A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm con...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics Vol. 244; pp. 168 - 192
Main Authors: Yin, Youbing, Choi, Jiwoong, Hoffman, Eric A., Tawhai, Merryn H., Lin, Ching-Long
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.07.2013
Subjects:
ISSN:0021-9991, 1090-2716
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.
AbstractList A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C(1) continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (ID) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.
Author Tawhai, Merryn H.
Choi, Jiwoong
Hoffman, Eric A.
Yin, Youbing
Lin, Ching-Long
AuthorAffiliation c Department of Radiology, The University of Iowa, Iowa City, IA 52242, US
d Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242, US
f Auckland Bioengineering Institute, The University of Auckland, Auckland, NZ
a Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, US
e Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, US
b IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, US
AuthorAffiliation_xml – name: c Department of Radiology, The University of Iowa, Iowa City, IA 52242, US
– name: e Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, US
– name: d Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242, US
– name: b IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, US
– name: a Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, US
– name: f Auckland Bioengineering Institute, The University of Auckland, Auckland, NZ
Author_xml – sequence: 1
  givenname: Youbing
  surname: Yin
  fullname: Yin, Youbing
  email: youbing-yin@uiowa.edu
  organization: Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, USA
– sequence: 2
  givenname: Jiwoong
  surname: Choi
  fullname: Choi, Jiwoong
  email: jiwoong-choi@uiowa.edu
  organization: Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, USA
– sequence: 3
  givenname: Eric A.
  surname: Hoffman
  fullname: Hoffman, Eric A.
  email: eric-hoffman@uiowa.edu
  organization: Department of Radiology, The University of Iowa, Iowa City, IA 52242, USA
– sequence: 4
  givenname: Merryn H.
  surname: Tawhai
  fullname: Tawhai, Merryn H.
  email: m.tawhai@auckland.ac.nz
  organization: Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
– sequence: 5
  givenname: Ching-Long
  surname: Lin
  fullname: Lin, Ching-Long
  email: ching-long-lin@uiowa.edu
  organization: Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23794749$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22233603$$D View this record in Osti.gov
BookMark eNqFUsFu1DAQtVAR3RY-gAuKxIVLlrGdxI6QkKqlBaQiLuXAyXKcya5XTrzY3kX9e5xuqYBDkUa2rHlv_ObNnJGTyU9IyEsKSwq0ebtdbs1uyYCyZQ4A8YQsKLRQMkGbE7IAYLRs25aekrMYtwAg60o-I6eMi7YSVbsg3y-Kce-SjUY7LL58WN0UdtRrLDsdsS-6gDpt7LQu3D4fo-_RFT9t2hTJjlgedLidkwHX1k_aFQecknU65ddz8nTQLuKL-_ucfLu6vFl9Kq-_fvy8urguTU1ZKmtjOK-gZ5SZWnRGCmkaU1USe913wBmXnGvUXAzQ9Y0ZADo9yHYQgxw6EPycvD_W3e27EXuTFQTt1C7kPsKt8tqqvzOT3ai1PyjeZDd4mwu8PhbwMVkVjU1oNsZPE5qkGGOcN8Az6s39N8H_2GNMasymoXN6Qr-PikrW1IIy2fwf2ghat1yIWfyrP8U_qP49oAygR4AJPsaAwwOEgpqXQG1VXgI1L4HKAXeOiH84uae7meT-rXuU-e7IxDywg8Uw24GTwd6G2Y3e20fYvwDHu8xx
CitedBy_id crossref_primary_10_1152_japplphysiol_00490_2017
crossref_primary_10_1016_j_jcp_2016_08_039
crossref_primary_10_1002_wsbm_1392
crossref_primary_10_1016_j_acra_2019_12_004
crossref_primary_10_1016_j_jaerosci_2017_10_001
crossref_primary_10_1016_j_ijheatfluidflow_2016_04_006
crossref_primary_10_1007_s10439_015_1318_3
crossref_primary_10_1016_j_compfluid_2017_08_003
crossref_primary_10_1016_j_medengphy_2015_11_005
crossref_primary_10_1080_10255842_2021_1973445
crossref_primary_10_1093_toxsci_kfab062
crossref_primary_10_1371_journal_pone_0179812
crossref_primary_10_1152_japplphysiol_00113_2013
crossref_primary_10_1002_jmri_25010
crossref_primary_10_1002_wsbm_1234
crossref_primary_10_1152_japplphysiol_00339_2015
crossref_primary_10_3390_app142411591
crossref_primary_10_3892_etm_2017_5671
crossref_primary_10_1002_cnm_2731
crossref_primary_10_1002_cnm_3462
crossref_primary_10_1002_cnm_3144
crossref_primary_10_1080_08958378_2021_1912860
crossref_primary_10_1007_s00011_018_1191_2
crossref_primary_10_1007_s10439_013_0955_7
crossref_primary_10_1016_j_jbiomech_2014_02_040
crossref_primary_10_1016_j_clinbiomech_2017_11_005
crossref_primary_10_1111_ajt_13318
crossref_primary_10_1007_s10439_014_1074_9
crossref_primary_10_1080_02786826_2024_2393829
crossref_primary_10_1016_j_compbiomed_2024_107948
crossref_primary_10_1016_j_ijthermalsci_2022_107588
crossref_primary_10_1016_j_compbiomed_2024_109292
crossref_primary_10_1371_journal_pone_0182052
crossref_primary_10_1089_jamp_2018_1487
crossref_primary_10_1186_s12911_017_0561_y
crossref_primary_10_1016_j_cmpb_2015_12_018
crossref_primary_10_1016_j_cmpb_2024_108061
crossref_primary_10_1016_j_medengphy_2021_103746
crossref_primary_10_3389_fphys_2022_867473
crossref_primary_10_1016_j_jaerosci_2016_07_006
crossref_primary_10_1016_j_jaerosci_2020_105647
crossref_primary_10_1371_journal_pcbi_1007079
crossref_primary_10_1152_japplphysiol_00016_2019
crossref_primary_10_1055_s_0042_1743289
crossref_primary_10_1016_j_compfluid_2017_02_008
crossref_primary_10_1016_j_clinbiomech_2017_10_011
crossref_primary_10_1016_j_jbiomech_2017_03_012
crossref_primary_10_1088_2057_1976_adbbf4
crossref_primary_10_1038_s41598_022_06852_x
crossref_primary_10_1016_j_compbiomed_2015_08_006
crossref_primary_10_1002_cnm_2873
crossref_primary_10_1016_j_cma_2016_08_010
crossref_primary_10_1016_j_buildenv_2020_107022
crossref_primary_10_1002_cnm_2838
crossref_primary_10_1016_j_jcp_2020_109836
crossref_primary_10_1177_0954411916683221
crossref_primary_10_1164_rccm_201506_1196OC
crossref_primary_10_1007_s00348_015_1966_y
crossref_primary_10_1016_j_partic_2024_04_006
crossref_primary_10_1080_17425247_2019_1551875
crossref_primary_10_1016_j_cmpb_2016_04_021
crossref_primary_10_3109_08958378_2016_1150367
crossref_primary_10_1007_s11517_015_1325_4
crossref_primary_10_1007_s10237_017_0904_8
crossref_primary_10_1371_journal_pone_0168026
Cites_doi 10.1016/j.medengphy.2007.11.002
10.1016/j.media.2008.03.007
10.1152/japplphysiol.00520.2004
10.1016/j.jbiomech.2010.03.048
10.1016/j.jbiomech.2008.05.016
10.1148/radiol.10100322
10.1063/1.1785131
10.1378/chest.06-2556
10.1152/jappl.1971.31.2.207
10.1016/j.resp.2007.02.006
10.1118/1.3193526
10.1146/annurev-fluid-121108-145453
10.1109/MEMB.2009.932480
10.1152/japplphysiol.00212.2007
10.1007/s10439-006-9240-3
10.1002/fld.1763
10.1080/02786826.2010.517578
10.1152/japplphysiol.00324.2009
10.1016/S0045-7825(01)00302-4
10.1289/ehp.845597
10.1152/jappl.1966.21.3.749
10.1016/j.jbiomech.2007.07.009
10.1016/j.cma.2005.04.014
10.1115/1.4001679
10.1007/s10439-010-0110-7
10.1007/s10439-006-9184-7
10.1146/annurev.physiol.68.072304.114110
10.1016/j.acra.2005.09.088
10.1152/jappl.1985.59.2.468
10.1152/jappl.1972.32.4.460
10.1152/japplphysiol.01235.2005
10.1016/j.jbiomech.2009.05.004
10.1007/s10439-008-9527-7
10.1007/s10439-010-9956-y
10.1002/jmri.22382
10.1088/0031-9155/56/1/013
10.1063/1.3247170
10.1016/j.jbiomech.2004.05.027
10.1007/s10439-008-9603-z
10.1016/j.resp.2008.04.020
10.1109/TSMC.1979.4310076
10.1016/S1076-6332(03)00330-1
ContentType Journal Article
Copyright 2012 Elsevier Inc.
2012 Elsevier Inc. All rights reserved 2012
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: 2012 Elsevier Inc. All rights reserved 2012
DBID AAYXX
CITATION
NPM
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
OTOTI
5PM
DOI 10.1016/j.jcp.2012.12.007
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1090-2716
EndPage 192
ExternalDocumentID PMC3685439
22233603
23794749
10_1016_j_jcp_2012_12_007
S0021999112007383
Genre Journal Article
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: P30 ES005605
– fundername: NHLBI NIH HHS
  grantid: R01 HL094315
– fundername: NCRR NIH HHS
  grantid: S10 RR022421
– fundername: NHLBI NIH HHS
  grantid: R01 HL112986
– fundername: NHLBI NIH HHS
  grantid: R01 HL064368
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL064368 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL094315 || HL
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
NPM
SSH
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
AALMO
ABPIF
ABPTK
ABQIS
EFJIC
OTOTI
5PM
ID FETCH-LOGICAL-c512t-5cc3340d212c57bc878c6c448edadb0323833aea37f0bd6cf00baf89f7f8fb073
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319456900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Tue Sep 30 15:59:16 EDT 2025
Fri May 19 01:41:04 EDT 2023
Sat Sep 27 18:26:02 EDT 2025
Sat Sep 27 20:27:34 EDT 2025
Thu Apr 03 07:09:23 EDT 2025
Tue Nov 18 22:29:53 EST 2025
Sat Nov 29 06:46:05 EST 2025
Fri Feb 23 02:18:54 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Image registration
Pulmonary air flow
Boundary condition
MDCT
Multiscale
Regional ventilation
boundary condition
pulmonary air flow
regional ventilation
image registration
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c512t-5cc3340d212c57bc878c6c448edadb0323833aea37f0bd6cf00baf89f7f8fb073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
E. A. Hoffman is a founder and shareholder of VIDA Diagnostics which is commercializing some of the software utilized in this work.
youbing-yin@uiowa.edu (Y. Yin), jiwoong-choi@uiowa.edu (J. Choi), eric-hoffman@uiowa.edu (E.A. Hoffman), m.tawhai@auckland.ac.nz (M. H. Tawhai), ching-long-lin@uiowa.edu (C.-L. Lin)
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3685439
PMID 23794749
PQID 1671593777
PQPubID 23500
PageCount 25
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3685439
osti_scitechconnect_22233603
proquest_miscellaneous_1826571286
proquest_miscellaneous_1671593777
pubmed_primary_23794749
crossref_primary_10_1016_j_jcp_2012_12_007
crossref_citationtrail_10_1016_j_jcp_2012_12_007
elsevier_sciencedirect_doi_10_1016_j_jcp_2012_12_007
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computational physics
PublicationTitleAlternate J Comput Phys
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Vignon-Clementel, Alberto Figueroa, Jansen, Taylor (b0110) 2006; 195
De Backer, Vos, Devolder, Verhulst, Germonpre, Wuyts, Parizel, De Backer (b0080) 2008; 41
Hoffman, Reinhardt, Sonka, Simon, Guo, Chon, Samrah, Shikata, Tschirren, Palagyi, Beck, McLennan (b0180) 2003; 10
Milic-Emili, Henderson, Dolovich, Trop, Kaneko (b0200) 1966; 21
Tawhai, Hunter, Tschirren, Reinhardt, McLennan, Hoffman (b0140) 2004; 97
Tawhai, Nash, Lin, Hoffman (b0235) 2009; 107
Comerford, Forster, Wall (b0130) 2010; 132
Yin, Choi, Hoffman, Tawhai, Lin (b0145) 2010; 43
Fredberg, Kamm (b0015) 2006; 68
Button, Boucher (b0020) 2008; 163
Pedley, Schroter, Sudlow (b0225) 1977; vol. 3
Lin, Tawhai, McLennan, Hoffman (b0065) 2007; 157
Horsfield, Dart, Olson, Filley, Cumming (b0040) 1971; 31
Yin, Hoffman, Lin (b0185) 2009; 36
Reinhardt, Ding, Cao, G.E, Christensen, Hoffman, Bodas (b0210) 2008; 12
Wall, Rabczuk (b0155) 2008; 57
Formaggia, Gerbeau, Nobile, Quarteroni (b0090) 2001; 191
Fuld, Easley, Saba, Chon, Reinhardt, Hoffman, Simon (b0215) 2008; 104
.
Weibel (b0035) 1963
Kilburn (b0010) 1984; 55
Loring, O’Donnell, Feller-Kopman, Ernst (b0150) 2007; 131
C. Kruger, Constrained cubic spline interpolation for chemical engineering applications, 2003
De Backer, Vos, Vinchurkar, Claes, Drollmann, Wulfrank, Parizel, Germonpre, De Backer (b0125) 2010; 257
Tawhai, Lin (b0025) 2010; 32
J.B. West, Respiratory Physiology: The Essentials, eighth ed., Lippincott Williams & Wlkins, 2008.
Tawha, Lin (b0250) 2011
Choi, Tawhai, Hoffman, Lin (b0050) 2009; 21
Lin, Tawhai, McLennan, Hoffman (b0070) 2009; 28
De Backer, Vos, Gorle, Germonpre, Partoens, Wuyts, Parizel, De Backer (b0120) 2008; 30
Vreman (b0195) 2004; 16
Grinberg, Karniadakis (b0105) 2008; 36
Otsu (b0170) 1979; 9
Stanescu, Clement, Pattijn, van de Woestijne (b0240) 1972; 32
Kleinstreuer, Zhang (b0045) 2010; 42
Formaggia, Gerbeau, Nobile, Quarteroni (b0095) 2003
Finlay (b0005) 2001
Hoffman (b0175) 1985; 59
Xia, Tawhai, Hoffman, Lin (b0160) 2010; 38
Lambert, O’Shaughnessy, Tawhai, Hoffman, Lin (b0060) 2011; 45
Luo, Liu (b0075) 2009; 42
Lagana, Balossino, Migliavacca, Pennati, Bove, de Leval, Dubini (b0100) 2005; 38
Yin, Hoffman, Ding, Reinhardt, Lin (b0165) 2011; 56
Choi, Xia, Tawhai, Hoffman, Lin (b0055) 2010; 38
Ma, Lutchen (b0135) 2006; 34
Chon, Beck, Simon, Shikata, Saba, Hoffman (b0220) 2007; 102
Spilker, Feinstein, Parker, Reddy, Taylor (b0115) 2007; 35
Freitas, Schrцder (b0085) 2008; 41
Mullally, Betke, Albert, Lutchen (b0245) 2009; 37
Tawhai, Nash, Hoffman (b0230) 2006; 13
Loring (10.1016/j.jcp.2012.12.007_b0150) 2007; 131
Fuld (10.1016/j.jcp.2012.12.007_b0215) 2008; 104
Tawha (10.1016/j.jcp.2012.12.007_b0250) 2011
Vreman (10.1016/j.jcp.2012.12.007_b0195) 2004; 16
Stanescu (10.1016/j.jcp.2012.12.007_b0240) 1972; 32
Choi (10.1016/j.jcp.2012.12.007_b0050) 2009; 21
10.1016/j.jcp.2012.12.007_b0255
Lin (10.1016/j.jcp.2012.12.007_b0070) 2009; 28
Hoffman (10.1016/j.jcp.2012.12.007_b0180) 2003; 10
Grinberg (10.1016/j.jcp.2012.12.007_b0105) 2008; 36
Formaggia (10.1016/j.jcp.2012.12.007_b0095) 2003
Luo (10.1016/j.jcp.2012.12.007_b0075) 2009; 42
Chon (10.1016/j.jcp.2012.12.007_b0220) 2007; 102
Tawhai (10.1016/j.jcp.2012.12.007_b0140) 2004; 97
Kilburn (10.1016/j.jcp.2012.12.007_b0010) 1984; 55
Finlay (10.1016/j.jcp.2012.12.007_b0005) 2001
Lagana (10.1016/j.jcp.2012.12.007_b0100) 2005; 38
Tawhai (10.1016/j.jcp.2012.12.007_b0235) 2009; 107
De Backer (10.1016/j.jcp.2012.12.007_b0080) 2008; 41
Tawhai (10.1016/j.jcp.2012.12.007_b0025) 2010; 32
De Backer (10.1016/j.jcp.2012.12.007_b0120) 2008; 30
Otsu (10.1016/j.jcp.2012.12.007_b0170) 1979; 9
Spilker (10.1016/j.jcp.2012.12.007_b0115) 2007; 35
Formaggia (10.1016/j.jcp.2012.12.007_b0090) 2001; 191
Weibel (10.1016/j.jcp.2012.12.007_b0035) 1963
Reinhardt (10.1016/j.jcp.2012.12.007_b0210) 2008; 12
Button (10.1016/j.jcp.2012.12.007_b0020) 2008; 163
Tawhai (10.1016/j.jcp.2012.12.007_b0230) 2006; 13
Lambert (10.1016/j.jcp.2012.12.007_b0060) 2011; 45
Fredberg (10.1016/j.jcp.2012.12.007_b0015) 2006; 68
Yin (10.1016/j.jcp.2012.12.007_b0165) 2011; 56
Milic-Emili (10.1016/j.jcp.2012.12.007_b0200) 1966; 21
Choi (10.1016/j.jcp.2012.12.007_b0055) 2010; 38
Hoffman (10.1016/j.jcp.2012.12.007_b0175) 1985; 59
Yin (10.1016/j.jcp.2012.12.007_b0185) 2009; 36
Comerford (10.1016/j.jcp.2012.12.007_b0130) 2010; 132
Xia (10.1016/j.jcp.2012.12.007_b0160) 2010; 38
Yin (10.1016/j.jcp.2012.12.007_b0145) 2010; 43
Horsfield (10.1016/j.jcp.2012.12.007_b0040) 1971; 31
Kleinstreuer (10.1016/j.jcp.2012.12.007_b0045) 2010; 42
10.1016/j.jcp.2012.12.007_b0190
De Backer (10.1016/j.jcp.2012.12.007_b0125) 2010; 257
Pedley (10.1016/j.jcp.2012.12.007_b0225) 1977; vol. 3
Freitas (10.1016/j.jcp.2012.12.007_b0085) 2008; 41
Ma (10.1016/j.jcp.2012.12.007_b0135) 2006; 34
Lin (10.1016/j.jcp.2012.12.007_b0065) 2007; 157
Mullally (10.1016/j.jcp.2012.12.007_b0245) 2009; 37
Wall (10.1016/j.jcp.2012.12.007_b0155) 2008; 57
Vignon-Clementel (10.1016/j.jcp.2012.12.007_b0110) 2006; 195
References_xml – volume: 104
  start-page: 1177
  year: 2008
  end-page: 1184
  ident: b0215
  article-title: CT measured regional specific volume change reflects regional specific ventilation in supine sheep
  publication-title: Journal of Applied Physiology
– volume: 42
  start-page: 301
  year: 2010
  end-page: 334
  ident: b0045
  article-title: Airflow and particle transport in the human respiratory system
  publication-title: Annual Review of Fluid Mechanics
– volume: 41
  start-page: 2446
  year: 2008
  end-page: 2457
  ident: b0085
  article-title: Numerical investigation of the three-dimensional flow in a human lung model
  publication-title: Journal of Biomechanics
– volume: 43
  start-page: 2159
  year: 2010
  end-page: 2163
  ident: b0145
  article-title: Simulation of pulmonary air flow with a subject-specific boundary condition
  publication-title: Journal of Biomechanics
– volume: 12
  start-page: 752
  year: 2008
  end-page: 763
  ident: b0210
  article-title: Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation
  publication-title: Medical Image Analysis
– volume: 37
  start-page: 286
  year: 2009
  end-page: 300
  ident: b0245
  article-title: Explaining clustered ventilation defects via a minimal number of airway closure locations
  publication-title: Annals of Biomedical Engineering
– volume: 132
  start-page: 081002
  year: 2010
  ident: b0130
  article-title: Structured tree impedance outflow boundary conditions for 3D lung simulations
  publication-title: Journal of Biomechanical Engineering
– volume: 131
  start-page: 1118
  year: 2007
  end-page: 1124
  ident: b0150
  article-title: Central airway mechanics and flow limitation in acquired tracheobronchomalacia
  publication-title: Chest
– volume: 16
  start-page: 3670
  year: 2004
  end-page: 3681
  ident: b0195
  article-title: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications
  publication-title: Physics of Fluids
– volume: 30
  start-page: 872
  year: 2008
  end-page: 879
  ident: b0120
  article-title: Flow analyses in the lower airways: patient-specific model and boundary conditions
  publication-title: Medical Engineering and Physics
– year: 1963
  ident: b0035
  article-title: Morphometry of the Human Lung
– volume: 157
  start-page: 295
  year: 2007
  end-page: 309
  ident: b0065
  article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways
  publication-title: Respiratory Physiology & Neurobiology
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b0170
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 59
  start-page: 468
  year: 1985
  end-page: 480
  ident: b0175
  article-title: Effect of body orientation on regional lung expansion: a computed tomographic approach
  publication-title: Journal of Applied Physiology
– volume: 257
  start-page: 854
  year: 2010
  end-page: 862
  ident: b0125
  article-title: Validation of computational fluid dynamics in CT-based airway models with SPECT/CT
  publication-title: Radiology
– volume: 56
  start-page: 203
  year: 2011
  end-page: 218
  ident: b0165
  article-title: A cubic B-spline-based hybrid registration of lung CT images for a dynamic airway geometric model with large deformation
  publication-title: Physics in Medicine and Biology
– volume: 195
  start-page: 3776
  year: 2006
  end-page: 3796
  ident: b0110
  article-title: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries
  publication-title: Computer Methods in Applied Mechanics and Engineering
– reference: J.B. West, Respiratory Physiology: The Essentials, eighth ed., Lippincott Williams & Wlkins, 2008.
– year: 2001
  ident: b0005
  article-title: Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction
– volume: 21
  start-page: 749
  year: 1966
  end-page: 759
  ident: b0200
  article-title: Regional distribution of inspired gas in the lung
  publication-title: Journal of Applied Physiology
– volume: 57
  start-page: 653
  year: 2008
  end-page: 675
  ident: b0155
  article-title: Fluid-structure interaction in lower airways of CT-based lung geometries
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 32
  start-page: 1421
  year: 2010
  end-page: 1431
  ident: b0025
  article-title: Image-based modeling of lung structure and function
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 32
  start-page: 460
  year: 1972
  end-page: 466
  ident: b0240
  article-title: Glottis opening and airway resistance
  publication-title: Journal of Applied Physiology
– reference: C. Kruger, Constrained cubic spline interpolation for chemical engineering applications, 2003,
– volume: 163
  start-page: 189
  year: 2008
  end-page: 201
  ident: b0020
  article-title: Role of mechanical stress in regulating airway surface hydration and mucus clearance rates
  publication-title: Respiratory Physiology & Neurobiology
– start-page: 376
  year: 2003
  end-page: 401
  ident: b0095
  article-title: Numerical treatment of defective boundary conditions for the Navier–Stokes equations
  publication-title: SIAM Journal on Numerical Analysis
– volume: 68
  start-page: 507
  year: 2006
  end-page: 541
  ident: b0015
  article-title: Stress transmission in the lung: pathways from organ to molecule
  publication-title: Annual Review Physiology
– volume: 31
  start-page: 207
  year: 1971
  end-page: 217
  ident: b0040
  article-title: Models of the human bronchial tree
  publication-title: Journal of Applied Physiology
– volume: 42
  start-page: 1869
  year: 2009
  end-page: 1876
  ident: b0075
  article-title: Particle deposition in a CT-scanned human lung airway
  publication-title: Journal of Biomechanics
– volume: 41
  start-page: 106
  year: 2008
  end-page: 113
  ident: b0080
  article-title: Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation
  publication-title: Journal of Biomechanics
– volume: 35
  start-page: 546
  year: 2007
  end-page: 559
  ident: b0115
  article-title: Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries
  publication-title: Annals of Biomedical Engineering
– volume: 36
  start-page: 1496
  year: 2008
  end-page: 1514
  ident: b0105
  article-title: Outflow boundary conditions for arterial networks with multiple outlets
  publication-title: Annals of Biomedical Engineering
– volume: 10
  start-page: 1104
  year: 2003
  end-page: 1118
  ident: b0180
  article-title: Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function
  publication-title: Academic Radiology
– volume: 102
  start-page: 1535
  year: 2007
  end-page: 1544
  ident: b0220
  article-title: Effect of low-xenon and krypton supplementation on signal/noise of regional CT-based ventilation measurements
  publication-title: Journal of Applied Physiology
– year: 2011
  ident: b0250
  article-title: Airway Gas Flow, Comprehensive Physiology
– volume: 38
  start-page: 3550
  year: 2010
  end-page: 3571
  ident: b0055
  article-title: Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model
  publication-title: Annals of Biomedical Engineering
– volume: 191
  start-page: 561
  year: 2001
  end-page: 582
  ident: b0090
  article-title: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 13
  start-page: 113
  year: 2006
  end-page: 120
  ident: b0230
  article-title: An imaging-based computational approach to model ventilation distribution and soft-tissue deformation in the ovine lung
  publication-title: Academic Radiology
– volume: 97
  start-page: 2310
  year: 2004
  end-page: 2321
  ident: b0140
  article-title: CT-based geometry analysis and finite element models of the human and ovine bronchial tree
  publication-title: Journal of Applied Physiology
– volume: 38
  start-page: 1836
  year: 2010
  end-page: 1853
  ident: b0160
  article-title: Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways
  publication-title: Annals of Biomedical Engineering
– volume: 38
  start-page: 1129
  year: 2005
  end-page: 1141
  ident: b0100
  article-title: Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation
  publication-title: Journal of Biomechanics
– volume: vol. 3
  start-page: 163
  year: 1977
  end-page: 265
  ident: b0225
  article-title: Gas flow and mixing in the airways
  publication-title: Bioengineering Aspects of the Lung
– reference: .
