification+in+High-Dimensional+Noisy+Image+Datasets&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Pintelas%2C+Emmanuel&rft.au=Livieris%2C+Ioannis+E&rft.au=Pintelas%2C+Panagiotis+E&rft.date=2021-11-20&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=22&rft.spage=7731&rft_id=info:doi/10.3390%2Fs21227731&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon