Endoscopic detection and differentiation of esophageal lesions using a deep neural network

Diagnosing esophageal squamous cell carcinoma (SCC) depends on individual physician expertise and may be subject to interobserver variability. Therefore, we developed a computerized image-analysis system to detect and differentiate esophageal SCC. A total of 9591 nonmagnified endoscopy (non-ME) and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Gastrointestinal endoscopy Ročník 91; číslo 2; s. 301 - 309.e1
Hlavní autori: Ohmori, Masayasu, Ishihara, Ryu, Aoyama, Kazuharu, Nakagawa, Kentaro, Iwagami, Hiroyoshi, Matsuura, Noriko, Shichijo, Satoki, Yamamoto, Katsumi, Nagaike, Koji, Nakahara, Masanori, Inoue, Takuya, Aoi, Kenji, Okada, Hiroyuki, Tada, Tomohiro
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 01.02.2020
Predmet:
ISSN:0016-5107, 1097-6779, 1097-6779
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Diagnosing esophageal squamous cell carcinoma (SCC) depends on individual physician expertise and may be subject to interobserver variability. Therefore, we developed a computerized image-analysis system to detect and differentiate esophageal SCC. A total of 9591 nonmagnified endoscopy (non-ME) and 7844 ME images of pathologically confirmed superficial esophageal SCCs and 1692 non-ME and 3435 ME images from noncancerous lesions or normal esophagus were used as training image data. Validation was performed using 255 non-ME white-light images, 268 non-ME narrow-band images/blue-laser images, and 204 ME narrow-band images/blue-laser images from 135 patients. The same validation test data were diagnosed by 15 board-certified specialists (experienced endoscopists). Regarding diagnosis by non-ME with narrow-band imaging/blue-laser imaging, the sensitivity, specificity, and accuracy were 100%, 63%, and 77%, respectively, for the artificial intelligence (AI) system and 92%, 69%, and 78%, respectively, for the experienced endoscopists. Regarding diagnosis by non-ME with white-light imaging, the sensitivity, specificity, and accuracy were 90%, 76%, and 81%, respectively, for the AI system and 87%, 67%, and 75%, respectively, for the experienced endoscopists. Regarding diagnosis by ME, the sensitivity, specificity, and accuracy were 98%, 56%, and 77%, respectively, for the AI system and 83%, 70%, and 76%, respectively, for the experienced endoscopists. There was no significant difference in the diagnostic performance between the AI system and the experienced endoscopists. Our AI system showed high sensitivity for detecting SCC by non-ME and high accuracy for differentiating SCC from noncancerous lesions by ME.
AbstractList Diagnosing esophageal squamous cell carcinoma (SCC) depends on individual physician expertise and may be subject to interobserver variability. Therefore, we developed a computerized image-analysis system to detect and differentiate esophageal SCC.BACKGROUND AND AIMSDiagnosing esophageal squamous cell carcinoma (SCC) depends on individual physician expertise and may be subject to interobserver variability. Therefore, we developed a computerized image-analysis system to detect and differentiate esophageal SCC.A total of 9591 nonmagnified endoscopy (non-ME) and 7844 ME images of pathologically confirmed superficial esophageal SCCs and 1692 non-ME and 3435 ME images from noncancerous lesions or normal esophagus were used as training image data. Validation was performed using 255 non-ME white-light images, 268 non-ME narrow-band images/blue-laser images, and 204 ME narrow-band images/blue-laser images from 135 patients. The same validation test data were diagnosed by 15 board-certified specialists (experienced endoscopists).METHODSA total of 9591 nonmagnified endoscopy (non-ME) and 7844 ME images of pathologically confirmed superficial esophageal SCCs and 1692 non-ME and 3435 ME images from noncancerous lesions or normal esophagus were used as training image data. Validation was performed using 255 non-ME white-light images, 268 non-ME narrow-band images/blue-laser images, and 204 ME narrow-band images/blue-laser images from 135 patients. The same validation test data were diagnosed by 15 board-certified specialists (experienced endoscopists).Regarding diagnosis by non-ME with narrow-band imaging/blue-laser imaging, the sensitivity, specificity, and accuracy were 100%, 63%, and 77%, respectively, for the artificial intelligence (AI) system and 92%, 69%, and 78%, respectively, for the experienced endoscopists. Regarding diagnosis by non-ME with white-light imaging, the sensitivity, specificity, and accuracy were 90%, 76%, and 81%, respectively, for the AI system and 87%, 67%, and 75%, respectively, for the experienced endoscopists. Regarding diagnosis by ME, the sensitivity, specificity, and accuracy were 98%, 56%, and 77%, respectively, for the AI system and 83%, 70%, and 76%, respectively, for the experienced endoscopists. There was no significant difference in the diagnostic performance between the AI system and the experienced endoscopists.RESULTSRegarding diagnosis by non-ME with narrow-band imaging/blue-laser imaging, the sensitivity, specificity, and accuracy were 100%, 63%, and 77%, respectively, for the artificial intelligence (AI) system and 92%, 69%, and 78%, respectively, for the experienced endoscopists. Regarding diagnosis by non-ME with white-light imaging, the sensitivity, specificity, and accuracy were 90%, 76%, and 81%, respectively, for the AI system and 87%, 67%, and 75%, respectively, for the experienced endoscopists. Regarding diagnosis by ME, the sensitivity, specificity, and accuracy were 98%, 56%, and 77%, respectively, for the AI system and 83%, 70%, and 76%, respectively, for the experienced endoscopists. There was no significant difference in the diagnostic performance between the AI system and the experienced endoscopists.Our AI system showed high sensitivity for detecting SCC by non-ME and high accuracy for differentiating SCC from noncancerous lesions by ME.CONCLUSIONSOur AI system showed high sensitivity for detecting SCC by non-ME and high accuracy for differentiating SCC from noncancerous lesions by ME.
Diagnosing esophageal squamous cell carcinoma (SCC) depends on individual physician expertise and may be subject to interobserver variability. Therefore, we developed a computerized image-analysis system to detect and differentiate esophageal SCC. A total of 9591 nonmagnified endoscopy (non-ME) and 7844 ME images of pathologically confirmed superficial esophageal SCCs and 1692 non-ME and 3435 ME images from noncancerous lesions or normal esophagus were used as training image data. Validation was performed using 255 non-ME white-light images, 268 non-ME narrow-band images/blue-laser images, and 204 ME narrow-band images/blue-laser images from 135 patients. The same validation test data were diagnosed by 15 board-certified specialists (experienced endoscopists). Regarding diagnosis by non-ME with narrow-band imaging/blue-laser imaging, the sensitivity, specificity, and accuracy were 100%, 63%, and 77%, respectively, for the artificial intelligence (AI) system and 92%, 69%, and 78%, respectively, for the experienced endoscopists. Regarding diagnosis by non-ME with white-light imaging, the sensitivity, specificity, and accuracy were 90%, 76%, and 81%, respectively, for the AI system and 87%, 67%, and 75%, respectively, for the experienced endoscopists. Regarding diagnosis by ME, the sensitivity, specificity, and accuracy were 98%, 56%, and 77%, respectively, for the AI system and 83%, 70%, and 76%, respectively, for the experienced endoscopists. There was no significant difference in the diagnostic performance between the AI system and the experienced endoscopists. Our AI system showed high sensitivity for detecting SCC by non-ME and high accuracy for differentiating SCC from noncancerous lesions by ME.
Author Yamamoto, Katsumi
Nakahara, Masanori
Okada, Hiroyuki
Aoyama, Kazuharu
Inoue, Takuya
Ohmori, Masayasu
Aoi, Kenji
Matsuura, Noriko
Tada, Tomohiro
Iwagami, Hiroyoshi
Nakagawa, Kentaro
Shichijo, Satoki
Nagaike, Koji
Ishihara, Ryu
Author_xml – sequence: 1
  givenname: Masayasu
  surname: Ohmori
  fullname: Ohmori, Masayasu
  organization: Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
– sequence: 2
  givenname: Ryu
  surname: Ishihara
  fullname: Ishihara, Ryu
  organization: Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
– sequence: 3
  givenname: Kazuharu
  surname: Aoyama
  fullname: Aoyama, Kazuharu
  organization: AI Medical Service Inc, Tokyo, Japan
– sequence: 4
  givenname: Kentaro
  surname: Nakagawa
  fullname: Nakagawa, Kentaro
  organization: Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
– sequence: 5
  givenname: Hiroyoshi
  surname: Iwagami
  fullname: Iwagami, Hiroyoshi
  organization: Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
– sequence: 6
  givenname: Noriko
  surname: Matsuura
  fullname: Matsuura, Noriko
  organization: Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
– sequence: 7
  givenname: Satoki
  surname: Shichijo
  fullname: Shichijo, Satoki
  organization: Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
– sequence: 8
  givenname: Katsumi
  surname: Yamamoto
  fullname: Yamamoto, Katsumi
  organization: Department of Gastroenterology, Japan Community Healthcare Organization, Osaka Hospital, Osaka, Japan
– sequence: 9
  givenname: Koji
  surname: Nagaike
  fullname: Nagaike, Koji
  organization: Department of Gastroenterology, Suita Municipal Hospital, Osaka, Japan
– sequence: 10
  givenname: Masanori
  surname: Nakahara
  fullname: Nakahara, Masanori
  organization: Department of Gastroenterology, Ikeda Municipal Hospital, Osaka, Japan
– sequence: 11
  givenname: Takuya
  surname: Inoue
  fullname: Inoue, Takuya
  organization: Department of Gastroenterology, Osaka General Medical Center, Osaka, Japan
– sequence: 12
  givenname: Kenji
  surname: Aoi
  fullname: Aoi, Kenji
  organization: Department of Gastroenterology, Kaiduka City Hospital, Osaka, Japan
– sequence: 13
  givenname: Hiroyuki
  surname: Okada
  fullname: Okada, Hiroyuki
  organization: Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
– sequence: 14
  givenname: Tomohiro
  surname: Tada
  fullname: Tada, Tomohiro
  organization: AI Medical Service Inc, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31585124$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rHCEYgKWkNJuPH5BLmGMus3kddZwlpxDSDwj00l56EUdft25mdaIzKfn3dbNpDjmkIAivzyPyeEQOQgxIyBmFJQXaXm6Wa4_LBuhqCWUx_oEsKKxk3Uq5OiALKFAtKMhDcpTzBgC6htFP5JBR0Qna8AX5dRtszCaO3lQWJzSTj6HSwVbWO4cJw-T18yy6CnMcf-s16qEaMJdhrubsw7rSxcWxCjinchZw-hPT_Qn56PSQ8fRlPyY_P9_-uPla333_8u3m-q425QlTjQKg7500fYeUubbVTjIOHfLONQyBGS5boTmXFl3fcUCuhbRGCt1K4Xp2TC72944pPsyYJ7X12eAw6IBxzqphQDmnvBEFPX9B536LVo3Jb3V6Uv96FIDuAZNizgndK0JB7ZqrjSrN1a65grLYzpFvHOOn52ZT0n5417zam1jyPHpMKhuPwaD1qfyEstG_a6_e2GbwwRs93OPTf9y_LVivQw
CitedBy_id crossref_primary_10_1007_s11517_023_02777_3
crossref_primary_10_1136_gutjnl_2021_326271
crossref_primary_10_3748_wjg_v27_i40_6794
crossref_primary_10_1007_s00464_021_08666_w
crossref_primary_10_3390_diagnostics13193023
crossref_primary_10_3389_fphy_2022_1033422
crossref_primary_10_1007_s12672_023_00694_3
crossref_primary_10_1016_j_inffus_2022_11_023
crossref_primary_10_1038_s41598_021_87405_6
crossref_primary_10_1002_lary_29894
crossref_primary_10_1007_s11938_021_00353_y
crossref_primary_10_1109_TAI_2021_3134600
crossref_primary_10_1259_bjr_20210934
crossref_primary_10_1177_26345161231211752
crossref_primary_10_1111_den_13908
crossref_primary_10_1016_j_gie_2020_05_043
crossref_primary_10_1093_dote_doac010
crossref_primary_10_3390_cancers14235996
crossref_primary_10_1007_s00521_024_09615_z
crossref_primary_10_1097_JS9_0000000000002748
crossref_primary_10_3390_diagnostics11040694
crossref_primary_10_1016_j_bpg_2020_101723
crossref_primary_10_1111_jgh_15354
crossref_primary_10_1016_j_giec_2024_09_003
crossref_primary_10_3389_fonc_2022_766243
crossref_primary_10_1055_a_1500_3730
crossref_primary_10_4251_wjgo_v16_i4_1180
crossref_primary_10_3390_diagnostics12092222
crossref_primary_10_1097_MCG_0000000000001629
crossref_primary_10_3390_diagnostics15131664
crossref_primary_10_3389_fonc_2024_1423405
crossref_primary_10_4251_wjgo_v14_i5_989
crossref_primary_10_1016_j_gie_2022_12_003
crossref_primary_10_1007_s00464_020_08150_x
crossref_primary_10_1097_CM9_0000000000003490
crossref_primary_10_3748_wjg_v27_i14_1392
crossref_primary_10_1007_s10620_021_07086_z
crossref_primary_10_3748_wjg_v26_i39_5959
crossref_primary_10_1111_den_13934
crossref_primary_10_1016_j_giec_2024_10_003
crossref_primary_10_1111_apt_16778
crossref_primary_10_1186_s12876_023_02788_2
crossref_primary_10_1016_j_canlet_2025_217555
crossref_primary_10_1093_dote_doad048
crossref_primary_10_1111_den_13897
crossref_primary_10_1016_j_dld_2020_11_017
crossref_primary_10_1055_a_1950_5694
crossref_primary_10_3390_diagnostics11091719
crossref_primary_10_3390_diagnostics13182862
crossref_primary_10_4251_wjgo_v15_i11_1998
crossref_primary_10_1097_MEG_0000000000002162
crossref_primary_10_1159_000518232
crossref_primary_10_3892_ol_2025_15039
crossref_primary_10_1186_s13640_024_00634_3
crossref_primary_10_1007_s11042_024_18910_9
crossref_primary_10_1007_s10620_020_06643_2
crossref_primary_10_3389_frai_2024_1446693
crossref_primary_10_1111_1751_2980_12992
crossref_primary_10_3748_wjg_v31_i36_110742
crossref_primary_10_1002_mp_16041
crossref_primary_10_1053_j_gastro_2021_11_040
crossref_primary_10_14309_ctg_0000000000000433
crossref_primary_10_1007_s00595_023_02708_7
crossref_primary_10_1111_den_13800
crossref_primary_10_1136_gutjnl_2020_321922
crossref_primary_10_14309_ctg_0000000000000154
crossref_primary_10_3390_jcm11092529
crossref_primary_10_3748_wjg_v26_i38_5784
crossref_primary_10_1111_den_14538
crossref_primary_10_1016_j_eswa_2024_124838
crossref_primary_10_14309_ctg_0000000000000393
crossref_primary_10_1038_s41598_025_86829_8
crossref_primary_10_1002_deo2_72
crossref_primary_10_1016_j_gie_2020_11_025
crossref_primary_10_3390_cancers13215494
crossref_primary_10_1007_s10278_023_00803_2
crossref_primary_10_3390_medicina56070364
crossref_primary_10_1111_den_13837
crossref_primary_10_1016_j_compbiomed_2020_104026
crossref_primary_10_1111_jgh_15725
crossref_primary_10_3233_XST_230111
crossref_primary_10_1016_j_gie_2020_06_034
crossref_primary_10_3748_wjg_v31_i19_104897
crossref_primary_10_3390_cancers13020321
crossref_primary_10_3748_wjg_v26_i35_5256
crossref_primary_10_1111_jgh_15689
crossref_primary_10_3389_fonc_2023_1215729
crossref_primary_10_1038_s41598_022_10739_2
crossref_primary_10_3389_fonc_2023_1198941
crossref_primary_10_1159_000540251
Cites_doi 10.1111/j.1572-0241.2005.30189.x
10.1186/s12885-016-3011-9
10.1038/ajg.2013.8
10.1007/s10388-009-0169-0
10.1055/s-2007-966761
10.1001/jama.2016.17216
10.1111/j.1442-2050.2009.01039.x
10.1038/nature21056
10.1016/j.gie.2018.07.037
10.2307/2529310
10.1016/S1010-7940(01)01003-X
10.1155/2016/6140854
10.1002/ijc.31937
10.1007/s10388-018-0651-7
10.1200/JCO.2009.25.4680
10.1007/s10120-018-0793-2
10.1002/(SICI)1097-0142(19980715)83:2<220::AID-CNCR4>3.0.CO;2-U
10.1055/a-0756-8754
10.1038/ajg.2011.42
10.1117/1.1695563
10.1038/ajg.2014.94
10.1038/bmt.2012.244
10.1016/S0039-6060(98)70165-5
10.1016/S0016-5107(02)70043-6
10.1055/s-0034-1390707
10.1038/ajg.2009.426
10.1007/s11263-015-0816-y
ContentType Journal Article
Copyright 2020 American Society for Gastrointestinal Endoscopy
Copyright © 2020 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 American Society for Gastrointestinal Endoscopy
– notice: Copyright © 2020 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.gie.2019.09.034
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-6779
EndPage 309.e1
ExternalDocumentID 31585124
10_1016_j_gie_2019_09_034
S0016510719323016
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FD8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LZ1
M28
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OC.
ON0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
UNMZH
UV1
WH7
WOW
X7M
Z5R
ZGI
ZXP
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c512t-e500bbf7cb8e13f66af73408e48f23e03c4765a447defb840e4a57dc75a675fb3
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508567300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-5107
1097-6779
IngestDate Sun Sep 28 01:24:04 EDT 2025
Thu Apr 03 07:08:03 EDT 2025
Tue Nov 18 22:13:33 EST 2025
Sat Nov 29 07:35:02 EST 2025
Fri Feb 23 02:49:32 EST 2024
Tue Oct 14 19:36:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords CNN
SCC
NBI
WLI
AI
ME
BLI
Language English
License Copyright © 2020 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c512t-e500bbf7cb8e13f66af73408e48f23e03c4765a447defb840e4a57dc75a675fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1016/j.gie.2019.09.034
PMID 31585124
PQID 2301441425
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2301441425
pubmed_primary_31585124
crossref_primary_10_1016_j_gie_2019_09_034
crossref_citationtrail_10_1016_j_gie_2019_09_034
elsevier_sciencedirect_doi_10_1016_j_gie_2019_09_034
elsevier_clinicalkey_doi_10_1016_j_gie_2019_09_034
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Gastrointestinal endoscopy
PublicationTitleAlternate Gastrointest Endosc
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Tomie, Dohi, Yagi (bib15) 2016; 2016
Ishihara, Takeuchi, Chatani (bib28) 2010; 23
Ishihara, Takeuchi, Chatani (bib13) 2010; 23
Gono, Obi, Yamaguchi (bib10) 2004; 9
Morita, Bernardo, Ide (bib16) 2017; 17
Hirasawa, Aoyama, Tanimoto (bib21) 2018; 21
Horie, Yoshio, Aoyama (bib22) 2019; 89
Esteva, Kuprel, Novoa (bib19) 2017; 542
Zhao, Xue, Wang (bib26) 2019; 51
Nagami, Tominaga, Machida (bib17) 2014; 109
Russakovsky, Deng, Su (bib18) 2015; 115
Kanda (bib25) 2013; 48
Yamamoto, Ishihara, Motoori (bib7) 2011; 106
Landis, Koch (bib24) 1977; 33
Dawsey, Fleischer, Wang (bib9) 1998; 83
Katada, Muto, Momma (bib4) 2007; 39
Yamashina, Ishihara, Nagai (bib3) 2013; 108
Society (bib23) 2009; 6
Shimizu, Tsukagoshi, Fujita (bib5) 2002; 56
Kumagai, Takubo, Kawada (bib27) 2019; 16
Kodama, Kakegawa (bib2) 1998; 123
Igaki, Kato, Tachimori (bib6) 2001; 20
Kaneko, Oono, Yano (bib14) 2014; 2
Takenaka, Kawahara, Okada (bib12) 2009; 104
Hashimoto, Iriya, Baba (bib8) 2005; 100
Ferlay, Colombet, Soerjomataram (bib1) 2019; 144
Muto, Minashi, Yano (bib11) 2010; 28
Gulshan, Peng, Coram (bib20) 2016; 316
Tomie (10.1016/j.gie.2019.09.034_bib15) 2016; 2016
Shimizu (10.1016/j.gie.2019.09.034_bib5) 2002; 56
Yamamoto (10.1016/j.gie.2019.09.034_bib7) 2011; 106
Hashimoto (10.1016/j.gie.2019.09.034_bib8) 2005; 100
Muto (10.1016/j.gie.2019.09.034_bib11) 2010; 28
Hirasawa (10.1016/j.gie.2019.09.034_bib21) 2018; 21
Landis (10.1016/j.gie.2019.09.034_bib24) 1977; 33
Dawsey (10.1016/j.gie.2019.09.034_bib9) 1998; 83
Morita (10.1016/j.gie.2019.09.034_bib16) 2017; 17
Ishihara (10.1016/j.gie.2019.09.034_bib28) 2010; 23
Yamashina (10.1016/j.gie.2019.09.034_bib3) 2013; 108
Kaneko (10.1016/j.gie.2019.09.034_bib14) 2014; 2
Igaki (10.1016/j.gie.2019.09.034_bib6) 2001; 20
Ferlay (10.1016/j.gie.2019.09.034_bib1) 2019; 144
Gono (10.1016/j.gie.2019.09.034_bib10) 2004; 9
Kanda (10.1016/j.gie.2019.09.034_bib25) 2013; 48
Katada (10.1016/j.gie.2019.09.034_bib4) 2007; 39
Nagami (10.1016/j.gie.2019.09.034_bib17) 2014; 109
Takenaka (10.1016/j.gie.2019.09.034_bib12) 2009; 104
Horie (10.1016/j.gie.2019.09.034_bib22) 2019; 89
Zhao (10.1016/j.gie.2019.09.034_bib26) 2019; 51
Gulshan (10.1016/j.gie.2019.09.034_bib20) 2016; 316
Kodama (10.1016/j.gie.2019.09.034_bib2) 1998; 123
Russakovsky (10.1016/j.gie.2019.09.034_bib18) 2015; 115
Ishihara (10.1016/j.gie.2019.09.034_bib13) 2010; 23
Esteva (10.1016/j.gie.2019.09.034_bib19) 2017; 542
Society (10.1016/j.gie.2019.09.034_bib23) 2009; 6
Kumagai (10.1016/j.gie.2019.09.034_bib27) 2019; 16
References_xml – volume: 21
  start-page: 653
  year: 2018
  end-page: 660
  ident: bib21
  article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images
  publication-title: Gastric Cancer
– volume: 108
  start-page: 544
  year: 2013
  end-page: 551
  ident: bib3
  article-title: Long-term outcome and metastatic risk after endoscopic resection of superficial esophageal squamous cell carcinoma
  publication-title: Am J Gastroenterol
– volume: 23
  start-page: 480
  year: 2010
  end-page: 486
  ident: bib28
  article-title: Prospective evaluation of narrow-band imaging endoscopy for screening of esophageal squamous mucosal high-grade neoplasia in experienced and less experienced endoscopists
  publication-title: Dis Esophagus
– volume: 9
  start-page: 568
  year: 2004
  end-page: 577
  ident: bib10
  article-title: Appearance of enhanced tissue features in narrow-band endoscopic imaging
  publication-title: J Biomed Opt
– volume: 144
  start-page: 1941
  year: 2019
  end-page: 1953
  ident: bib1
  article-title: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods
  publication-title: Int J Cancer
– volume: 100
  start-page: 275
  year: 2005
  end-page: 282
  ident: bib8
  article-title: Lugol's dye spray chromoendoscopy establishes early diagnosis of esophageal cancer in patients with primary head and neck cancer
  publication-title: Am J Gastroenterol
– volume: 39
  start-page: 779
  year: 2007
  end-page: 783
  ident: bib4
  article-title: Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae-a multicenter retrospective cohort study
  publication-title: Endoscopy
– volume: 23
  start-page: 480
  year: 2010
  end-page: 486
  ident: bib13
  article-title: Prospective evaluation of narrow-band imaging endoscopy for screening of esophageal squamous mucosal high-grade neoplasia in experienced and less experienced endoscopists
  publication-title: Dis Esophagus
– volume: 51
  start-page: 333
  year: 2019
  end-page: 341
  ident: bib26
  article-title: Computer-assisted diagnosis of early esophageal squamous cell carcinoma using narrow-band imaging magnifying endoscopy
  publication-title: Endoscopy
– volume: 20
  start-page: 1089
  year: 2001
  end-page: 1094
  ident: bib6
  article-title: Clinicopathologic characteristics and survival of patients with clinical stage I squamous cell carcinomas of the thoracic esophagus treated with three-field lymph node dissection
  publication-title: Eur J Cardiothorac Surg
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib18
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int J Computer Vision
– volume: 106
  start-page: 1048
  year: 2011
  end-page: 1054
  ident: bib7
  article-title: Comparison between definitive chemoradiotherapy and esophagectomy in patients with clinical stage I esophageal squamous cell carcinoma
  publication-title: Am J Gastroenterol
– volume: 89
  start-page: 25
  year: 2019
  end-page: 32
  ident: bib22
  article-title: Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks
  publication-title: Gastrointest Endosc
– volume: 104
  start-page: 2942
  year: 2009
  end-page: 2948
  ident: bib12
  article-title: Narrow-band imaging provides reliable screening for esophageal malignancy in patients with head and neck cancers
  publication-title: Am J Gastroenterol
– volume: 48
  start-page: 452
  year: 2013
  end-page: 458
  ident: bib25
  article-title: Investigation of the freely available easy-to-use software “EZR” for medical statistics
  publication-title: Bone Marrow Transplant
– volume: 28
  start-page: 1566
  year: 2010
  end-page: 1572
  ident: bib11
  article-title: Early detection of superficial squamous cell carcinoma in the head and neck region and esophagus by narrow band imaging: a multicenter randomized controlled trial
  publication-title: J Clin Oncol
– volume: 123
  start-page: 432
  year: 1998
  end-page: 439
  ident: bib2
  article-title: Treatment of superficial cancer of the esophagus: a summary of responses to a questionnaire on superficial cancer of the esophagus in Japan
  publication-title: Surgery
– volume: 17
  start-page: 54
  year: 2017
  ident: bib16
  article-title: Narrow band imaging versus Lugol chromoendoscopy to diagnose squamous cell carcinoma of the esophagus: a systematic review and meta-analysis
  publication-title: BMC Cancer
– volume: 56
  start-page: 387
  year: 2002
  end-page: 390
  ident: bib5
  article-title: Long-term outcome after endoscopic mucosal resection in patients with esophageal squamous cell carcinoma invading the muscularis mucosae or deeper
  publication-title: Gastrointest Endosc
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib19
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 83
  start-page: 220
  year: 1998
  end-page: 231
  ident: bib9
  article-title: Mucosal iodine staining improves endoscopic visualization of squamous dysplasia and squamous cell carcinoma of the esophagus in Linxian, China
  publication-title: Cancer
– volume: 2016
  start-page: 6140854
  year: 2016
  ident: bib15
  article-title: Blue laser imaging-bright improves endoscopic recognition of superficial esophageal squamous cell carcinoma
  publication-title: Gastroenterol Res Pract
– volume: 6
  start-page: 1
  year: 2009
  end-page: 25
  ident: bib23
  article-title: Japanese classification of esophageal cancer, tenth edition: part I
  publication-title: Esophagus
– volume: 2
  start-page: E212
  year: 2014
  end-page: E219
  ident: bib14
  article-title: Effect of novel bright image enhanced endoscopy using blue laser imaging (BLI)
  publication-title: Endosc Int Open
– volume: 16
  start-page: 180
  year: 2019
  end-page: 187
  ident: bib27
  article-title: Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus
  publication-title: Esophagus
– volume: 109
  start-page: 845
  year: 2014
  end-page: 854
  ident: bib17
  article-title: Usefulness of non-magnifying narrow-band imaging in screening of early esophageal squamous cell carcinoma: a prospective comparative study using propensity score matching
  publication-title: Am J Gastroenterol
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: bib20
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  ident: bib24
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 100
  start-page: 275
  year: 2005
  ident: 10.1016/j.gie.2019.09.034_bib8
  article-title: Lugol's dye spray chromoendoscopy establishes early diagnosis of esophageal cancer in patients with primary head and neck cancer
  publication-title: Am J Gastroenterol
  doi: 10.1111/j.1572-0241.2005.30189.x
– volume: 17
  start-page: 54
  year: 2017
  ident: 10.1016/j.gie.2019.09.034_bib16
  article-title: Narrow band imaging versus Lugol chromoendoscopy to diagnose squamous cell carcinoma of the esophagus: a systematic review and meta-analysis
  publication-title: BMC Cancer
  doi: 10.1186/s12885-016-3011-9
– volume: 108
  start-page: 544
  year: 2013
  ident: 10.1016/j.gie.2019.09.034_bib3
  article-title: Long-term outcome and metastatic risk after endoscopic resection of superficial esophageal squamous cell carcinoma
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2013.8
– volume: 6
  start-page: 1
  year: 2009
  ident: 10.1016/j.gie.2019.09.034_bib23
  article-title: Japanese classification of esophageal cancer, tenth edition: part I
  publication-title: Esophagus
  doi: 10.1007/s10388-009-0169-0
– volume: 39
  start-page: 779
  year: 2007
  ident: 10.1016/j.gie.2019.09.034_bib4
  article-title: Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae-a multicenter retrospective cohort study
  publication-title: Endoscopy
  doi: 10.1055/s-2007-966761
– volume: 316
  start-page: 2402
  year: 2016
  ident: 10.1016/j.gie.2019.09.034_bib20
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 23
  start-page: 480
  year: 2010
  ident: 10.1016/j.gie.2019.09.034_bib13
  article-title: Prospective evaluation of narrow-band imaging endoscopy for screening of esophageal squamous mucosal high-grade neoplasia in experienced and less experienced endoscopists
  publication-title: Dis Esophagus
  doi: 10.1111/j.1442-2050.2009.01039.x
– volume: 542
  start-page: 115
  year: 2017
  ident: 10.1016/j.gie.2019.09.034_bib19
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 89
  start-page: 25
  year: 2019
  ident: 10.1016/j.gie.2019.09.034_bib22
  article-title: Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2018.07.037
– volume: 33
  start-page: 159
  year: 1977
  ident: 10.1016/j.gie.2019.09.034_bib24
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 20
  start-page: 1089
  year: 2001
  ident: 10.1016/j.gie.2019.09.034_bib6
  article-title: Clinicopathologic characteristics and survival of patients with clinical stage I squamous cell carcinomas of the thoracic esophagus treated with three-field lymph node dissection
  publication-title: Eur J Cardiothorac Surg
  doi: 10.1016/S1010-7940(01)01003-X
– volume: 2016
  start-page: 6140854
  year: 2016
  ident: 10.1016/j.gie.2019.09.034_bib15
  article-title: Blue laser imaging-bright improves endoscopic recognition of superficial esophageal squamous cell carcinoma
  publication-title: Gastroenterol Res Pract
  doi: 10.1155/2016/6140854
– volume: 144
  start-page: 1941
  year: 2019
  ident: 10.1016/j.gie.2019.09.034_bib1
  article-title: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods
  publication-title: Int J Cancer
  doi: 10.1002/ijc.31937
– volume: 16
  start-page: 180
  year: 2019
  ident: 10.1016/j.gie.2019.09.034_bib27
  article-title: Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus
  publication-title: Esophagus
  doi: 10.1007/s10388-018-0651-7
– volume: 28
  start-page: 1566
  year: 2010
  ident: 10.1016/j.gie.2019.09.034_bib11
  article-title: Early detection of superficial squamous cell carcinoma in the head and neck region and esophagus by narrow band imaging: a multicenter randomized controlled trial
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2009.25.4680
– volume: 21
  start-page: 653
  year: 2018
  ident: 10.1016/j.gie.2019.09.034_bib21
  article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-018-0793-2
– volume: 83
  start-page: 220
  year: 1998
  ident: 10.1016/j.gie.2019.09.034_bib9
  article-title: Mucosal iodine staining improves endoscopic visualization of squamous dysplasia and squamous cell carcinoma of the esophagus in Linxian, China
  publication-title: Cancer
  doi: 10.1002/(SICI)1097-0142(19980715)83:2<220::AID-CNCR4>3.0.CO;2-U
– volume: 51
  start-page: 333
  year: 2019
  ident: 10.1016/j.gie.2019.09.034_bib26
  article-title: Computer-assisted diagnosis of early esophageal squamous cell carcinoma using narrow-band imaging magnifying endoscopy
  publication-title: Endoscopy
  doi: 10.1055/a-0756-8754
– volume: 106
  start-page: 1048
  year: 2011
  ident: 10.1016/j.gie.2019.09.034_bib7
  article-title: Comparison between definitive chemoradiotherapy and esophagectomy in patients with clinical stage I esophageal squamous cell carcinoma
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2011.42
– volume: 9
  start-page: 568
  year: 2004
  ident: 10.1016/j.gie.2019.09.034_bib10
  article-title: Appearance of enhanced tissue features in narrow-band endoscopic imaging
  publication-title: J Biomed Opt
  doi: 10.1117/1.1695563
– volume: 109
  start-page: 845
  year: 2014
  ident: 10.1016/j.gie.2019.09.034_bib17
  article-title: Usefulness of non-magnifying narrow-band imaging in screening of early esophageal squamous cell carcinoma: a prospective comparative study using propensity score matching
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2014.94
– volume: 48
  start-page: 452
  year: 2013
  ident: 10.1016/j.gie.2019.09.034_bib25
  article-title: Investigation of the freely available easy-to-use software “EZR” for medical statistics
  publication-title: Bone Marrow Transplant
  doi: 10.1038/bmt.2012.244
– volume: 123
  start-page: 432
  year: 1998
  ident: 10.1016/j.gie.2019.09.034_bib2
  article-title: Treatment of superficial cancer of the esophagus: a summary of responses to a questionnaire on superficial cancer of the esophagus in Japan
  publication-title: Surgery
  doi: 10.1016/S0039-6060(98)70165-5
– volume: 56
  start-page: 387
  year: 2002
  ident: 10.1016/j.gie.2019.09.034_bib5
  article-title: Long-term outcome after endoscopic mucosal resection in patients with esophageal squamous cell carcinoma invading the muscularis mucosae or deeper
  publication-title: Gastrointest Endosc
  doi: 10.1016/S0016-5107(02)70043-6
– volume: 2
  start-page: E212
  year: 2014
  ident: 10.1016/j.gie.2019.09.034_bib14
  article-title: Effect of novel bright image enhanced endoscopy using blue laser imaging (BLI)
  publication-title: Endosc Int Open
  doi: 10.1055/s-0034-1390707
– volume: 104
  start-page: 2942
  year: 2009
  ident: 10.1016/j.gie.2019.09.034_bib12
  article-title: Narrow-band imaging provides reliable screening for esophageal malignancy in patients with head and neck cancers
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2009.426
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.gie.2019.09.034_bib18
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int J Computer Vision
  doi: 10.1007/s11263-015-0816-y
– volume: 23
  start-page: 480
  year: 2010
  ident: 10.1016/j.gie.2019.09.034_bib28
  article-title: Prospective evaluation of narrow-band imaging endoscopy for screening of esophageal squamous mucosal high-grade neoplasia in experienced and less experienced endoscopists
  publication-title: Dis Esophagus
  doi: 10.1111/j.1442-2050.2009.01039.x
SSID ssj0008231
Score 2.6142087
Snippet Diagnosing esophageal squamous cell carcinoma (SCC) depends on individual physician expertise and may be subject to interobserver variability. Therefore, we...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 301
SubjectTerms Adult
Aged
Aged, 80 and over
Deep Learning
Esophageal Diseases - diagnostic imaging
Esophageal Diseases - pathology
Esophageal Neoplasms - diagnostic imaging
Esophageal Neoplasms - pathology
Esophageal Squamous Cell Carcinoma - diagnostic imaging
Esophageal Squamous Cell Carcinoma - pathology
Esophagus - pathology
Female
Humans
Image Processing, Computer-Assisted - methods
Male
Middle Aged
Narrow Band Imaging - methods
Neoplasm Invasiveness
Neural Networks, Computer
Observer Variation
Optical Imaging - methods
Precancerous Conditions - diagnostic imaging
Precancerous Conditions - pathology
Reproducibility of Results
Sensitivity and Specificity
Title Endoscopic detection and differentiation of esophageal lesions using a deep neural network
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0016510719323016
https://dx.doi.org/10.1016/j.gie.2019.09.034
https://www.ncbi.nlm.nih.gov/pubmed/31585124
https://www.proquest.com/docview/2301441425
Volume 91
WOSCitedRecordID wos000508567300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 20200430
  omitProxy: false
  ssIdentifier: ssj0008231
  issn: 0016-5107
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiFeEHfKZTIS4oEpk5M4tfNYoY6Luo6HTqp4iZzY3jq6pLTpWPkJ_GqOYyetBhvjAamKKicniXy-nHPsc0Potc-k1F1KvIDD50Z1GHtpxokXa03jgHVZKqoirgM2HPLxOP7cav2sc2HOpyzP-cVFPPuvrIYxYLZJnf0Hdjc3hQH4D0yHI7AdjjdifD-Xhck1mWS7UpXKtQLPZdMLpZw0ZqIyTQxAogCfpmpRxcQtq80DAbRqtmuqXcK53MaKbxqy78WinBem2ATICGPRKvfYZov-8OSssGnsB2IhVsJ2WLEwPJmYOtEVe1fNcK9YiTOXofZjCRc0Z4biqzgW34VLJCrFvNjcrYClKWkiP6yAJTHzusw2kNlTfxhzUjn2N9AXbIjY0N7uN9FvdyFO944npvqpH9vytXSt52rf_vAw2T8aDJJRfzx6M_vmmQ5kxlPv2rFsoe2ARTFvo-3ex_74U6PXjcO08p27t6195FW04KWnXmXlXLWKqayZ0T101y1DcM_C5z5qqfwBun3gAi0eoi9rFOEGRRhQhC-hCBcar1GEHYpwhSIssEERtijCDkWP0NF-f_Tug-facHgZWIOlpyJC0lSzLOXKD3W3KzQLKeGKch2EioQZZd1IUMqk0imnRFERMZmxSMBqVKfhY9TOi1w9RdhnREk_FFmcwUpZS1AnkqeSq4BpIWTUQaSetiRzNepNq5RpUgcjniYw04mZ6YTAL6Qd9LYhmdkCLdddHNS8SOrMY9CVCWDoOiLaEDmz1JqbfyN7VTM7AZFt_HAiV8VykQR2GwO0ZQc9sShoXj30jZ8-oM9uQP0c3Vl_Yi9Qu5wv1Ut0KzsvJ4v5DtpiY77jQPwL1TLFmw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endoscopic+detection+and+differentiation+of+esophageal+lesions+using+a+deep+neural+network&rft.jtitle=Gastrointestinal+endoscopy&rft.au=Ohmori%2C+Masayasu&rft.au=Ishihara%2C+Ryu&rft.au=Aoyama%2C+Kazuharu&rft.au=Nakagawa%2C+Kentaro&rft.date=2020-02-01&rft.issn=1097-6779&rft.eissn=1097-6779&rft.volume=91&rft.issue=2&rft.spage=301&rft_id=info:doi/10.1016%2Fj.gie.2019.09.034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5107&client=summon