– volume: 21
  start-page: 101901
  year: 2009
  ident: b0050
  article-title: On intra- and intersubject variabilities of airflow in the human lungs
  publication-title: Physics of Fluids
– volume: 107
  start-page: 912
  year: 2009
  end-page: 920
  ident: b0235
  article-title: Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape
  publication-title: Journal of Applied Physiology
– volume: 34
  start-page: 1691
  year: 2006
  end-page: 1704
  ident: b0135
  article-title: An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics
  publication-title: Annals of Biomedical Engineering
– volume: 36
  start-page: 4213
  year: 2009
  end-page: 4222
  ident: b0185
  article-title: Mass preserving nonrigid registration of CT lung images using cubic B-spline
  publication-title: Medical Physics
– volume: 55
  start-page: 97
  year: 1984
  end-page: 109
  ident: b0010
  article-title: Particles causing lung disease
  publication-title: Environmental Health Perspectives
– volume: 45
  start-page: 11
  year: 2011
  end-page: 25
  ident: b0060
  article-title: Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry
  publication-title: Aerosol Science and Technology
– volume: 28
  start-page: 25
  year: 2009
  end-page: 33
  ident: b0070
  article-title: Multiscale simulation of gas flow in subject-specific models of the human lung
  publication-title: IEEE Engineering in Medicine and Biology Magazine
– volume: 30
  start-page: 872
  issue: 7
  year: 2008
  ident: 10.1016/j.jcp.2012.12.007_b0120
  article-title: Flow analyses in the lower airways: patient-specific model and boundary conditions
  publication-title: Medical Engineering and Physics
  doi: 10.1016/j.medengphy.2007.11.002
– volume: 12
  start-page: 752
  year: 2008
  ident: 10.1016/j.jcp.2012.12.007_b0210
  article-title: Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2008.03.007
– volume: 97
  start-page: 2310
  issue: 6
  year: 2004
  ident: 10.1016/j.jcp.2012.12.007_b0140
  article-title: CT-based geometry analysis and finite element models of the human and ovine bronchial tree
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.00520.2004
– volume: 43
  start-page: 2159
  issue: 11
  year: 2010
  ident: 10.1016/j.jcp.2012.12.007_b0145
  article-title: Simulation of pulmonary air flow with a subject-specific boundary condition
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2010.03.048
– volume: 41
  start-page: 2446
  issue: 11
  year: 2008
  ident: 10.1016/j.jcp.2012.12.007_b0085
  article-title: Numerical investigation of the three-dimensional flow in a human lung model
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2008.05.016
– volume: 257
  start-page: 854
  issue: 3
  year: 2010
  ident: 10.1016/j.jcp.2012.12.007_b0125
  article-title: Validation of computational fluid dynamics in CT-based airway models with SPECT/CT
  publication-title: Radiology
  doi: 10.1148/radiol.10100322
– volume: 16
  start-page: 3670
  year: 2004
  ident: 10.1016/j.jcp.2012.12.007_b0195
  article-title: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications
  publication-title: Physics of Fluids
  doi: 10.1063/1.1785131
– volume: 131
  start-page: 1118
  issue: 4
  year: 2007
  ident: 10.1016/j.jcp.2012.12.007_b0150
  article-title: Central airway mechanics and flow limitation in acquired tracheobronchomalacia
  publication-title: Chest
  doi: 10.1378/chest.06-2556
– volume: 31
  start-page: 207
  issue: 2
  year: 1971
  ident: 10.1016/j.jcp.2012.12.007_b0040
  article-title: Models of the human bronchial tree
  publication-title: Journal of Applied Physiology
  doi: 10.1152/jappl.1971.31.2.207
– year: 2011
  ident: 10.1016/j.jcp.2012.12.007_b0250
– volume: 157
  start-page: 295
  issue: 2–3
  year: 2007
  ident: 10.1016/j.jcp.2012.12.007_b0065
  article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways
  publication-title: Respiratory Physiology & Neurobiology
  doi: 10.1016/j.resp.2007.02.006
– volume: 36
  start-page: 4213
  issue: 9
  year: 2009
  ident: 10.1016/j.jcp.2012.12.007_b0185
  article-title: Mass preserving nonrigid registration of CT lung images using cubic B-spline
  publication-title: Medical Physics
  doi: 10.1118/1.3193526
– volume: 42
  start-page: 301
  year: 2010
  ident: 10.1016/j.jcp.2012.12.007_b0045
  article-title: Airflow and particle transport in the human respiratory system
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev-fluid-121108-145453
– volume: 28
  start-page: 25
  issue: 3
  year: 2009
  ident: 10.1016/j.jcp.2012.12.007_b0070
  article-title: Multiscale simulation of gas flow in subject-specific models of the human lung
  publication-title: IEEE Engineering in Medicine and Biology Magazine
  doi: 10.1109/MEMB.2009.932480
– volume: 104
  start-page: 1177
  issue: 4
  year: 2008
  ident: 10.1016/j.jcp.2012.12.007_b0215
  article-title: CT measured regional specific volume change reflects regional specific ventilation in supine sheep
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.00212.2007
– volume: 35
  start-page: 546
  issue: 4
  year: 2007
  ident: 10.1016/j.jcp.2012.12.007_b0115
  article-title: Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-006-9240-3
– volume: 57
  start-page: 653
  issue: 5
  year: 2008
  ident: 10.1016/j.jcp.2012.12.007_b0155
  article-title: Fluid-structure interaction in lower airways of CT-based lung geometries
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.1763
– volume: 45
  start-page: 11
  issue: 1
  year: 2011
  ident: 10.1016/j.jcp.2012.12.007_b0060
  article-title: Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2010.517578
– ident: 10.1016/j.jcp.2012.12.007_b0255
– volume: 107
  start-page: 912
  issue: 3
  year: 2009
  ident: 10.1016/j.jcp.2012.12.007_b0235
  article-title: Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.00324.2009
– volume: 191
  start-page: 561
  issue: 6–7
  year: 2001
  ident: 10.1016/j.jcp.2012.12.007_b0090
  article-title: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(01)00302-4
– year: 2001
  ident: 10.1016/j.jcp.2012.12.007_b0005
– ident: 10.1016/j.jcp.2012.12.007_b0190
– volume: 55
  start-page: 97
  year: 1984
  ident: 10.1016/j.jcp.2012.12.007_b0010
  article-title: Particles causing lung disease
  publication-title: Environmental Health Perspectives
  doi: 10.1289/ehp.845597
– volume: 21
  start-page: 749
  issue: 3
  year: 1966
  ident: 10.1016/j.jcp.2012.12.007_b0200
  article-title: Regional distribution of inspired gas in the lung
  publication-title: Journal of Applied Physiology
  doi: 10.1152/jappl.1966.21.3.749
– start-page: 376
  year: 2003
  ident: 10.1016/j.jcp.2012.12.007_b0095
  article-title: Numerical treatment of defective boundary conditions for the Navier–Stokes equations
  publication-title: SIAM Journal on Numerical Analysis
– volume: 41
  start-page: 106
  issue: 1
  year: 2008
  ident: 10.1016/j.jcp.2012.12.007_b0080
  article-title: Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2007.07.009
– volume: 195
  start-page: 3776
  issue: 29–32
  year: 2006
  ident: 10.1016/j.jcp.2012.12.007_b0110
  article-title: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2005.04.014
– volume: 132
  start-page: 081002
  year: 2010
  ident: 10.1016/j.jcp.2012.12.007_b0130
  article-title: Structured tree impedance outflow boundary conditions for 3D lung simulations
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.4001679
– year: 1963
  ident: 10.1016/j.jcp.2012.12.007_b0035
– volume: 38
  start-page: 3550
  issue: 12
  year: 2010
  ident: 10.1016/j.jcp.2012.12.007_b0055
  article-title: Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-010-0110-7
– volume: 34
  start-page: 1691
  issue: 11
  year: 2006
  ident: 10.1016/j.jcp.2012.12.007_b0135
  article-title: An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-006-9184-7
– volume: 68
  start-page: 507
  year: 2006
  ident: 10.1016/j.jcp.2012.12.007_b0015
  article-title: Stress transmission in the lung: pathways from organ to molecule
  publication-title: Annual Review Physiology
  doi: 10.1146/annurev.physiol.68.072304.114110
– volume: 13
  start-page: 113
  issue: 1
  year: 2006
  ident: 10.1016/j.jcp.2012.12.007_b0230
  article-title: An imaging-based computational approach to model ventilation distribution and soft-tissue deformation in the ovine lung
  publication-title: Academic Radiology
  doi: 10.1016/j.acra.2005.09.088
– volume: 59
  start-page: 468
  year: 1985
  ident: 10.1016/j.jcp.2012.12.007_b0175
  article-title: Effect of body orientation on regional lung expansion: a computed tomographic approach
  publication-title: Journal of Applied Physiology
  doi: 10.1152/jappl.1985.59.2.468
– volume: 32
  start-page: 460
  issue: 4
  year: 1972
  ident: 10.1016/j.jcp.2012.12.007_b0240
  article-title: Glottis opening and airway resistance
  publication-title: Journal of Applied Physiology
  doi: 10.1152/jappl.1972.32.4.460
– volume: 102
  start-page: 1535
  issue: 4
  year: 2007
  ident: 10.1016/j.jcp.2012.12.007_b0220
  article-title: Effect of low-xenon and krypton supplementation on signal/noise of regional CT-based ventilation measurements
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.01235.2005
– volume: 42
  start-page: 1869
  issue: 12
  year: 2009
  ident: 10.1016/j.jcp.2012.12.007_b0075
  article-title: Particle deposition in a CT-scanned human lung airway
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2009.05.004
– volume: 36
  start-page: 1496
  issue: 9
  year: 2008
  ident: 10.1016/j.jcp.2012.12.007_b0105
  article-title: Outflow boundary conditions for arterial networks with multiple outlets
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-008-9527-7
– volume: 38
  start-page: 1836
  year: 2010
  ident: 10.1016/j.jcp.2012.12.007_b0160
  article-title: Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-010-9956-y
– volume: 32
  start-page: 1421
  year: 2010
  ident: 10.1016/j.jcp.2012.12.007_b0025
  article-title: Image-based modeling of lung structure and function
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.22382
– volume: 56
  start-page: 203
  issue: 1
  year: 2011
  ident: 10.1016/j.jcp.2012.12.007_b0165
  article-title: A cubic B-spline-based hybrid registration of lung CT images for a dynamic airway geometric model with large deformation
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/56/1/013
– volume: vol. 3
  start-page: 163
  year: 1977
  ident: 10.1016/j.jcp.2012.12.007_b0225
  article-title: Gas flow and mixing in the airways
– volume: 21
  start-page: 101901
  issue: 10
  year: 2009
  ident: 10.1016/j.jcp.2012.12.007_b0050
  article-title: On intra- and intersubject variabilities of airflow in the human lungs
  publication-title: Physics of Fluids
  doi: 10.1063/1.3247170
– volume: 38
  start-page: 1129
  issue: 5
  year: 2005
  ident: 10.1016/j.jcp.2012.12.007_b0100
  article-title: Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2004.05.027
– volume: 37
  start-page: 286
  issue: 2
  year: 2009
  ident: 10.1016/j.jcp.2012.12.007_b0245
  article-title: Explaining clustered ventilation defects via a minimal number of airway closure locations
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-008-9603-z
– volume: 163
  start-page: 189
  issue: 1–3
  year: 2008
  ident: 10.1016/j.jcp.2012.12.007_b0020
  article-title: Role of mechanical stress in regulating airway surface hydration and mucus clearance rates
  publication-title: Respiratory Physiology & Neurobiology
  doi: 10.1016/j.resp.2008.04.020
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.jcp.2012.12.007_b0170
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– volume: 10
  start-page: 1104
  issue: 10
  year: 2003
  ident: 10.1016/j.jcp.2012.12.007_b0180
  article-title: Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function
  publication-title: Academic Radiology
  doi: 10.1016/S1076-6332(03)00330-1
SSID ssj0008548
Score 2.4057827
Snippet A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 168
SubjectTerms AIR FLOW
Airways
ALGORITHMS
ANIMAL TISSUES
Boundary condition
Breathing
COMPARATIVE EVALUATIONS
COMPUTERIZED TOMOGRAPHY
ENGINEERING
FLOW RATE
FLUID MECHANICS
Image registration
INTERPOLATION
LAMINAR FLOW
LARGE-EDDY SIMULATION
LUNGS
Mathematical analysis
Mathematical models
MDCT
Multiscale
Pulmonary air flow
Regional
Regional ventilation
RESPIRATION
Ventilation
Title A multiscale MDCT image-based breathing lung model with time-varying regional ventilation
URI https://dx.doi.org/10.1016/j.jcp.2012.12.007
https://www.ncbi.nlm.nih.gov/pubmed/23794749
https://www.proquest.com/docview/1671593777
https://www.proquest.com/docview/1826571286
https://www.osti.gov/biblio/22233603
https://pubmed.ncbi.nlm.nih.gov/PMC3685439
Volume 244
WOSCitedRecordID wos000319456900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZYxwMv3C-BMRkJ8QAKyq2x81iNTmMahYdM6p6i2HG0Vl1S2t3495xjO2m6QTUekKqoSuMkzff5-PPJ8TmEvI8CoUCnKrB-XLqgbyMX5iHCjaKEiTwsfF4UutgEG434eJz8sCFBS11OgFUVv75O5v8VatgHYOPS2X-Auz0p7IDvADpsAXbY3gn4gQkSXMLDhy77ZS_9NDkDo-HieAVqE0Wi9jrNoJubQjjWGTs5U-5lvtDrnrBeg_YR6nDI2Qq-2zpW6roQjU_ReEpaoX5iUhSATRHNGKljCWodRHA4uarr1e6DuiytQxbN88rNmuZXtmz2N7VY_KrsigrrrMDCEaxxVjSLB3wXNWnXAAdR1DGhvimzc8u0Gy_D9PNUYppRP9BeXFMxdz2N9uh7tn98dJSlw3H6Yf7TxQpj-CbellvZItsB6ye8R7YHX4fjw3bc5v3IjNv2Fpt34Doa8MZV_6ZiejUY5j9NVm7G3HZETPqYPLSo0YFhzRNyT1VPySM7E6HWzi-fkZMBXZGIIoloh0S0JRFFElFNIookol0S0YZEtEOi5-R4f5juHbi2CIcrQQueu30pwzDyCpA4ss-E5IzLWMKkXhV5IbwQJF8Y5ioPWemJIpal54m85EnJSl4KGEBekF5VV-oVoSAuY6kES_xcwhlVIkQQJNzL_VKpIGQO8ZqHmkmboR4LpcyyJhRxmgEOGeKQwQdwcMjHtsncpGfZdHDUIJVZfWl0YwYc29RsB1HFJphXWWIAGrRBYR3GXuiQdw3aGZhmfN-WV6q-WGZ-zGCyEDLGNhwD0_s-A5EYO-SlYUj7R-CRJBGLEoewNe60B2Bq-PVfqsmpThGPZSVgqvH6Dtd9Qx6seuoO6Z0vLtRbcl9eAskWu2SLjfmu7Sq_AYjQ3L8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiscale+MDCT+image-based+breathing+lung+model+with+time-varying+regional+ventilation&rft.jtitle=Journal+of+computational+physics&rft.au=Yin%2C+Youbing&rft.au=Choi%2C+Jiwoong&rft.au=Hoffman%2C+Eric+A&rft.au=Tawhai%2C+Merryn+H&rft.date=2013-07-01&rft.issn=0021-9991&rft.volume=244&rft.spage=168&rft_id=info:doi/10.1016%2Fj.jcp.2012.12.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon