An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning
•Developed a multi-objective model for the combined natural gas network and electricity network.•Taken into account the uncertainty and correlations of wind power in the proposed model.•Presented an improved point-estimation method to solve the combined optimal power and natural gas load flow. With...
Uloženo v:
| Vydáno v: | Applied energy Ročník 167; s. 280 - 293 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2016
|
| Témata: | |
| ISSN: | 0306-2619, 1872-9118 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Developed a multi-objective model for the combined natural gas network and electricity network.•Taken into account the uncertainty and correlations of wind power in the proposed model.•Presented an improved point-estimation method to solve the combined optimal power and natural gas load flow.
With the increasing proportion of natural gas in power generation, natural gas network and electricity network are closely coupled. Therefore, planning of any individual system regardless of such interdependence will increase the total cost of the whole combined systems. Therefore, a multi-objective optimization model for the combined gas and electricity network planning is presented in this work. To be specific, the objectives of the proposed model are to minimize both investment cost and production cost of the combined system while taking into account the N−1 network security criterion. Moreover, the stochastic nature of wind power generation is addressed in the proposed model. Consequently, it leads to a mixed integer non-linear, multi-objective, stochastic programming problem. To solve this complex model, the Elitist Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed to capture the optimal Pareto front, wherein the Primal–Dual Interior-Point (PDIP) method combined with the point-estimate method is adopted to evaluate the objective functions. In addition, decision makers can use a fuzzy decision making approach based on their preference to select the final optimal solution from the optimal Pareto front. The effectiveness of the proposed model and method are validated on a modified IEEE 24-bus electricity network integrated with a 15-node natural gas system as well as a real-world system of Hainan province. |
|---|---|
| AbstractList | With the increasing proportion of natural gas in power generation, natural gas network and electricity network are closely coupled. Therefore, planning of any individual system regardless of such interdependence will increase the total cost of the whole combined systems. Therefore, a multi-objective optimization model for the combined gas and electricity network planning is presented in this work. To be specific, the objectives of the proposed model are to minimize both investment cost and production cost of the combined system while taking into account the N−1 network security criterion. Moreover, the stochastic nature of wind power generation is addressed in the proposed model. Consequently, it leads to a mixed integer non-linear, multi-objective, stochastic programming problem. To solve this complex model, the Elitist Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed to capture the optimal Pareto front, wherein the Primal–Dual Interior-Point (PDIP) method combined with the point-estimate method is adopted to evaluate the objective functions. In addition, decision makers can use a fuzzy decision making approach based on their preference to select the final optimal solution from the optimal Pareto front. The effectiveness of the proposed model and method are validated on a modified IEEE 24-bus electricity network integrated with a 15-node natural gas system as well as a real-world system of Hainan province. With the increasing proportion of natural gas in power generation, natural gas network and electricity network are closely coupled. Therefore, planning of any individual system regardless of such interdependence will increase the total cost of the whole combined systems. Therefore, a multi-objective optimization model for the combined gas and electricity network planning is presented in this work. To be specific, the objectives of the proposed model are to minimize both investment cost and production cost of the combined system while taking into account the N-1 network security criterion. Moreover, the stochastic nature of wind power generation is addressed in the proposed model. Consequently, it leads to a mixed integer non-linear, multi-objective, stochastic programming problem. To solve this complex model, the Elitist Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed to capture the optimal Pareto front, wherein the Primal-Dual Interior-Point (PDIP) method combined with the point-estimate method is adopted to evaluate the objective functions. In addition, decision makers can use a fuzzy decision making approach based on their preference to select the final optimal solution from the optimal Pareto front. The effectiveness of the proposed model and method are validated on a modified IEEE 24-bus electricity network integrated with a 15-node natural gas system as well as a real-world system of Hainan province. •Developed a multi-objective model for the combined natural gas network and electricity network.•Taken into account the uncertainty and correlations of wind power in the proposed model.•Presented an improved point-estimation method to solve the combined optimal power and natural gas load flow. With the increasing proportion of natural gas in power generation, natural gas network and electricity network are closely coupled. Therefore, planning of any individual system regardless of such interdependence will increase the total cost of the whole combined systems. Therefore, a multi-objective optimization model for the combined gas and electricity network planning is presented in this work. To be specific, the objectives of the proposed model are to minimize both investment cost and production cost of the combined system while taking into account the N−1 network security criterion. Moreover, the stochastic nature of wind power generation is addressed in the proposed model. Consequently, it leads to a mixed integer non-linear, multi-objective, stochastic programming problem. To solve this complex model, the Elitist Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed to capture the optimal Pareto front, wherein the Primal–Dual Interior-Point (PDIP) method combined with the point-estimate method is adopted to evaluate the objective functions. In addition, decision makers can use a fuzzy decision making approach based on their preference to select the final optimal solution from the optimal Pareto front. The effectiveness of the proposed model and method are validated on a modified IEEE 24-bus electricity network integrated with a 15-node natural gas system as well as a real-world system of Hainan province. |
| Author | Hu, Yuan Lin, Yanling Ding, Tao Bie, Zhaohong |
| Author_xml | – sequence: 1 givenname: Yuan surname: Hu fullname: Hu, Yuan – sequence: 2 givenname: Zhaohong surname: Bie fullname: Bie, Zhaohong email: zhbie@mail.xjtu.edu.cn – sequence: 3 givenname: Tao surname: Ding fullname: Ding, Tao – sequence: 4 givenname: Yanling surname: Lin fullname: Lin, Yanling |
| BookMark | eNqFkU9vEzEQxS1UJNLCV0A-ctngP7uOLXEgqqBEquAAnC2vPY4cdu3FdlrCp2e3gQuXnEYa_d7TzHvX6CqmCAi9pmRNCRVvD2szQYS8P60Zod162bfyGVpRuWGNolReoRXhRDRMUPUCXZdyIIQwysgKhW3En7_ebZvdDvemgMPjcaihSf0BbA0PgNNUwxh-mxpSxD5lbNPYhziTe1OwiQ7DMKM52FBPOEJ9TPkHhl-TiWWRTIOJMcT9S_Tcm6HAq7_zBn3_-OHb7afm_svd7nZ739iOstoI5nwvesm8AkGla6EnxCtiFHAquVWuZV7SbgOu55x23rve0o5Ly5wknvEb9ObsO-X08wil6jEUC8N8BqRj0Wz5fSM6ri6iVFJBJJeMX0Y3iqi2E2xxFWfU5lRKBq-nHEaTT5oSvTSmD_pfY3pp7Gnfyln47j_hHOlT7jWbMFyWvz_LYU73IUDWxQaIFlzIc0HapXDJ4g_LrLmy |
| CitedBy_id | crossref_primary_10_1016_j_energy_2024_131144 crossref_primary_10_3390_app11041760 crossref_primary_10_1155_2018_1267045 crossref_primary_10_1016_j_est_2025_115430 crossref_primary_10_1016_j_energy_2020_117916 crossref_primary_10_1016_j_jclepro_2024_142064 crossref_primary_10_1007_s11630_019_1188_3 crossref_primary_10_3390_en12122325 crossref_primary_10_1016_j_apenergy_2016_08_040 crossref_primary_10_1016_j_energy_2017_01_111 crossref_primary_10_3390_en11040734 crossref_primary_10_1016_j_jclepro_2019_118866 crossref_primary_10_1007_s10999_022_09596_8 crossref_primary_10_1016_j_knosys_2023_110421 crossref_primary_10_1016_j_epsr_2021_107543 crossref_primary_10_1016_j_applthermaleng_2020_116443 crossref_primary_10_1109_ACCESS_2018_2818756 crossref_primary_10_1016_j_scs_2021_103651 crossref_primary_10_1109_TPWRS_2018_2832192 crossref_primary_10_1016_j_apenergy_2019_05_003 crossref_primary_10_1109_TVT_2018_2868942 crossref_primary_10_1109_TPWRS_2017_2701881 crossref_primary_10_1109_TPWRS_2019_2935771 crossref_primary_10_3390_en12122316 crossref_primary_10_1007_s13202_022_01490_5 crossref_primary_10_1016_j_ijepes_2019_105777 crossref_primary_10_1109_ACCESS_2020_3020570 crossref_primary_10_1016_j_apenergy_2017_10_128 crossref_primary_10_1109_TPWRS_2018_2850840 crossref_primary_10_1049_gtd2_12277 crossref_primary_10_1016_j_apenergy_2020_116142 crossref_primary_10_1016_j_epsr_2021_107673 crossref_primary_10_3390_su13137425 crossref_primary_10_1016_j_jhydrol_2018_06_041 crossref_primary_10_1016_j_ijepes_2021_107640 crossref_primary_10_1109_TII_2019_2924927 crossref_primary_10_1049_iet_gtd_2019_0712 crossref_primary_10_1016_j_energy_2023_128113 crossref_primary_10_1016_j_apenergy_2025_125476 crossref_primary_10_1109_TPWRS_2018_2878480 crossref_primary_10_1016_j_apenergy_2016_12_093 crossref_primary_10_3390_en12234584 crossref_primary_10_1109_TPWRS_2018_2849958 crossref_primary_10_1016_j_apenergy_2016_09_039 crossref_primary_10_1016_j_jclepro_2019_06_028 crossref_primary_10_1109_ACCESS_2020_3042890 crossref_primary_10_1007_s40565_017_0279_y crossref_primary_10_1109_ACCESS_2024_3430862 crossref_primary_10_1016_j_jclepro_2020_121079 crossref_primary_10_1016_j_rockmb_2025_100223 crossref_primary_10_1016_j_est_2023_109718 crossref_primary_10_1109_TPWRS_2020_3018869 crossref_primary_10_3390_en13195097 crossref_primary_10_1016_j_enconman_2023_117731 crossref_primary_10_3390_su15086602 crossref_primary_10_1088_1742_6596_1972_1_012014 crossref_primary_10_1016_j_apenergy_2025_126572 crossref_primary_10_1016_j_compstruct_2023_117622 crossref_primary_10_3390_en15218109 crossref_primary_10_1016_j_energy_2023_128976 crossref_primary_10_1016_j_renene_2018_09_042 crossref_primary_10_1016_j_apenergy_2017_05_072 crossref_primary_10_1016_j_apenergy_2018_06_049 crossref_primary_10_3390_en14144185 crossref_primary_10_1049_iet_gtd_2019_0570 crossref_primary_10_1016_j_apenergy_2021_117703 crossref_primary_10_1016_j_energy_2017_06_090 crossref_primary_10_1109_TSTE_2018_2843121 crossref_primary_10_1007_s10462_023_10526_z crossref_primary_10_1080_15435075_2020_1809424 crossref_primary_10_1016_j_apenergy_2018_08_087 crossref_primary_10_1109_ACCESS_2024_3519180 crossref_primary_10_1007_s40518_018_0093_9 crossref_primary_10_1016_j_apenergy_2021_117384 crossref_primary_10_1109_ACCESS_2019_2927103 crossref_primary_10_1016_j_enconman_2019_01_114 crossref_primary_10_1016_j_ijepes_2021_107144 crossref_primary_10_1093_ijlct_ctac139 crossref_primary_10_1109_JPROC_2020_3005505 crossref_primary_10_1109_TSG_2022_3175801 crossref_primary_10_1007_s11814_024_00136_y crossref_primary_10_1016_j_energy_2021_121416 crossref_primary_10_1109_TPWRS_2020_3038078 crossref_primary_10_1016_j_apenergy_2020_114567 crossref_primary_10_1016_j_energy_2019_03_154 crossref_primary_10_1016_j_egypro_2016_11_268 crossref_primary_10_3390_en12102012 crossref_primary_10_1016_j_apenergy_2021_118061 crossref_primary_10_1007_s40998_018_0138_5 crossref_primary_10_1016_j_applthermaleng_2019_114071 crossref_primary_10_1016_j_segan_2022_100893 crossref_primary_10_1049_iet_rpg_2020_0285 crossref_primary_10_1016_j_ijepes_2020_106673 crossref_primary_10_1049_iet_rpg_2019_1181 crossref_primary_10_1016_j_apenergy_2017_06_062 crossref_primary_10_1016_j_jclepro_2020_122117 crossref_primary_10_1049_iet_rpg_2019_0651 crossref_primary_10_1088_1755_1315_621_1_012062 crossref_primary_10_1016_j_est_2023_107060 crossref_primary_10_1109_ACCESS_2018_2859816 crossref_primary_10_1049_gtd2_12208 crossref_primary_10_1016_j_ijepes_2017_09_031 crossref_primary_10_1016_j_apenergy_2024_124348 crossref_primary_10_1016_j_energy_2023_127697 crossref_primary_10_1109_ACCESS_2020_2976835 crossref_primary_10_1109_TSTE_2020_3025831 crossref_primary_10_1016_j_energy_2019_05_119 crossref_primary_10_1016_j_egypro_2017_08_174 crossref_primary_10_1016_j_tsep_2018_10_009 crossref_primary_10_1049_iet_gtd_2020_0453 crossref_primary_10_1016_j_apenergy_2016_02_075 crossref_primary_10_3390_app13063780 crossref_primary_10_1016_j_seta_2021_101300 crossref_primary_10_1016_j_suscom_2025_101108 crossref_primary_10_1109_TPWRS_2021_3054936 crossref_primary_10_1016_j_apenergy_2018_09_148 crossref_primary_10_1016_j_apenergy_2018_05_051 crossref_primary_10_1049_iet_gtd_2018_6357 crossref_primary_10_1109_TPWRS_2018_2833465 crossref_primary_10_1109_TSTE_2021_3105525 crossref_primary_10_1007_s11431_019_9553_0 crossref_primary_10_1016_j_apenergy_2021_117395 crossref_primary_10_1016_j_comnet_2021_108041 crossref_primary_10_1109_ACCESS_2020_3011720 |
| Cites_doi | 10.1109/4235.996017 10.1016/j.enpol.2010.05.016 10.1109/TIA.2004.841032 10.1109/TPWRS.2009.2020530 10.1109/TPWRS.2009.2036797 10.1109/TPWRS.2013.2263256 10.1049/iet-gtd.2010.0151 10.1109/TPWRS.2014.2299714 10.1109/TPWRS.2002.807083 10.1175/1520-0450(1976)015<0673:NAOPOF>2.0.CO;2 10.1016/j.apenergy.2013.08.071 10.1063/1.3600761 10.1049/iet-gtd.2009.0639 10.1109/TPWRS.2012.2191984 10.1002/2013EF000196 10.1109/TPWRS.2011.2182363 10.1016/j.epsr.2007.11.002 10.1016/j.apenergy.2014.06.042 10.1016/j.rser.2011.07.122 10.1109/TPWRS.2009.2023262 10.1109/TPWRS.2014.2369011 10.1109/TPWRS.2014.2344861 |
| ContentType | Journal Article |
| Copyright | 2015 The Authors |
| Copyright_xml | – notice: 2015 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION 7ST C1K SOI 7TA 8FD F28 FR3 JG9 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2015.10.148 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Materials Business File Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering Materials Business File AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Materials Research Database Environment Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 293 |
| ExternalDocumentID | 10_1016_j_apenergy_2015_10_148 S0306261915013902 |
| GeographicLocations | ISEW, China, People's Rep., Hainan Prov China |
| GeographicLocations_xml | – name: ISEW, China, People's Rep., Hainan Prov – name: China |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: EIPE14106 – fundername: Doctoral Program of Higher Education for the Priority Development Areas grantid: 20130201130001 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7ST C1K SOI 7TA 8FD F28 FR3 JG9 7S9 L.6 |
| ID | FETCH-LOGICAL-c512t-62dfb6b82f9e618d4eb00f90a9e3183c9d42f8157edb3315ffdbc1538c2d80f23 |
| ISICitedReferencesCount | 147 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373748400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Thu Oct 02 03:40:06 EDT 2025 Sun Sep 28 06:49:35 EDT 2025 Tue Oct 07 09:20:51 EDT 2025 Sat Nov 29 07:25:19 EST 2025 Tue Nov 18 21:18:57 EST 2025 Fri Feb 23 02:32:52 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Natural gas network expansion planning Primal–Dual Interior-Point method Point-estimate method Multi-objective Transmission expansion planning |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c512t-62dfb6b82f9e618d4eb00f90a9e3183c9d42f8157edb3315ffdbc1538c2d80f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.apenergy.2015.10.148 |
| PQID | 1790945629 |
| PQPubID | 23462 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2000276539 proquest_miscellaneous_1816083823 proquest_miscellaneous_1790945629 crossref_primary_10_1016_j_apenergy_2015_10_148 crossref_citationtrail_10_1016_j_apenergy_2015_10_148 elsevier_sciencedirect_doi_10_1016_j_apenergy_2015_10_148 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-04-01 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | De Gouw, Parrish, Frost, Trainer (b0020) 2014; 2 Martinez-Mares, Fuerte-Esquivel (b0095) 2013; 28 Liu, Shahidehpour, Fu, Li (b0055) 2009; 24 Cui, Li, Ren, Xue, Fang (b0085) 2012 Wang, Gong, Jiang (b0130) 2015; 30 Chompoo-Inwai, Lee, Fuangfoo, Williams, Liao (b0080) 2005; 41 An, Li, Gedra (b0030) 2003; 1 Deb, Pratap, Agarwal, Meyarivan (b0110) 2002; 6 Morales, Baringo, Conejo, Mínguez (b0120) 2010; 4 Qadrdan, Chaudry, Wu, Jenkins, Ekanayake (b0090) 2010; 38 Liu, Shahidehpour, Wang (b0050) 2011; 21 NERC. NERC planning standard; 1997. Qiu, Dong, Zhao, Meng, Zheng, Hill (b0075) 2015; 30 Unsihuay-Vila, Marangon-Lima, Perez-Arriaga, Balestrassi (b0065) 2010; 25 Liu, Shahidehpour, Wang (b0060) 2010; 4 Chaudry, Jenkins, Strbac (b0040) 2008; 78 Hedman, O’Neill, Fisher, Oren (b0115) 2009; 24 Chaudry, Jenkins, Qadrdan, Wu (b0025) 2014; 113 Martínez-Mares, Fuerte-Esquivel (b0035) 2012; 27 Justus, Hargraves, Yalcin (b0125) 1976; 15 Barati, Seifi, Sepasian, Nateghi, Shafie-khah, Catalão (b0070) 2014 Wei, Li, Zijun, Junzhao, Li (b0105) 2011 Üster, Dilaveroğlu (b0005) 2014; 133 Fang, Hill (b0140) 2003; 18 Ozturk, Yuksel, Ozek (b0010) 2011; 15 Moeini-Aghtaie, Abbaspour, Fotuhi-Firuzabad (b0135) 2012; 27 International energy agency. World energy, Outlook 2010; 2010. Correa-Posada, Sánchez-Martın (b0045) 2014; 29 Ozturk (10.1016/j.apenergy.2015.10.148_b0010) 2011; 15 Chaudry (10.1016/j.apenergy.2015.10.148_b0025) 2014; 113 Qadrdan (10.1016/j.apenergy.2015.10.148_b0090) 2010; 38 Martinez-Mares (10.1016/j.apenergy.2015.10.148_b0095) 2013; 28 Üster (10.1016/j.apenergy.2015.10.148_b0005) 2014; 133 Liu (10.1016/j.apenergy.2015.10.148_b0050) 2011; 21 Hedman (10.1016/j.apenergy.2015.10.148_b0115) 2009; 24 Liu (10.1016/j.apenergy.2015.10.148_b0055) 2009; 24 Martínez-Mares (10.1016/j.apenergy.2015.10.148_b0035) 2012; 27 Justus (10.1016/j.apenergy.2015.10.148_b0125) 1976; 15 Qiu (10.1016/j.apenergy.2015.10.148_b0075) 2015; 30 Morales (10.1016/j.apenergy.2015.10.148_b0120) 2010; 4 Cui (10.1016/j.apenergy.2015.10.148_b0085) 2012 Chaudry (10.1016/j.apenergy.2015.10.148_b0040) 2008; 78 Wang (10.1016/j.apenergy.2015.10.148_b0130) 2015; 30 Fang (10.1016/j.apenergy.2015.10.148_b0140) 2003; 18 Chompoo-Inwai (10.1016/j.apenergy.2015.10.148_b0080) 2005; 41 Wei (10.1016/j.apenergy.2015.10.148_b0105) 2011 Moeini-Aghtaie (10.1016/j.apenergy.2015.10.148_b0135) 2012; 27 10.1016/j.apenergy.2015.10.148_b0015 Unsihuay-Vila (10.1016/j.apenergy.2015.10.148_b0065) 2010; 25 10.1016/j.apenergy.2015.10.148_b0100 Liu (10.1016/j.apenergy.2015.10.148_b0060) 2010; 4 De Gouw (10.1016/j.apenergy.2015.10.148_b0020) 2014; 2 Deb (10.1016/j.apenergy.2015.10.148_b0110) 2002; 6 An (10.1016/j.apenergy.2015.10.148_b0030) 2003; 1 Correa-Posada (10.1016/j.apenergy.2015.10.148_b0045) 2014; 29 Barati (10.1016/j.apenergy.2015.10.148_b0070) 2014 |
| References_xml | – volume: 38 start-page: 5684 year: 2010 end-page: 5695 ident: b0090 article-title: Impact of a large penetration of wind generation on the GB gas network publication-title: Energy Policy – start-page: 285 year: 2012 end-page: 288 ident: b0085 article-title: Review of transmission planning with large-scale wind power integration publication-title: 2012 Electromagn Comp (APEMC) – volume: 28 start-page: 3964 year: 2013 end-page: 3976 ident: b0095 article-title: A robust optimization approach for the interdependency analysis of integrated energy systems considering wind power uncertainty publication-title: IEEE Trans Power Syst – volume: 133 start-page: 56 year: 2014 end-page: 69 ident: b0005 article-title: Optimization for design and operation of natural gas transmission networks publication-title: Appl Energy – volume: 30 start-page: 1094 year: 2015 end-page: 1103 ident: b0130 article-title: Regional carbon emission management based on probabilistic power flow with correlated stochastic variables publication-title: IEEE Trans Power Syst – volume: 18 start-page: 374 year: 2003 end-page: 380 ident: b0140 article-title: A new strategy for transmission expansion in competitive electricity markets publication-title: IEEE Trans Power Syst – reference: International energy agency. World energy, Outlook 2010; 2010. – volume: 25 start-page: 1154 year: 2010 end-page: 1168 ident: b0065 article-title: A model to long-term, multiarea, multistage, and integrated expansion planning of electricity and natural gas systems publication-title: IEEE Trans Power Syst – volume: 1 start-page: 138 year: 2003 end-page: 143 ident: b0030 article-title: Natural gas and electricity optimal power flow, transmission and distribution conference and exposition publication-title: IEEE Power Eng Soc – volume: 24 start-page: 1577 year: 2009 end-page: 1586 ident: b0115 article-title: Optimal transmission switching with contingency analysis publication-title: IEEE Trans Power Syst – volume: 30 start-page: 1035 year: 2015 end-page: 1046 ident: b0075 article-title: Low carbon oriented expansion planning of integrated gas and power systems publication-title: IEEE Trans Power Syst – reference: NERC. NERC planning standard; 1997. – volume: 4 start-page: 641 year: 2010 end-page: 651 ident: b0120 article-title: Probabilistic power flow with correlated wind sources publication-title: Gener Transm Distrib – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0110 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: Evol Comput – volume: 15 start-page: 673 year: 1976 end-page: 678 ident: b0125 article-title: Nationwide assessment of potential output from wind-powered generators publication-title: J Appl Meteorol – volume: 113 start-page: 1171 year: 2014 end-page: 1187 ident: b0025 article-title: Combined gas and electricity network expansion planning publication-title: Appl Energy – year: 2014 ident: b0070 article-title: Multi-period integrated framework of generation, transmission, and natural gas grid expansion planning for large-scale systems publication-title: IEEE Trans Power Syst – volume: 15 start-page: 4286 year: 2011 end-page: 4294 ident: b0010 article-title: A bridge between east and west: Turkey’s natural gas policy publication-title: Renew Sustain Energy Rev – volume: 27 start-page: 2156 year: 2012 end-page: 2166 ident: b0035 article-title: A unified gas and power flow analysis in natural gas and electricity coupled networks publication-title: IEEE Trans Power Syst – volume: 24 start-page: 1523 year: 2009 end-page: 1536 ident: b0055 article-title: Security-constrained unit commitment with natural gas transmission constraints publication-title: IEEE Trans Power Syst – volume: 2 start-page: 75 year: 2014 end-page: 82 ident: b0020 article-title: Reduced emissions of CO2, NOx, and SO2 from US power plants owing to switch from coal to natural gas with combined cycle technology publication-title: Earth’s Future – volume: 41 start-page: 163 year: 2005 end-page: 168 ident: b0080 article-title: System impact study for the interconnection of wind generation and utility system publication-title: Ind Appl – volume: 21 start-page: 025102 year: 2011 ident: b0050 article-title: Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow publication-title: Chaos: An Interdiscipl J Nonlinear Sci – start-page: 1250 year: 2011 end-page: 1254 ident: b0105 article-title: Transmission network planning with N-1 security criterion based on improved multi-objective genetic algorithm publication-title: Electr Utility Deregul Restruct Power Technol (DRPT) – volume: 29 start-page: 1780 year: 2014 end-page: 1787 ident: b0045 article-title: Security-constrained optimal power and natural-gas flow publication-title: IEEE Trans Power Syst – volume: 27 start-page: 1585 year: 2012 end-page: 1593 ident: b0135 article-title: Incorporating large-scale distant wind farms in probabilistic transmission expansion planning—Part I: Theory and algorithm publication-title: IEEE Trans Power Syst – volume: 78 start-page: 1265 year: 2008 end-page: 1279 ident: b0040 article-title: Multi-time period combined gas and electricity network optimisation publication-title: Electr Power Syst Res – volume: 4 start-page: 1314 year: 2010 end-page: 1325 ident: b0060 article-title: Application of augmented Lagrangian relaxation to coordinated scheduling of interdependent hydrothermal power and natural gas systems publication-title: Gener Transm Distrib – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.apenergy.2015.10.148_b0110 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: Evol Comput doi: 10.1109/4235.996017 – ident: 10.1016/j.apenergy.2015.10.148_b0015 – volume: 38 start-page: 5684 issue: 10 year: 2010 ident: 10.1016/j.apenergy.2015.10.148_b0090 article-title: Impact of a large penetration of wind generation on the GB gas network publication-title: Energy Policy doi: 10.1016/j.enpol.2010.05.016 – start-page: 1250 year: 2011 ident: 10.1016/j.apenergy.2015.10.148_b0105 article-title: Transmission network planning with N-1 security criterion based on improved multi-objective genetic algorithm publication-title: Electr Utility Deregul Restruct Power Technol (DRPT) – volume: 41 start-page: 163 issue: 1 year: 2005 ident: 10.1016/j.apenergy.2015.10.148_b0080 article-title: System impact study for the interconnection of wind generation and utility system publication-title: Ind Appl doi: 10.1109/TIA.2004.841032 – volume: 24 start-page: 1577 issue: 3 year: 2009 ident: 10.1016/j.apenergy.2015.10.148_b0115 article-title: Optimal transmission switching with contingency analysis publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2020530 – volume: 25 start-page: 1154 issue: 2 year: 2010 ident: 10.1016/j.apenergy.2015.10.148_b0065 article-title: A model to long-term, multiarea, multistage, and integrated expansion planning of electricity and natural gas systems publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2036797 – year: 2014 ident: 10.1016/j.apenergy.2015.10.148_b0070 article-title: Multi-period integrated framework of generation, transmission, and natural gas grid expansion planning for large-scale systems publication-title: IEEE Trans Power Syst – volume: 28 start-page: 3964 issue: 4 year: 2013 ident: 10.1016/j.apenergy.2015.10.148_b0095 article-title: A robust optimization approach for the interdependency analysis of integrated energy systems considering wind power uncertainty publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2013.2263256 – volume: 4 start-page: 1314 issue: 12 year: 2010 ident: 10.1016/j.apenergy.2015.10.148_b0060 article-title: Application of augmented Lagrangian relaxation to coordinated scheduling of interdependent hydrothermal power and natural gas systems publication-title: Gener Transm Distrib doi: 10.1049/iet-gtd.2010.0151 – volume: 29 start-page: 1780 issue: 4 year: 2014 ident: 10.1016/j.apenergy.2015.10.148_b0045 article-title: Security-constrained optimal power and natural-gas flow publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2014.2299714 – volume: 18 start-page: 374 issue: 1 year: 2003 ident: 10.1016/j.apenergy.2015.10.148_b0140 article-title: A new strategy for transmission expansion in competitive electricity markets publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2002.807083 – volume: 15 start-page: 673 issue: 7 year: 1976 ident: 10.1016/j.apenergy.2015.10.148_b0125 article-title: Nationwide assessment of potential output from wind-powered generators publication-title: J Appl Meteorol doi: 10.1175/1520-0450(1976)015<0673:NAOPOF>2.0.CO;2 – volume: 113 start-page: 1171 year: 2014 ident: 10.1016/j.apenergy.2015.10.148_b0025 article-title: Combined gas and electricity network expansion planning publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.08.071 – volume: 1 start-page: 138 year: 2003 ident: 10.1016/j.apenergy.2015.10.148_b0030 article-title: Natural gas and electricity optimal power flow, transmission and distribution conference and exposition publication-title: IEEE Power Eng Soc – volume: 21 start-page: 025102 issue: 2 year: 2011 ident: 10.1016/j.apenergy.2015.10.148_b0050 article-title: Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow publication-title: Chaos: An Interdiscipl J Nonlinear Sci doi: 10.1063/1.3600761 – volume: 4 start-page: 641 issue: 5 year: 2010 ident: 10.1016/j.apenergy.2015.10.148_b0120 article-title: Probabilistic power flow with correlated wind sources publication-title: Gener Transm Distrib doi: 10.1049/iet-gtd.2009.0639 – volume: 27 start-page: 2156 issue: 4 year: 2012 ident: 10.1016/j.apenergy.2015.10.148_b0035 article-title: A unified gas and power flow analysis in natural gas and electricity coupled networks publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2012.2191984 – ident: 10.1016/j.apenergy.2015.10.148_b0100 – volume: 2 start-page: 75 issue: 2 year: 2014 ident: 10.1016/j.apenergy.2015.10.148_b0020 article-title: Reduced emissions of CO2, NOx, and SO2 from US power plants owing to switch from coal to natural gas with combined cycle technology publication-title: Earth’s Future doi: 10.1002/2013EF000196 – volume: 27 start-page: 1585 issue: 3 year: 2012 ident: 10.1016/j.apenergy.2015.10.148_b0135 article-title: Incorporating large-scale distant wind farms in probabilistic transmission expansion planning—Part I: Theory and algorithm publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2011.2182363 – volume: 78 start-page: 1265 issue: 7 year: 2008 ident: 10.1016/j.apenergy.2015.10.148_b0040 article-title: Multi-time period combined gas and electricity network optimisation publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2007.11.002 – volume: 133 start-page: 56 year: 2014 ident: 10.1016/j.apenergy.2015.10.148_b0005 article-title: Optimization for design and operation of natural gas transmission networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.06.042 – start-page: 285 year: 2012 ident: 10.1016/j.apenergy.2015.10.148_b0085 article-title: Review of transmission planning with large-scale wind power integration publication-title: 2012 Electromagn Comp (APEMC) – volume: 15 start-page: 4286 issue: 9 year: 2011 ident: 10.1016/j.apenergy.2015.10.148_b0010 article-title: A bridge between east and west: Turkey’s natural gas policy publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.07.122 – volume: 24 start-page: 1523 issue: 3 year: 2009 ident: 10.1016/j.apenergy.2015.10.148_b0055 article-title: Security-constrained unit commitment with natural gas transmission constraints publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2023262 – volume: 30 start-page: 1035 issue: 2 year: 2015 ident: 10.1016/j.apenergy.2015.10.148_b0075 article-title: Low carbon oriented expansion planning of integrated gas and power systems publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2014.2369011 – volume: 30 start-page: 1094 issue: 2 year: 2015 ident: 10.1016/j.apenergy.2015.10.148_b0130 article-title: Regional carbon emission management based on probabilistic power flow with correlated stochastic variables publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2014.2344861 |
| SSID | ssj0002120 |
| Score | 2.5358875 |
| Snippet | •Developed a multi-objective model for the combined natural gas network and electricity network.•Taken into account the uncertainty and correlations of wind... With the increasing proportion of natural gas in power generation, natural gas network and electricity network are closely coupled. Therefore, planning of any... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 280 |
| SubjectTerms | algorithms China Decision making Electricity Mathematical models Multi-objective Natural gas Natural gas network expansion planning Networks Optimization Pareto optimality planning Point-estimate method power generation Primal–Dual Interior-Point method production costs Stochasticity Transmission expansion planning wind power |
| Title | An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning |
| URI | https://dx.doi.org/10.1016/j.apenergy.2015.10.148 https://www.proquest.com/docview/1790945629 https://www.proquest.com/docview/1816083823 https://www.proquest.com/docview/2000276539 |
| Volume | 167 |
| WOSCitedRecordID | wos000373748400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM8IBhMjC8ZCfFSuSTOl_1YUAdFVUGiQ-UpchJ7azWSsLZjfz7n2G6zwdh44CWpHDtNc7_ene273yH0Kgmo8iPhEeHHMQF7GxChg2kkjSS4H4lMmpD_r-NkMmGzGf_c6fx0uTBnJ0lZsvNzXv9XUUMbCFunzv6DuDc3hQb4DEKHI4gdjjcS_KDsTb68H5DRqKdNVGFiBkmVLYxu61WgJb7b9MsmyhCeAubH0PNIGMZmUxtnnmsPvTRx4roUAFg1PaS2dY7afq1zZmWTSrjFSqPh11sEvrXbIceiOq7sLbQbbSurTEXlmsaG3OCb0FQeR-3FCT9uxbTYpCwvJnqSdkHhxkmv7lPmEcqDtvI0NZ2sHbbXflPxZrVh0Re1-Uk6PC_q6yuGsvMip_bkU3pwOB6n0-Fs-rr-QXS5Mb0tb2uv3EI7NIk466KdwWg4-7gx4tQyerrnbyWX__mrr_JrLln4xm2Z3kf37HwDDwxOHqCOLHfR3RYL5S7aG26THaGr1fbLh2g-KLGFEm6ghC9BCbehhAFK2EEJA5QwQAm3oIQtlPAGSthB6RE6PBhO330gtjQHycFDXJGYFiqLM0YVl7HPilCXoFLcE1yvqQc5L0KqmB8lssiCwI-UKrJcG9ecFsxTNNhD3bIq5WOEmcxoxISgXsBDninOlBdlMoSzLxWN91HkXmyaW956XT7lJHUBiovUCSTVAmnaQ7aP3mzG1Ya55doR3Mkttf6n8StTwN61Y186QaegoPWumyhltV6mmgKP63UG_pc-zI9hLsRocHUf2kQJaCbpJzfo8xTd2f4fn6Hu6nQtn6Pb-dlqvjx9YdH-Cz60zXs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+NSGA-II+based+multi-objective+optimization+for+combined+gas+and+electricity+network+expansion+planning&rft.jtitle=Applied+energy&rft.au=Hu%2C+Yuan&rft.au=Bie%2C+Zhaohong&rft.au=Ding%2C+Tao&rft.au=Lin%2C+Yanling&rft.date=2016-04-01&rft.issn=0306-2619&rft.volume=167+p.280-293&rft.spage=280&rft.epage=293&rft_id=info:doi/10.1016%2Fj.apenergy.2015.10.148&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |