Chaotic whale optimization algorithm

Graphical abstract Graphical Abstract AbstractThe Whale Optimization Algorithm (WOA) is a recently developed meta-heuristic optimization algorithm which is based on the hunting mechanism of humpback whales. Similarly to other meta-heuristic algorithms, the main problem faced by WOA is slow convergen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational design and engineering Vol. 5; no. 3; pp. 275 - 284
Main Authors: Kaur, Gaganpreet, Arora, Sankalap
Format: Journal Article
Language:English
Published: Oxford University Press 01.07.2018
한국CDE학회
Subjects:
ISSN:2288-5048, 2288-4300, 2288-5048
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Graphical abstract Graphical Abstract AbstractThe Whale Optimization Algorithm (WOA) is a recently developed meta-heuristic optimization algorithm which is based on the hunting mechanism of humpback whales. Similarly to other meta-heuristic algorithms, the main problem faced by WOA is slow convergence speed. So to enhance the global convergence speed and to get better performance, this paper introduces chaos theory into WOA optimization process. Various chaotic maps are considered in the proposed chaotic WOA (CWOA) methods for tuning the main parameter of WOA which helps in controlling exploration and exploitation. The proposed CWOA methods are benchmarked on twenty well-known test functions. The results prove that the chaotic maps (especially Tent map) are able to improve the performance of WOA. Highlights Chaos has been introduced into WOA to improve its performance.Ten chaotic maps have been investigated to tune the key parameter ‘ p’ of WOA.The proposed CWOA is validated on a set of twenty benchmark functions.The proposed CWOA is validated on a set of twenty benchmark functions.Statistical results suggest that CWOA has better reliability of global optimality.
AbstractList Graphical abstract Graphical Abstract AbstractThe Whale Optimization Algorithm (WOA) is a recently developed meta-heuristic optimization algorithm which is based on the hunting mechanism of humpback whales. Similarly to other meta-heuristic algorithms, the main problem faced by WOA is slow convergence speed. So to enhance the global convergence speed and to get better performance, this paper introduces chaos theory into WOA optimization process. Various chaotic maps are considered in the proposed chaotic WOA (CWOA) methods for tuning the main parameter of WOA which helps in controlling exploration and exploitation. The proposed CWOA methods are benchmarked on twenty well-known test functions. The results prove that the chaotic maps (especially Tent map) are able to improve the performance of WOA. Highlights Chaos has been introduced into WOA to improve its performance.Ten chaotic maps have been investigated to tune the key parameter ‘ p’ of WOA.The proposed CWOA is validated on a set of twenty benchmark functions.The proposed CWOA is validated on a set of twenty benchmark functions.Statistical results suggest that CWOA has better reliability of global optimality.
The Whale Optimization Algorithm (WOA) is a recently developed meta-heuristic optimization algorithm which is based on the hunting mechanism of humpback whales. Similarly to other meta-heuristic algorithms, the main problem faced by WOA is slow convergence speed. So to enhance the global convergence speed and to get better performance, this paper introduces chaos theory into WOA optimization process. Various chaotic maps are considered in the proposed chaotic WOA (CWOA) methods for tuning the main parameter of WOA which helps in controlling exploration and exploitation. The proposed CWOA methods are benchmarked on twenty well-known test functions. The results prove that the chaotic maps (especially Tent map) are able to improve the performance of WOA.
The Whale Optimization Algorithm (WOA) is a recently developed meta-heuristic optimization algorithm which is based on the hunting mechanism of humpback whales. Similarly to other meta-heuristic algo-rithms, the main problem faced by WOA is slow convergence speed. So to enhance the global conver-gence speed and to get better performance, this paper introduces chaos theory into WOA optimization process. Various chaotic maps are considered in the proposed chaotic WOA (CWOA) methods for tuning the main parameter of WOA which helps in controlling exploration and exploitation. The proposed CWOA methods are benchmarked on twenty well-known test functions. The results prove that the chaotic maps (especially Tent map) are able to improve the performance of WOA. KCI Citation Count: 128
The Whale Optimization Algorithm (WOA) is a recently developed meta-heuristic optimization algorithm which is based on the hunting mechanism of humpback whales. Similarly to other meta-heuristic algorithms, the main problem faced by WOA is slow convergence speed. So to enhance the global convergence speed and to get better performance, this paper introduces chaos theory into WOA optimization process. Various chaotic maps are considered in the proposed chaotic WOA (CWOA) methods for tuning the main parameter of WOA which helps in controlling exploration and exploitation. The proposed CWOA methods are benchmarked on twenty well-known test functions. The results prove that the chaotic maps (especially Tent map) are able to improve the performance of WOA. Highlights Chaos has been introduced into WOA to improve its performance. Ten chaotic maps have been investigated to tune the key parameter ‘ p’ of WOA. The proposed CWOA is validated on a set of twenty benchmark functions. The proposed CWOA is validated on a set of twenty benchmark functions. Statistical results suggest that CWOA has better reliability of global optimality.
Author Arora, Sankalap
Kaur, Gaganpreet
Author_xml – sequence: 1
  givenname: Gaganpreet
  surname: Kaur
  fullname: Kaur, Gaganpreet
  email: gaganpreet1292@gmail.com
  organization: DAV University, Jalandhar, Punjab, India
– sequence: 2
  givenname: Sankalap
  surname: Arora
  fullname: Arora, Sankalap
  email: sankalap.arora@gmail.com
  organization: DAV University, Jalandhar, Punjab, India
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002363895$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqNkD1PwzAQhi1UJErpH2DqAANDgn2x8zFWFR-FSpVQmU-uk7RO07hyjBD8epyGATEgpveG5z3dPedk0JimIOSS0ZBRFt9WYaXyIgTKkpBBSGl8QoYAaRoIytPBj_mMjNu2otSTEFGWDcnVbCuN02ryvpV1MTEHp_f6UzptmomsN8Zqt91fkNNS1m0x_s4Reb2_W80eg8XyYT6bLgIlGLhA8UgkFCJQZZIVQolEchEDzTMONM5lnoBaRzxlUpQKRExlIXIhklyqSHJYRyNy0-9tbIk7pdFIfcyNwZ3F6ctqjpHwl_PYs9c9u9Ot09jkbY1P0-elt5ACZLFIEyaAey7tOWVN29qiRKXd8T9npa6RUewkYoWdROwkIgP0En0VflUPVu-l_fi7FPQl83b4D_8FcPaCkg
CitedBy_id crossref_primary_10_1080_13588265_2022_2074705
crossref_primary_10_1109_ACCESS_2024_3379149
crossref_primary_10_1080_0952813X_2022_2135613
crossref_primary_10_1080_15325008_2019_1602687
crossref_primary_10_1007_s11227_021_03626_6
crossref_primary_10_1007_s11771_023_5503_5
crossref_primary_10_1007_s41870_019_00346_2
crossref_primary_10_1007_s13369_021_06136_y
crossref_primary_10_3389_feart_2024_1445241
crossref_primary_10_1093_jcde_qwac075
crossref_primary_10_1007_s12206_023_1022_4
crossref_primary_10_1109_ACCESS_2020_3010127
crossref_primary_10_1109_ACCESS_2020_2998324
crossref_primary_10_1016_j_conengprac_2024_106078
crossref_primary_10_1080_10236198_2023_2203779
crossref_primary_10_1109_ACCESS_2019_2905009
crossref_primary_10_1063_5_0217697
crossref_primary_10_1016_j_eswa_2021_114841
crossref_primary_10_1080_10739149_2023_2286366
crossref_primary_10_1177_16878140211051220
crossref_primary_10_1109_ACCESS_2022_3143802
crossref_primary_10_1002_ima_22888
crossref_primary_10_1109_ACCESS_2025_3573376
crossref_primary_10_1007_s10586_024_04628_8
crossref_primary_10_1002_2050_7038_12188
crossref_primary_10_1016_j_cie_2020_107086
crossref_primary_10_1093_jcde_qwab082
crossref_primary_10_1155_2022_9159130
crossref_primary_10_1007_s12652_021_03151_7
crossref_primary_10_1007_s12652_021_03234_5
crossref_primary_10_1016_j_ref_2020_06_008
crossref_primary_10_1002_2050_7038_12159
crossref_primary_10_55195_jscai_1503982
crossref_primary_10_1007_s00366_019_00917_8
crossref_primary_10_1007_s10489_024_05537_4
crossref_primary_10_1007_s12652_021_03136_6
crossref_primary_10_1016_j_scs_2021_102858
crossref_primary_10_1002_2050_7038_13124
crossref_primary_10_1038_s41598_025_86757_7
crossref_primary_10_1007_s42235_021_0041_z
crossref_primary_10_1088_1742_6596_1684_1_012075
crossref_primary_10_1016_j_asoc_2019_105938
crossref_primary_10_4018_IJDST_2020010105
crossref_primary_10_3934_math_2025316
crossref_primary_10_1155_2022_1036913
crossref_primary_10_1007_s10489_021_02686_8
crossref_primary_10_1108_COMPEL_07_2021_0231
crossref_primary_10_1109_ACCESS_2019_2932180
crossref_primary_10_1007_s00366_021_01409_4
crossref_primary_10_1016_j_eswa_2025_126750
crossref_primary_10_1155_2021_5517060
crossref_primary_10_1007_s12559_022_10099_z
crossref_primary_10_1007_s00500_022_07257_8
crossref_primary_10_3233_JIFS_210842
crossref_primary_10_1007_s41870_024_01875_1
crossref_primary_10_1371_journal_pone_0260725
crossref_primary_10_1016_j_compbiomed_2023_107404
crossref_primary_10_1007_s12652_020_02849_4
crossref_primary_10_1007_s00500_023_08090_3
crossref_primary_10_1093_jcde_qwad002
crossref_primary_10_1155_2022_1457547
crossref_primary_10_3233_JIFS_201459
crossref_primary_10_1007_s10586_024_04446_y
crossref_primary_10_1016_j_cogsys_2025_101373
crossref_primary_10_1002_ese3_1182
crossref_primary_10_1111_exsy_12779
crossref_primary_10_1155_2021_9974230
crossref_primary_10_1016_j_compbiomed_2022_105858
crossref_primary_10_1016_j_eswa_2021_115178
crossref_primary_10_32604_cmes_2022_019198
crossref_primary_10_1109_ACCESS_2020_2993580
crossref_primary_10_1080_02726343_2019_1675443
crossref_primary_10_1016_j_jocs_2018_12_005
crossref_primary_10_1177_1369433219875295
crossref_primary_10_1155_2022_1966054
crossref_primary_10_1007_s10462_021_10114_z
crossref_primary_10_1007_s12065_023_00892_6
crossref_primary_10_1016_j_eswa_2025_129128
crossref_primary_10_1093_jcde_qwac023
crossref_primary_10_1109_ACCESS_2019_2905961
crossref_primary_10_1016_j_iswa_2025_200511
crossref_primary_10_1093_jcde_qwad110
crossref_primary_10_1109_ACCESS_2020_2976101
crossref_primary_10_7717_peerj_cs_2393
crossref_primary_10_1016_j_ijimpeng_2022_104424
crossref_primary_10_1080_21642583_2022_2140723
crossref_primary_10_1007_s10479_022_04849_3
crossref_primary_10_1016_j_eswa_2019_113134
crossref_primary_10_1109_TIM_2023_3331392
crossref_primary_10_1007_s11220_020_00283_6
crossref_primary_10_1109_ACCESS_2020_2982441
crossref_primary_10_1080_02564602_2020_1843554
crossref_primary_10_1088_1402_4896_add8c7
crossref_primary_10_1093_jcde_qwac014
crossref_primary_10_1002_cpe_5949
crossref_primary_10_1088_1361_6501_abf8ed
crossref_primary_10_1002_er_7928
crossref_primary_10_32604_cmc_2022_021719
crossref_primary_10_4018_IJAMC_2022010109
crossref_primary_10_1002_dac_4617
crossref_primary_10_1109_ACCESS_2024_3350336
crossref_primary_10_1007_s41403_025_00521_x
crossref_primary_10_1016_j_enbuild_2023_113642
crossref_primary_10_4274_tjd_galenos_2024_73645
crossref_primary_10_1515_mt_2024_0151
crossref_primary_10_1109_ACCESS_2023_3265469
crossref_primary_10_1016_j_swevo_2019_03_004
crossref_primary_10_1038_s41598_024_56919_0
crossref_primary_10_1016_j_eswa_2025_127416
crossref_primary_10_1088_1674_1056_abf4fb
crossref_primary_10_1371_journal_pone_0330324
crossref_primary_10_1155_2021_6315010
crossref_primary_10_1007_s00366_021_01487_4
crossref_primary_10_1109_ACCESS_2019_2895502
crossref_primary_10_1155_2021_3353926
crossref_primary_10_1016_j_cie_2019_106040
crossref_primary_10_1109_ACCESS_2019_2933661
crossref_primary_10_1155_2019_8718571
crossref_primary_10_1002_ett_4739
crossref_primary_10_1155_2021_6636813
crossref_primary_10_1093_jcde_qwac112
crossref_primary_10_1111_exsy_12719
crossref_primary_10_1093_jcde_qwac111
crossref_primary_10_1155_2021_5333278
crossref_primary_10_1109_ACCESS_2021_3067729
crossref_primary_10_1109_TVT_2020_2973294
crossref_primary_10_1109_ACCESS_2019_2959949
crossref_primary_10_1111_exsy_13146
crossref_primary_10_1109_JSEN_2024_3422995
crossref_primary_10_1016_j_knosys_2019_02_010
crossref_primary_10_3233_ICA_200641
crossref_primary_10_1109_ACCESS_2021_3073276
crossref_primary_10_1109_ACCESS_2021_3112742
crossref_primary_10_1080_0952813X_2022_2084566
crossref_primary_10_1002_tee_24223
crossref_primary_10_1080_0951192X_2020_1736717
crossref_primary_10_1007_s13748_021_00244_4
crossref_primary_10_21595_jme_2025_24805
crossref_primary_10_1002_tee_24205
crossref_primary_10_1007_s00521_022_08139_8
crossref_primary_10_1016_j_jcde_2019_02_002
crossref_primary_10_1007_s11276_022_03048_z
crossref_primary_10_1007_s12065_022_00711_4
crossref_primary_10_1007_s41870_024_01791_4
crossref_primary_10_1108_COMPEL_12_2020_0422
crossref_primary_10_1007_s10696_023_09502_0
crossref_primary_10_1007_s42235_025_00674_z
crossref_primary_10_1007_s13369_024_09222_z
crossref_primary_10_1007_s00521_024_09461_z
crossref_primary_10_1371_journal_pone_0279438
crossref_primary_10_1007_s13042_020_01252_x
crossref_primary_10_1109_ACCESS_2020_3029728
crossref_primary_10_1111_exsy_12992
crossref_primary_10_7717_peerj_cs_1526
crossref_primary_10_1109_ACCESS_2022_3174854
crossref_primary_10_1007_s00500_021_05983_z
crossref_primary_10_1049_gtd2_12019
crossref_primary_10_1155_2022_5129098
crossref_primary_10_1080_09720529_2021_2020421
crossref_primary_10_1007_s11227_021_04199_0
crossref_primary_10_32604_cmc_2023_037611
crossref_primary_10_1080_23311916_2020_1788876
crossref_primary_10_1002_jnm_2963
crossref_primary_10_1515_mt_2023_0319
crossref_primary_10_1080_0952813X_2020_1785020
crossref_primary_10_1109_ACCESS_2020_3044857
crossref_primary_10_1080_09720502_2021_2012892
crossref_primary_10_1007_s12652_021_03304_8
crossref_primary_10_1109_ACCESS_2020_2982988
crossref_primary_10_1002_aic_18115
crossref_primary_10_1177_01423312241274005
crossref_primary_10_1155_2022_9741278
crossref_primary_10_1007_s11227_023_05618_0
crossref_primary_10_1177_03019233251356091
crossref_primary_10_3389_fdata_2024_1422546
crossref_primary_10_1007_s11042_022_13462_2
crossref_primary_10_1016_j_procs_2023_01_128
crossref_primary_10_1109_ACCESS_2020_2988717
crossref_primary_10_32604_cmc_2022_026310
crossref_primary_10_1007_s11042_023_17329_y
crossref_primary_10_1080_0952813X_2020_1785018
crossref_primary_10_1155_2021_5289038
crossref_primary_10_1080_01430750_2020_1860128
crossref_primary_10_1007_s00521_024_10815_w
crossref_primary_10_1109_ACCESS_2023_3253432
crossref_primary_10_1016_j_eswa_2022_119421
crossref_primary_10_1051_jnwpu_20224040796
crossref_primary_10_1007_s12652_020_02762_w
crossref_primary_10_1109_ACCESS_2019_2961811
crossref_primary_10_1007_s41870_023_01654_4
crossref_primary_10_1038_s41598_024_61578_2
crossref_primary_10_32604_cmes_2021_017310
crossref_primary_10_1108_ECAM_06_2024_0698
crossref_primary_10_1177_0954406220982641
crossref_primary_10_1186_s13638_021_02013_2
crossref_primary_10_1093_jcde_qwaf014
crossref_primary_10_1080_15325008_2020_1831653
crossref_primary_10_1007_s00202_023_02214_6
crossref_primary_10_1007_s10489_020_01881_3
crossref_primary_10_3233_JIFS_191747
crossref_primary_10_1093_jcde_qwac092
crossref_primary_10_1049_itr2_12555
crossref_primary_10_1109_JSYST_2021_3136208
crossref_primary_10_1080_15325008_2023_2240800
crossref_primary_10_1109_TGRS_2024_3370302
crossref_primary_10_3389_fevo_2023_1116083
crossref_primary_10_1155_2021_6611777
crossref_primary_10_1016_j_ifacol_2024_07_055
crossref_primary_10_3233_JIFS_236930
crossref_primary_10_18517_ijods_1_2_82_98_2020
crossref_primary_10_3233_JIFS_210781
crossref_primary_10_1002_ima_70036
crossref_primary_10_1016_j_asoc_2021_107451
crossref_primary_10_1007_s42235_023_00400_7
crossref_primary_10_1088_1742_6596_1213_3_032004
crossref_primary_10_1002_eng2_12381
crossref_primary_10_1109_ACCESS_2019_2929305
crossref_primary_10_1049_iet_sen_2019_0018
crossref_primary_10_1088_1402_4896_ad1377
crossref_primary_10_1002_oca_3021
crossref_primary_10_1007_s11831_022_09853_1
crossref_primary_10_1155_2022_3418269
crossref_primary_10_4018_IJSWIS_300824
crossref_primary_10_1002_ese3_1238
crossref_primary_10_1016_j_compbiomed_2022_105356
crossref_primary_10_23919_CJEE_2023_000032
Cites_doi 10.1007/s13369-017-2471-9
10.1109/81.933333
10.1109/4235.771163
10.1007/978-0-387-30164-8_630
10.1007/s10732-008-9080-4
10.1109/ISPCC.2015.7375029
10.1007/978-1-84882-983-1_15
10.1016/j.eswa.2007.02.002
10.1016/j.advengsoft.2016.01.008
10.1016/j.swevo.2011.02.002
10.1016/j.chaos.2004.11.095
10.1016/j.advengsoft.2013.12.007
10.1016/j.chaos.2006.04.057
10.1016/j.eswa.2010.02.042
10.1109/TEVC.2005.857610
10.1109/TEVC.2008.919004
10.1016/j.amc.2010.03.114
10.1016/j.jocs.2013.10.002
10.1016/S0166-3615(99)00046-9
10.1007/s00521-012-1028-9
10.1007/978-3-319-48012-1_4
10.1007/s00521-014-1597-x
10.3233/JIFS-16798
10.1016/j.advengsoft.2015.01.010
10.1016/j.cnsns.2012.05.010
10.1088/0253-6102/38/2/168
10.1186/s40807-017-0040-1
10.1016/j.cnsns.2012.06.009
10.1109/TEVC.2005.843751
10.1016/j.ins.2014.02.123
10.2307/3001968
10.1080/00207160108805080
10.1109/4235.585892
10.1103/PhysRevLett.64.821
10.1007/978-3-642-12538-6_6
ContentType Journal Article
Copyright Society for Computational Design and Engineering 2017
Copyright_xml – notice: Society for Computational Design and Engineering 2017
DBID TOX
AAYXX
CITATION
JDI
ACYCR
DEWEY 670.285
DOI 10.1016/j.jcde.2017.12.006
DatabaseName Oxford Academic Journals (Open Access)
CrossRef
KoreaScience
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
DocumentTitleAlternate Chaotic whale optimization algorithm
EISSN 2288-5048
EndPage 284
ExternalDocumentID oai_kci_go_kr_ARTI_3523046
JAKO201822965871524
10_1016_j_jcde_2017_12_006
10.1016/j.jcde.2017.12.006
GroupedDBID .UV
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAPXW
AAVAP
AAXUO
ABEJV
ABGNP
ABMAC
ABPTD
ABXVV
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
H13
IPNFZ
JDI
KQ8
KSI
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
ROX
SSZ
TOX
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
IAO
4.4
FRF
IGS
ML0
OJZSN
ABJCF
ACYCR
ADMLS
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
ITC
M7S
PHGZM
PHGZT
PIMPY
PMFND
PTHSS
ID FETCH-LOGICAL-c512t-c43570232cf79e5c57a45620d94206dad72cb3481a5fc2560ae5d557dac3a42b3
ISICitedReferencesCount 426
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436871200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2288-5048
2288-4300
IngestDate Sat May 31 03:24:03 EDT 2025
Fri Dec 22 11:58:34 EST 2023
Sat Nov 29 03:52:52 EST 2025
Tue Nov 18 21:41:34 EST 2025
Tue Jan 28 07:47:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Chaos
Whale Optimization Algorithm
Meta-heuristic algorithm
Chaotic maps
Language English
License This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c512t-c43570232cf79e5c57a45620d94206dad72cb3481a5fc2560ae5d557dac3a42b3
Notes KISTI1.1003/JNL.JAKO201822965871524
OpenAccessLink http://dx.doi.org/10.1016/j.jcde.2017.12.006
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_3523046
kisti_ndsl_JAKO201822965871524
crossref_citationtrail_10_1016_j_jcde_2017_12_006
crossref_primary_10_1016_j_jcde_2017_12_006
oup_primary_10_1016_j_jcde_2017_12_006
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of computational design and engineering
PublicationTitleAlternate Journal of computational design and engineering
PublicationYear 2018
Publisher Oxford University Press
한국CDE학회
Publisher_xml – name: Oxford University Press
– name: 한국CDE학회
References Gandomi (2020042823361839300_b0095) 2013; 18
Liang (2020042823361839300_b0160) 2006; 10
Dos Santos Coelho (2020042823361839300_b0065) 2008; 34
Aljarah (2020042823361839300_b0020) 2016
Gandomi (2020042823361839300_b0090) 2013; 22
Yang (2020042823361839300_b0260) 2010
Tsai (2020042823361839300_b0240) 2015; 6
Coello (2020042823361839300_b0040) 2000; 41
Gandomi (2020042823361839300_b0080) 2012; 17
Alba (2020042823361839300_b0015) 2005; 9
Eberhart (2020042823361839300_b0070) 1995
Mirjalili (2020042823361839300_b0195) 2014; 69
Arora (2020042823361839300_b0035) 2017; 42
Yang (2020042823361839300_b0255) 2010
Gandomi (2020042823361839300_b0085) 2014; 5
Liu (2020042823361839300_b0170) 2005; 25
Mafarja (2020042823361839300_b0175) 2017
Mirjalili (2020042823361839300_b0190) 2016; 95
Simon (2020042823361839300_b0220) 2008; 12
Yao (2020042823361839300_b0275) 1999; 3
Mirjalili (2020042823361839300_b0180) 2015; 83
Yang (2020042823361839300_b0265) 2010
Alatas (2020042823361839300_b0010) 2010; 37
Dorigo (2020042823361839300_b0055) 1999
Wilcoxon (2020042823361839300_b0250) 1945; 1
Shu-Chuan (2020042823361839300_b0215) 2006
García (2020042823361839300_b0105) 2009; 15
Kellert (2020042823361839300_b0145) 1994
Derrac (2020042823361839300_b0045) 2011; 1
Jadhav (2020042823361839300_b0125) 2017
Kohli (2020042823361839300_b0155) 2017
Saremi (2020042823361839300_b0210) 2014; 25
Sivanandam (2020042823361839300_b0225) 2007
Pecora (2020042823361839300_b0200) 1990; 64
Alatas (2020042823361839300_b0005) 2010; 216
Kennedy (2020042823361839300_b0150) 2011
Reddy (2020042823361839300_b0205) 2017; 4
Digalakis (2020042823361839300_b0050) 2001; 77
He (2020042823361839300_b0115) 2001; 48
Yang (2020042823361839300_b0270) 2007; 34
Wang (2020042823361839300_b0245) 2014; 274
Arora (2020042823361839300_b0025) 2015
Li-Jiang (2020042823361839300_b0165) 2002; 38
Dorigo (2020042823361839300_b0060) 1997; 1
Gao (2020042823361839300_b0100) 2010; 6
Arora (2020042823361839300_b0030) 2017; 32
Kaveh (2020042823361839300_b0140) 2017
References_xml – volume: 42
  start-page: 3325
  issue: 8
  year: 2017
  ident: 2020042823361839300_b0035
  article-title: Node localization in wireless sensor networks using butterfly optimization algorithm
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-017-2471-9
– volume: 48
  start-page: 900
  issue: 7
  year: 2001
  ident: 2020042823361839300_b0115
  article-title: Chaotic characteristics of a one-dimensional iterative map with infinite collapses
  publication-title: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications
  doi: 10.1109/81.933333
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 2020042823361839300_b0275
  article-title: Evolutionary programming made faster
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.771163
– start-page: 760
  volume-title: Encyclopedia of machine learning
  year: 2011
  ident: 2020042823361839300_b0150
  doi: 10.1007/978-0-387-30164-8_630
– volume: 15
  start-page: 617
  issue: 6
  year: 2009
  ident: 2020042823361839300_b0105
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: A case study on the CEC'2005 special session on real parameter optimization
  publication-title: Journal of Heuristics
  doi: 10.1007/s10732-008-9080-4
– start-page: 220
  volume-title: 2015 International conference on signal processing, computing and control (ISPCC)
  year: 2015
  ident: 2020042823361839300_b0025
  doi: 10.1109/ISPCC.2015.7375029
– start-page: 209
  volume-title: Research and development in intelligent systems XXVI
  year: 2010
  ident: 2020042823361839300_b0260
  doi: 10.1007/978-1-84882-983-1_15
– volume: 34
  start-page: 1905
  issue: 3
  year: 2008
  ident: 2020042823361839300_b0065
  article-title: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.02.002
– volume: 95
  start-page: 51
  year: 2016
  ident: 2020042823361839300_b0190
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 2020042823361839300_b0045
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– volume-title: Alexandria Engineering Journal
  year: 2017
  ident: 2020042823361839300_b0125
  article-title: WGC: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering
– volume: 25
  start-page: 1261
  issue: 5
  year: 2005
  ident: 2020042823361839300_b0170
  article-title: Improved particle swarm optimization combined with chaos
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2004.11.095
– volume: 69
  start-page: 46
  year: 2014
  ident: 2020042823361839300_b0195
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume-title: Principles of soft computing
  year: 2007
  ident: 2020042823361839300_b0225
– volume: 34
  start-page: 1366
  issue: 4
  year: 2007
  ident: 2020042823361839300_b0270
  article-title: On the efficiency of chaos optimization algorithms for global optimization
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2006.04.057
– volume: 37
  start-page: 5682
  issue: 8
  year: 2010
  ident: 2020042823361839300_b0010
  article-title: Chaotic bee colony algorithms for global numerical optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.02.042
– volume-title: In the wake of chaos: Unpredictable order in dynamical systems
  year: 1994
  ident: 2020042823361839300_b0145
– start-page: 1470
  volume-title: CEC 99. Proceedings of the 1999 congress on evolutionary computation, 1999
  year: 1999
  ident: 2020042823361839300_b0055
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 2020042823361839300_b0160
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.857610
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 2020042823361839300_b0220
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.919004
– volume: 216
  start-page: 2687
  issue: 9
  year: 2010
  ident: 2020042823361839300_b0005
  article-title: Chaotic harmony search algorithms
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2010.03.114
– volume: 6
  start-page: 1194
  year: 2015
  ident: 2020042823361839300_b0240
  article-title: Improving swarm intelligence accuracy with cosine functions for evolved bat algorithm
  publication-title: Journal of Information Hiding and Multimedia Signal Processing
– volume: 5
  start-page: 224
  issue: 2
  year: 2014
  ident: 2020042823361839300_b0085
  article-title: Chaotic bat algorithm
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2013.10.002
– volume: 41
  start-page: 113
  issue: 2
  year: 2000
  ident: 2020042823361839300_b0040
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Computers in Industry
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 22
  start-page: 1239
  issue: 6
  year: 2013
  ident: 2020042823361839300_b0090
  article-title: Bat algorithm for constrained optimization tasks
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-012-1028-9
– start-page: 1942
  volume-title: Proceedings of IEEE international conference on neural networks
  year: 1995
  ident: 2020042823361839300_b0070
  article-title: Particle swarm optimization
– start-page: 47
  volume-title: Applications of metaheuristic optimization algorithms in civil engineering
  year: 2017
  ident: 2020042823361839300_b0140
  doi: 10.1007/978-3-319-48012-1_4
– volume: 25
  start-page: 1077
  issue: 5
  year: 2014
  ident: 2020042823361839300_b0210
  article-title: Biogeography-based optimisation with chaos
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1597-x
– volume: 32
  start-page: 1079
  issue: 1
  year: 2017
  ident: 2020042823361839300_b0030
  article-title: An improved butterfly optimization algorithm with chaos
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/JIFS-16798
– volume: 83
  start-page: 80
  year: 2015
  ident: 2020042823361839300_b0180
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 2020042823361839300_b0080
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2012.05.010
– volume-title: Journal of Computational Design and Engineering
  year: 2017
  ident: 2020042823361839300_b0155
  article-title: Chaotic grey wolf optimization algorithm for constrained optimization problems
– volume: 38
  start-page: 168
  issue: 2
  year: 2002
  ident: 2020042823361839300_b0165
  article-title: Application of chaos in genetic algorithms
  publication-title: Communications in Theoretical Physics
  doi: 10.1088/0253-6102/38/2/168
– volume: 4
  start-page: 3
  issue: 1
  year: 2017
  ident: 2020042823361839300_b0205
  article-title: Whale optimization algorithm for optimal sizing of renewable resources for loss reduction in distribution systems
  publication-title: Renewables: Wind, Water, and Solar
  doi: 10.1186/s40807-017-0040-1
– start-page: 1
  volume-title: Soft Computing
  year: 2016
  ident: 2020042823361839300_b0020
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
– volume: 18
  start-page: 89
  issue: 1
  year: 2013
  ident: 2020042823361839300_b0095
  article-title: Firefly algorithm with chaos
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2012.06.009
– volume-title: Neurocomputing
  year: 2017
  ident: 2020042823361839300_b0175
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
– volume-title: Nature-inspired metaheuristic algorithms
  year: 2010
  ident: 2020042823361839300_b0255
– start-page: 854
  volume-title: 9th Pacific Rim international conference on artificial intelligence, LNAI 4099
  year: 2006
  ident: 2020042823361839300_b0215
  article-title: Cat swarm optimization'
– volume: 9
  start-page: 126
  issue: 2
  year: 2005
  ident: 2020042823361839300_b0015
  article-title: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.843751
– volume: 6
  start-page: 4235
  issue: 9
  year: 2010
  ident: 2020042823361839300_b0100
  article-title: A modified harmony search method in constrained optimization
  publication-title: International Journal of Innovative Computing, Information and Control
– volume: 274
  start-page: 17
  year: 2014
  ident: 2020042823361839300_b0245
  article-title: Chaotic krill herd algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.02.123
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 2020042823361839300_b0250
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics Bulletin
  doi: 10.2307/3001968
– volume: 77
  start-page: 481
  issue: 4
  year: 2001
  ident: 2020042823361839300_b0050
  article-title: On benchmarking functions for genetic algorithms
  publication-title: International Journal of Computer Mathematics
  doi: 10.1080/00207160108805080
– volume: 1
  start-page: 53
  issue: 1
  year: 1997
  ident: 2020042823361839300_b0060
  article-title: Ant colony system: A cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585892
– volume: 64
  start-page: 821
  issue: 8
  year: 1990
  ident: 2020042823361839300_b0200
  article-title: Synchronization in chaotic systems
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.64.821
– start-page: 65
  volume-title: Nature inspired cooperative strategies for optimization (NICSO 2010)
  year: 2010
  ident: 2020042823361839300_b0265
  article-title: A new metaheuristic bat-inspired algorithm
  doi: 10.1007/978-3-642-12538-6_6
SSID ssj0001723019
ssib053376903
Score 2.5837457
Snippet Graphical abstract Graphical Abstract AbstractThe Whale Optimization Algorithm (WOA) is a recently developed meta-heuristic optimization algorithm which is...
The Whale Optimization Algorithm (WOA) is a recently developed meta-heuristic optimization algorithm which is based on the hunting mechanism of humpback...
SourceID nrf
kisti
crossref
oup
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 275
SubjectTerms 기계공학
Title Chaotic whale optimization algorithm
URI http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201822965871524&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002363895
Volume 5
WOSCitedRecordID wos000436871200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Computational Design and Engineering , 2018, 5(3), , pp.275-284
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: TOX
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdg4wEeBgwmykcVoYmXKihx4jp-nCa-0YZEkfpmOeekn0uqtGP78zk7ThrGgPHAS1q5rZPcXS-_O59_R8jhMFGUayp8gBgDFDoEX6RcY8yTqlAHECbasut_5icnyXgsvrierWvbToAXRXJ5KVb_VdU4hso2W2f_Qd3tpDiA71HpeES14_FGij-eqtKwsF5MlSkcRJdw5vZaDtRyUlazzfTsN5AUbIuHJj2obXGHXV3ItqyFrYdW51bZ79REFSuztL21ndI2Lxp8VcVCLdWqm1kIk7YK1TkgSlG0cRTU6ybZdowFNTtm40FZx1Cirjesm6K4Byute8H94rPr9MH89Ry04S0Nuc3PBtcQZF95cLXlhB-PPp2aG6DUUNlwhCTxbbKLZxfGz41Ox42HQWzLh8KtO9ssHMcQzHZ_aW_W7ayqiwCvXtNP6GXXQPwZgpKiyuv9kR1oMnpA9pwCvaPaFh6SW4tyn9x38YXnvPd6n9zrkE8-IofOUDxrKF7XULzWUB6Tb2_fjI7f-65nhg8I3TY-IPzliMMo5FxkDBhXJsYNtIhpMNRKcwqp2XytWA4G7qqMaca4VhCpmKbRAdkpyiJ7QryQp5Bm-GEAIs5zitMxkcUcXXwMLFE9EjaykOAI5U1fk6VsKgfn0shPGvnJkEqUX48M2t-sajqVP367b0UsC71eymu03CMvUfZyATNpaNLN66SUi0piMPhBRnbFA2d5haq5weme_u10z8jd7f_kOdnZVOfZC3IHvm9m66pv0zl9a28_APlLhZY
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaotic+whale+optimization+algorithm&rft.jtitle=Journal+of+computational+design+and+engineering&rft.au=Kaur%2C+Gaganpreet&rft.au=Arora%2C+Sankalap&rft.date=2018-07-01&rft.issn=2288-4300&rft.eissn=2288-5048&rft.volume=5&rft.issue=3&rft.spage=275&rft.epage=284&rft_id=info:doi/10.1016%2Fj.jcde.2017.12.006&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO201822965871524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-5048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-5048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-5048&client=summon