A multiscale MDCT image-based breathing lung model with time-varying regional ventilation
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm con...
Uloženo v:
| Vydáno v: | Journal of computational physics Ročník 244; s. 168 - 192 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
01.07.2013
|
| Témata: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. |
|---|---|
| AbstractList | A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure
continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C(1) continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (ID) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. |
| Author | Tawhai, Merryn H. Choi, Jiwoong Hoffman, Eric A. Yin, Youbing Lin, Ching-Long |
| AuthorAffiliation | c Department of Radiology, The University of Iowa, Iowa City, IA 52242, US d Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242, US f Auckland Bioengineering Institute, The University of Auckland, Auckland, NZ a Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, US e Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, US b IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, US |
| AuthorAffiliation_xml | – name: c Department of Radiology, The University of Iowa, Iowa City, IA 52242, US – name: e Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, US – name: d Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242, US – name: b IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, US – name: a Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, US – name: f Auckland Bioengineering Institute, The University of Auckland, Auckland, NZ |
| Author_xml | – sequence: 1 givenname: Youbing surname: Yin fullname: Yin, Youbing email: youbing-yin@uiowa.edu organization: Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, USA – sequence: 2 givenname: Jiwoong surname: Choi fullname: Choi, Jiwoong email: jiwoong-choi@uiowa.edu organization: Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, USA – sequence: 3 givenname: Eric A. surname: Hoffman fullname: Hoffman, Eric A. email: eric-hoffman@uiowa.edu organization: Department of Radiology, The University of Iowa, Iowa City, IA 52242, USA – sequence: 4 givenname: Merryn H. surname: Tawhai fullname: Tawhai, Merryn H. email: m.tawhai@auckland.ac.nz organization: Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand – sequence: 5 givenname: Ching-Long surname: Lin fullname: Lin, Ching-Long email: ching-long-lin@uiowa.edu organization: Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23794749$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22233603$$D View this record in Osti.gov |
| BookMark | eNqFUsFu1DAQtVAR3RY-gAuKxIVLlrGdxI6QkKqlBaQiLuXAyXKcya5XTrzY3kX9e5xuqYBDkUa2rHlv_ObNnJGTyU9IyEsKSwq0ebtdbs1uyYCyZQ4A8YQsKLRQMkGbE7IAYLRs25aekrMYtwAg60o-I6eMi7YSVbsg3y-Kce-SjUY7LL58WN0UdtRrLDsdsS-6gDpt7LQu3D4fo-_RFT9t2hTJjlgedLidkwHX1k_aFQecknU65ddz8nTQLuKL-_ucfLu6vFl9Kq-_fvy8urguTU1ZKmtjOK-gZ5SZWnRGCmkaU1USe913wBmXnGvUXAzQ9Y0ZADo9yHYQgxw6EPycvD_W3e27EXuTFQTt1C7kPsKt8tqqvzOT3ai1PyjeZDd4mwu8PhbwMVkVjU1oNsZPE5qkGGOcN8Az6s39N8H_2GNMasymoXN6Qr-PikrW1IIy2fwf2ghat1yIWfyrP8U_qP49oAygR4AJPsaAwwOEgpqXQG1VXgI1L4HKAXeOiH84uae7meT-rXuU-e7IxDywg8Uw24GTwd6G2Y3e20fYvwDHu8xx |
| CitedBy_id | crossref_primary_10_1152_japplphysiol_00490_2017 crossref_primary_10_1016_j_jcp_2016_08_039 crossref_primary_10_1002_wsbm_1392 crossref_primary_10_1016_j_acra_2019_12_004 crossref_primary_10_1016_j_jaerosci_2017_10_001 crossref_primary_10_1016_j_ijheatfluidflow_2016_04_006 crossref_primary_10_1007_s10439_015_1318_3 crossref_primary_10_1016_j_compfluid_2017_08_003 crossref_primary_10_1016_j_medengphy_2015_11_005 crossref_primary_10_1080_10255842_2021_1973445 crossref_primary_10_1093_toxsci_kfab062 crossref_primary_10_1371_journal_pone_0179812 crossref_primary_10_1152_japplphysiol_00113_2013 crossref_primary_10_1002_jmri_25010 crossref_primary_10_1002_wsbm_1234 crossref_primary_10_1152_japplphysiol_00339_2015 crossref_primary_10_3390_app142411591 crossref_primary_10_3892_etm_2017_5671 crossref_primary_10_1002_cnm_2731 crossref_primary_10_1002_cnm_3462 crossref_primary_10_1002_cnm_3144 crossref_primary_10_1080_08958378_2021_1912860 crossref_primary_10_1007_s00011_018_1191_2 crossref_primary_10_1007_s10439_013_0955_7 crossref_primary_10_1016_j_jbiomech_2014_02_040 crossref_primary_10_1016_j_clinbiomech_2017_11_005 crossref_primary_10_1111_ajt_13318 crossref_primary_10_1007_s10439_014_1074_9 crossref_primary_10_1080_02786826_2024_2393829 crossref_primary_10_1016_j_compbiomed_2024_107948 crossref_primary_10_1016_j_ijthermalsci_2022_107588 crossref_primary_10_1016_j_compbiomed_2024_109292 crossref_primary_10_1371_journal_pone_0182052 crossref_primary_10_1089_jamp_2018_1487 crossref_primary_10_1186_s12911_017_0561_y crossref_primary_10_1016_j_cmpb_2015_12_018 crossref_primary_10_1016_j_cmpb_2024_108061 crossref_primary_10_1016_j_medengphy_2021_103746 crossref_primary_10_3389_fphys_2022_867473 crossref_primary_10_1016_j_jaerosci_2016_07_006 crossref_primary_10_1016_j_jaerosci_2020_105647 crossref_primary_10_1371_journal_pcbi_1007079 crossref_primary_10_1152_japplphysiol_00016_2019 crossref_primary_10_1055_s_0042_1743289 crossref_primary_10_1016_j_compfluid_2017_02_008 crossref_primary_10_1016_j_clinbiomech_2017_10_011 crossref_primary_10_1016_j_jbiomech_2017_03_012 crossref_primary_10_1088_2057_1976_adbbf4 crossref_primary_10_1038_s41598_022_06852_x crossref_primary_10_1016_j_compbiomed_2015_08_006 crossref_primary_10_1002_cnm_2873 crossref_primary_10_1016_j_cma_2016_08_010 crossref_primary_10_1016_j_buildenv_2020_107022 crossref_primary_10_1002_cnm_2838 crossref_primary_10_1016_j_jcp_2020_109836 crossref_primary_10_1177_0954411916683221 crossref_primary_10_1164_rccm_201506_1196OC crossref_primary_10_1007_s00348_015_1966_y crossref_primary_10_1016_j_partic_2024_04_006 crossref_primary_10_1080_17425247_2019_1551875 crossref_primary_10_1016_j_cmpb_2016_04_021 crossref_primary_10_3109_08958378_2016_1150367 crossref_primary_10_1007_s11517_015_1325_4 crossref_primary_10_1007_s10237_017_0904_8 crossref_primary_10_1371_journal_pone_0168026 |
| Cites_doi | 10.1016/j.medengphy.2007.11.002 10.1016/j.media.2008.03.007 10.1152/japplphysiol.00520.2004 10.1016/j.jbiomech.2010.03.048 10.1016/j.jbiomech.2008.05.016 10.1148/radiol.10100322 10.1063/1.1785131 10.1378/chest.06-2556 10.1152/jappl.1971.31.2.207 10.1016/j.resp.2007.02.006 10.1118/1.3193526 10.1146/annurev-fluid-121108-145453 10.1109/MEMB.2009.932480 10.1152/japplphysiol.00212.2007 10.1007/s10439-006-9240-3 10.1002/fld.1763 10.1080/02786826.2010.517578 10.1152/japplphysiol.00324.2009 10.1016/S0045-7825(01)00302-4 10.1289/ehp.845597 10.1152/jappl.1966.21.3.749 10.1016/j.jbiomech.2007.07.009 10.1016/j.cma.2005.04.014 10.1115/1.4001679 10.1007/s10439-010-0110-7 10.1007/s10439-006-9184-7 10.1146/annurev.physiol.68.072304.114110 10.1016/j.acra.2005.09.088 10.1152/jappl.1985.59.2.468 10.1152/jappl.1972.32.4.460 10.1152/japplphysiol.01235.2005 10.1016/j.jbiomech.2009.05.004 10.1007/s10439-008-9527-7 10.1007/s10439-010-9956-y 10.1002/jmri.22382 10.1088/0031-9155/56/1/013 10.1063/1.3247170 10.1016/j.jbiomech.2004.05.027 10.1007/s10439-008-9603-z 10.1016/j.resp.2008.04.020 10.1109/TSMC.1979.4310076 10.1016/S1076-6332(03)00330-1 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Inc. 2012 Elsevier Inc. All rights reserved 2012 |
| Copyright_xml | – notice: 2012 Elsevier Inc. – notice: 2012 Elsevier Inc. All rights reserved 2012 |
| DBID | AAYXX CITATION NPM 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D 7X8 OTOTI 5PM |
| DOI | 10.1016/j.jcp.2012.12.007 |
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1090-2716 |
| EndPage | 192 |
| ExternalDocumentID | PMC3685439 22233603 23794749 10_1016_j_jcp_2012_12_007 S0021999112007383 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: P30 ES005605 – fundername: NHLBI NIH HHS grantid: R01 HL094315 – fundername: NCRR NIH HHS grantid: S10 RR022421 – fundername: NHLBI NIH HHS grantid: R01 HL112986 – fundername: NHLBI NIH HHS grantid: R01 HL064368 – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL064368 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL094315 || HL |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS EJD FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD NPM SSH 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D 7X8 AALMO ABPIF ABPTK ABQIS EFJIC OTOTI 5PM |
| ID | FETCH-LOGICAL-c512t-5cc3340d212c57bc878c6c448edadb0323833aea37f0bd6cf00baf89f7f8fb073 |
| ISICitedReferencesCount | 83 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319456900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9991 |
| IngestDate | Tue Sep 30 15:59:16 EDT 2025 Fri May 19 01:41:04 EDT 2023 Sat Sep 27 18:26:02 EDT 2025 Sat Sep 27 20:27:34 EDT 2025 Thu Apr 03 07:09:23 EDT 2025 Tue Nov 18 22:29:53 EST 2025 Sat Nov 29 06:46:05 EST 2025 Fri Feb 23 02:18:54 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Image registration Pulmonary air flow Boundary condition MDCT Multiscale Regional ventilation boundary condition pulmonary air flow regional ventilation image registration |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c512t-5cc3340d212c57bc878c6c448edadb0323833aea37f0bd6cf00baf89f7f8fb073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 E. A. Hoffman is a founder and shareholder of VIDA Diagnostics which is commercializing some of the software utilized in this work. youbing-yin@uiowa.edu (Y. Yin), jiwoong-choi@uiowa.edu (J. Choi), eric-hoffman@uiowa.edu (E.A. Hoffman), m.tawhai@auckland.ac.nz (M. H. Tawhai), ching-long-lin@uiowa.edu (C.-L. Lin) |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3685439 |
| PMID | 23794749 |
| PQID | 1671593777 |
| PQPubID | 23500 |
| PageCount | 25 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3685439 osti_scitechconnect_22233603 proquest_miscellaneous_1826571286 proquest_miscellaneous_1671593777 pubmed_primary_23794749 crossref_primary_10_1016_j_jcp_2012_12_007 crossref_citationtrail_10_1016_j_jcp_2012_12_007 elsevier_sciencedirect_doi_10_1016_j_jcp_2012_12_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-01 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of computational physics |
| PublicationTitleAlternate | J Comput Phys |
| PublicationYear | 2013 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Vignon-Clementel, Alberto Figueroa, Jansen, Taylor (b0110) 2006; 195 De Backer, Vos, Devolder, Verhulst, Germonpre, Wuyts, Parizel, De Backer (b0080) 2008; 41 Hoffman, Reinhardt, Sonka, Simon, Guo, Chon, Samrah, Shikata, Tschirren, Palagyi, Beck, McLennan (b0180) 2003; 10 Milic-Emili, Henderson, Dolovich, Trop, Kaneko (b0200) 1966; 21 Tawhai, Hunter, Tschirren, Reinhardt, McLennan, Hoffman (b0140) 2004; 97 Tawhai, Nash, Lin, Hoffman (b0235) 2009; 107 Comerford, Forster, Wall (b0130) 2010; 132 Yin, Choi, Hoffman, Tawhai, Lin (b0145) 2010; 43 Fredberg, Kamm (b0015) 2006; 68 Button, Boucher (b0020) 2008; 163 Pedley, Schroter, Sudlow (b0225) 1977; vol. 3 Lin, Tawhai, McLennan, Hoffman (b0065) 2007; 157 Horsfield, Dart, Olson, Filley, Cumming (b0040) 1971; 31 Yin, Hoffman, Lin (b0185) 2009; 36 Reinhardt, Ding, Cao, G.E, Christensen, Hoffman, Bodas (b0210) 2008; 12 Wall, Rabczuk (b0155) 2008; 57 Formaggia, Gerbeau, Nobile, Quarteroni (b0090) 2001; 191 Fuld, Easley, Saba, Chon, Reinhardt, Hoffman, Simon (b0215) 2008; 104 . Weibel (b0035) 1963 Kilburn (b0010) 1984; 55 Loring, O’Donnell, Feller-Kopman, Ernst (b0150) 2007; 131 C. Kruger, Constrained cubic spline interpolation for chemical engineering applications, 2003 De Backer, Vos, Vinchurkar, Claes, Drollmann, Wulfrank, Parizel, Germonpre, De Backer (b0125) 2010; 257 Tawhai, Lin (b0025) 2010; 32 J.B. West, Respiratory Physiology: The Essentials, eighth ed., Lippincott Williams & Wlkins, 2008. Tawha, Lin (b0250) 2011 Choi, Tawhai, Hoffman, Lin (b0050) 2009; 21 Lin, Tawhai, McLennan, Hoffman (b0070) 2009; 28 De Backer, Vos, Gorle, Germonpre, Partoens, Wuyts, Parizel, De Backer (b0120) 2008; 30 Vreman (b0195) 2004; 16 Grinberg, Karniadakis (b0105) 2008; 36 Otsu (b0170) 1979; 9 Stanescu, Clement, Pattijn, van de Woestijne (b0240) 1972; 32 Kleinstreuer, Zhang (b0045) 2010; 42 Formaggia, Gerbeau, Nobile, Quarteroni (b0095) 2003 Finlay (b0005) 2001 Hoffman (b0175) 1985; 59 Xia, Tawhai, Hoffman, Lin (b0160) 2010; 38 Lambert, O’Shaughnessy, Tawhai, Hoffman, Lin (b0060) 2011; 45 Luo, Liu (b0075) 2009; 42 Lagana, Balossino, Migliavacca, Pennati, Bove, de Leval, Dubini (b0100) 2005; 38 Yin, Hoffman, Ding, Reinhardt, Lin (b0165) 2011; 56 Choi, Xia, Tawhai, Hoffman, Lin (b0055) 2010; 38 Ma, Lutchen (b0135) 2006; 34 Chon, Beck, Simon, Shikata, Saba, Hoffman (b0220) 2007; 102 Spilker, Feinstein, Parker, Reddy, Taylor (b0115) 2007; 35 Freitas, Schrцder (b0085) 2008; 41 Mullally, Betke, Albert, Lutchen (b0245) 2009; 37 Tawhai, Nash, Hoffman (b0230) 2006; 13 Loring (10.1016/j.jcp.2012.12.007_b0150) 2007; 131 Fuld (10.1016/j.jcp.2012.12.007_b0215) 2008; 104 Tawha (10.1016/j.jcp.2012.12.007_b0250) 2011 Vreman (10.1016/j.jcp.2012.12.007_b0195) 2004; 16 Stanescu (10.1016/j.jcp.2012.12.007_b0240) 1972; 32 Choi (10.1016/j.jcp.2012.12.007_b0050) 2009; 21 10.1016/j.jcp.2012.12.007_b0255 Lin (10.1016/j.jcp.2012.12.007_b0070) 2009; 28 Hoffman (10.1016/j.jcp.2012.12.007_b0180) 2003; 10 Grinberg (10.1016/j.jcp.2012.12.007_b0105) 2008; 36 Formaggia (10.1016/j.jcp.2012.12.007_b0095) 2003 Luo (10.1016/j.jcp.2012.12.007_b0075) 2009; 42 Chon (10.1016/j.jcp.2012.12.007_b0220) 2007; 102 Tawhai (10.1016/j.jcp.2012.12.007_b0140) 2004; 97 Kilburn (10.1016/j.jcp.2012.12.007_b0010) 1984; 55 Finlay (10.1016/j.jcp.2012.12.007_b0005) 2001 Lagana (10.1016/j.jcp.2012.12.007_b0100) 2005; 38 Tawhai (10.1016/j.jcp.2012.12.007_b0235) 2009; 107 De Backer (10.1016/j.jcp.2012.12.007_b0080) 2008; 41 Tawhai (10.1016/j.jcp.2012.12.007_b0025) 2010; 32 De Backer (10.1016/j.jcp.2012.12.007_b0120) 2008; 30 Otsu (10.1016/j.jcp.2012.12.007_b0170) 1979; 9 Spilker (10.1016/j.jcp.2012.12.007_b0115) 2007; 35 Formaggia (10.1016/j.jcp.2012.12.007_b0090) 2001; 191 Weibel (10.1016/j.jcp.2012.12.007_b0035) 1963 Reinhardt (10.1016/j.jcp.2012.12.007_b0210) 2008; 12 Button (10.1016/j.jcp.2012.12.007_b0020) 2008; 163 Tawhai (10.1016/j.jcp.2012.12.007_b0230) 2006; 13 Lambert (10.1016/j.jcp.2012.12.007_b0060) 2011; 45 Fredberg (10.1016/j.jcp.2012.12.007_b0015) 2006; 68 Yin (10.1016/j.jcp.2012.12.007_b0165) 2011; 56 Milic-Emili (10.1016/j.jcp.2012.12.007_b0200) 1966; 21 Choi (10.1016/j.jcp.2012.12.007_b0055) 2010; 38 Hoffman (10.1016/j.jcp.2012.12.007_b0175) 1985; 59 Yin (10.1016/j.jcp.2012.12.007_b0185) 2009; 36 Comerford (10.1016/j.jcp.2012.12.007_b0130) 2010; 132 Xia (10.1016/j.jcp.2012.12.007_b0160) 2010; 38 Yin (10.1016/j.jcp.2012.12.007_b0145) 2010; 43 Horsfield (10.1016/j.jcp.2012.12.007_b0040) 1971; 31 Kleinstreuer (10.1016/j.jcp.2012.12.007_b0045) 2010; 42 10.1016/j.jcp.2012.12.007_b0190 De Backer (10.1016/j.jcp.2012.12.007_b0125) 2010; 257 Pedley (10.1016/j.jcp.2012.12.007_b0225) 1977; vol. 3 Freitas (10.1016/j.jcp.2012.12.007_b0085) 2008; 41 Ma (10.1016/j.jcp.2012.12.007_b0135) 2006; 34 Lin (10.1016/j.jcp.2012.12.007_b0065) 2007; 157 Mullally (10.1016/j.jcp.2012.12.007_b0245) 2009; 37 Wall (10.1016/j.jcp.2012.12.007_b0155) 2008; 57 Vignon-Clementel (10.1016/j.jcp.2012.12.007_b0110) 2006; 195 |
| References_xml | – volume: 104 start-page: 1177 year: 2008 end-page: 1184 ident: b0215 article-title: CT measured regional specific volume change reflects regional specific ventilation in supine sheep publication-title: Journal of Applied Physiology – volume: 42 start-page: 301 year: 2010 end-page: 334 ident: b0045 article-title: Airflow and particle transport in the human respiratory system publication-title: Annual Review of Fluid Mechanics – volume: 41 start-page: 2446 year: 2008 end-page: 2457 ident: b0085 article-title: Numerical investigation of the three-dimensional flow in a human lung model publication-title: Journal of Biomechanics – volume: 43 start-page: 2159 year: 2010 end-page: 2163 ident: b0145 article-title: Simulation of pulmonary air flow with a subject-specific boundary condition publication-title: Journal of Biomechanics – volume: 12 start-page: 752 year: 2008 end-page: 763 ident: b0210 article-title: Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation publication-title: Medical Image Analysis – volume: 37 start-page: 286 year: 2009 end-page: 300 ident: b0245 article-title: Explaining clustered ventilation defects via a minimal number of airway closure locations publication-title: Annals of Biomedical Engineering – volume: 132 start-page: 081002 year: 2010 ident: b0130 article-title: Structured tree impedance outflow boundary conditions for 3D lung simulations publication-title: Journal of Biomechanical Engineering – volume: 131 start-page: 1118 year: 2007 end-page: 1124 ident: b0150 article-title: Central airway mechanics and flow limitation in acquired tracheobronchomalacia publication-title: Chest – volume: 16 start-page: 3670 year: 2004 end-page: 3681 ident: b0195 article-title: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications publication-title: Physics of Fluids – volume: 30 start-page: 872 year: 2008 end-page: 879 ident: b0120 article-title: Flow analyses in the lower airways: patient-specific model and boundary conditions publication-title: Medical Engineering and Physics – year: 1963 ident: b0035 article-title: Morphometry of the Human Lung – volume: 157 start-page: 295 year: 2007 end-page: 309 ident: b0065 article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways publication-title: Respiratory Physiology & Neurobiology – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: b0170 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 59 start-page: 468 year: 1985 end-page: 480 ident: b0175 article-title: Effect of body orientation on regional lung expansion: a computed tomographic approach publication-title: Journal of Applied Physiology – volume: 257 start-page: 854 year: 2010 end-page: 862 ident: b0125 article-title: Validation of computational fluid dynamics in CT-based airway models with SPECT/CT publication-title: Radiology – volume: 56 start-page: 203 year: 2011 end-page: 218 ident: b0165 article-title: A cubic B-spline-based hybrid registration of lung CT images for a dynamic airway geometric model with large deformation publication-title: Physics in Medicine and Biology – volume: 195 start-page: 3776 year: 2006 end-page: 3796 ident: b0110 article-title: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries publication-title: Computer Methods in Applied Mechanics and Engineering – reference: J.B. West, Respiratory Physiology: The Essentials, eighth ed., Lippincott Williams & Wlkins, 2008. – year: 2001 ident: b0005 article-title: Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction – volume: 21 start-page: 749 year: 1966 end-page: 759 ident: b0200 article-title: Regional distribution of inspired gas in the lung publication-title: Journal of Applied Physiology – volume: 57 start-page: 653 year: 2008 end-page: 675 ident: b0155 article-title: Fluid-structure interaction in lower airways of CT-based lung geometries publication-title: International Journal for Numerical Methods in Fluids – volume: 32 start-page: 1421 year: 2010 end-page: 1431 ident: b0025 article-title: Image-based modeling of lung structure and function publication-title: Journal of Magnetic Resonance Imaging – volume: 32 start-page: 460 year: 1972 end-page: 466 ident: b0240 article-title: Glottis opening and airway resistance publication-title: Journal of Applied Physiology – reference: C. Kruger, Constrained cubic spline interpolation for chemical engineering applications, 2003, – volume: 163 start-page: 189 year: 2008 end-page: 201 ident: b0020 article-title: Role of mechanical stress in regulating airway surface hydration and mucus clearance rates publication-title: Respiratory Physiology & Neurobiology – start-page: 376 year: 2003 end-page: 401 ident: b0095 article-title: Numerical treatment of defective boundary conditions for the Navier–Stokes equations publication-title: SIAM Journal on Numerical Analysis – volume: 68 start-page: 507 year: 2006 end-page: 541 ident: b0015 article-title: Stress transmission in the lung: pathways from organ to molecule publication-title: Annual Review Physiology – volume: 31 start-page: 207 year: 1971 end-page: 217 ident: b0040 article-title: Models of the human bronchial tree publication-title: Journal of Applied Physiology – volume: 42 start-page: 1869 year: 2009 end-page: 1876 ident: b0075 article-title: Particle deposition in a CT-scanned human lung airway publication-title: Journal of Biomechanics – volume: 41 start-page: 106 year: 2008 end-page: 113 ident: b0080 article-title: Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation publication-title: Journal of Biomechanics – volume: 35 start-page: 546 year: 2007 end-page: 559 ident: b0115 article-title: Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries publication-title: Annals of Biomedical Engineering – volume: 36 start-page: 1496 year: 2008 end-page: 1514 ident: b0105 article-title: Outflow boundary conditions for arterial networks with multiple outlets publication-title: Annals of Biomedical Engineering – volume: 10 start-page: 1104 year: 2003 end-page: 1118 ident: b0180 article-title: Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function publication-title: Academic Radiology – volume: 102 start-page: 1535 year: 2007 end-page: 1544 ident: b0220 article-title: Effect of low-xenon and krypton supplementation on signal/noise of regional CT-based ventilation measurements publication-title: Journal of Applied Physiology – year: 2011 ident: b0250 article-title: Airway Gas Flow, Comprehensive Physiology – volume: 38 start-page: 3550 year: 2010 end-page: 3571 ident: b0055 article-title: Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model publication-title: Annals of Biomedical Engineering – volume: 191 start-page: 561 year: 2001 end-page: 582 ident: b0090 article-title: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 13 start-page: 113 year: 2006 end-page: 120 ident: b0230 article-title: An imaging-based computational approach to model ventilation distribution and soft-tissue deformation in the ovine lung publication-title: Academic Radiology – volume: 97 start-page: 2310 year: 2004 end-page: 2321 ident: b0140 article-title: CT-based geometry analysis and finite element models of the human and ovine bronchial tree publication-title: Journal of Applied Physiology – volume: 38 start-page: 1836 year: 2010 end-page: 1853 ident: b0160 article-title: Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways publication-title: Annals of Biomedical Engineering – volume: 38 start-page: 1129 year: 2005 end-page: 1141 ident: b0100 article-title: Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation publication-title: Journal of Biomechanics – volume: vol. 3 start-page: 163 year: 1977 end-page: 265 ident: b0225 article-title: Gas flow and mixing in the airways publication-title: Bioengineering Aspects of the Lung – reference: . – volume: 21 start-page: 101901 year: 2009 ident: b0050 article-title: On intra- and intersubject variabilities of airflow in the human lungs publication-title: Physics of Fluids – volume: 107 start-page: 912 year: 2009 end-page: 920 ident: b0235 article-title: Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape publication-title: Journal of Applied Physiology – volume: 34 start-page: 1691 year: 2006 end-page: 1704 ident: b0135 article-title: An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics publication-title: Annals of Biomedical Engineering – volume: 36 start-page: 4213 year: 2009 end-page: 4222 ident: b0185 article-title: Mass preserving nonrigid registration of CT lung images using cubic B-spline publication-title: Medical Physics – volume: 55 start-page: 97 year: 1984 end-page: 109 ident: b0010 article-title: Particles causing lung disease publication-title: Environmental Health Perspectives – volume: 45 start-page: 11 year: 2011 end-page: 25 ident: b0060 article-title: Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry publication-title: Aerosol Science and Technology – volume: 28 start-page: 25 year: 2009 end-page: 33 ident: b0070 article-title: Multiscale simulation of gas flow in subject-specific models of the human lung publication-title: IEEE Engineering in Medicine and Biology Magazine – volume: 30 start-page: 872 issue: 7 year: 2008 ident: 10.1016/j.jcp.2012.12.007_b0120 article-title: Flow analyses in the lower airways: patient-specific model and boundary conditions publication-title: Medical Engineering and Physics doi: 10.1016/j.medengphy.2007.11.002 – volume: 12 start-page: 752 year: 2008 ident: 10.1016/j.jcp.2012.12.007_b0210 article-title: Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation publication-title: Medical Image Analysis doi: 10.1016/j.media.2008.03.007 – volume: 97 start-page: 2310 issue: 6 year: 2004 ident: 10.1016/j.jcp.2012.12.007_b0140 article-title: CT-based geometry analysis and finite element models of the human and ovine bronchial tree publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.00520.2004 – volume: 43 start-page: 2159 issue: 11 year: 2010 ident: 10.1016/j.jcp.2012.12.007_b0145 article-title: Simulation of pulmonary air flow with a subject-specific boundary condition publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2010.03.048 – volume: 41 start-page: 2446 issue: 11 year: 2008 ident: 10.1016/j.jcp.2012.12.007_b0085 article-title: Numerical investigation of the three-dimensional flow in a human lung model publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2008.05.016 – volume: 257 start-page: 854 issue: 3 year: 2010 ident: 10.1016/j.jcp.2012.12.007_b0125 article-title: Validation of computational fluid dynamics in CT-based airway models with SPECT/CT publication-title: Radiology doi: 10.1148/radiol.10100322 – volume: 16 start-page: 3670 year: 2004 ident: 10.1016/j.jcp.2012.12.007_b0195 article-title: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications publication-title: Physics of Fluids doi: 10.1063/1.1785131 – volume: 131 start-page: 1118 issue: 4 year: 2007 ident: 10.1016/j.jcp.2012.12.007_b0150 article-title: Central airway mechanics and flow limitation in acquired tracheobronchomalacia publication-title: Chest doi: 10.1378/chest.06-2556 – volume: 31 start-page: 207 issue: 2 year: 1971 ident: 10.1016/j.jcp.2012.12.007_b0040 article-title: Models of the human bronchial tree publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1971.31.2.207 – year: 2011 ident: 10.1016/j.jcp.2012.12.007_b0250 – volume: 157 start-page: 295 issue: 2–3 year: 2007 ident: 10.1016/j.jcp.2012.12.007_b0065 article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways publication-title: Respiratory Physiology & Neurobiology doi: 10.1016/j.resp.2007.02.006 – volume: 36 start-page: 4213 issue: 9 year: 2009 ident: 10.1016/j.jcp.2012.12.007_b0185 article-title: Mass preserving nonrigid registration of CT lung images using cubic B-spline publication-title: Medical Physics doi: 10.1118/1.3193526 – volume: 42 start-page: 301 year: 2010 ident: 10.1016/j.jcp.2012.12.007_b0045 article-title: Airflow and particle transport in the human respiratory system publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev-fluid-121108-145453 – volume: 28 start-page: 25 issue: 3 year: 2009 ident: 10.1016/j.jcp.2012.12.007_b0070 article-title: Multiscale simulation of gas flow in subject-specific models of the human lung publication-title: IEEE Engineering in Medicine and Biology Magazine doi: 10.1109/MEMB.2009.932480 – volume: 104 start-page: 1177 issue: 4 year: 2008 ident: 10.1016/j.jcp.2012.12.007_b0215 article-title: CT measured regional specific volume change reflects regional specific ventilation in supine sheep publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.00212.2007 – volume: 35 start-page: 546 issue: 4 year: 2007 ident: 10.1016/j.jcp.2012.12.007_b0115 article-title: Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-006-9240-3 – volume: 57 start-page: 653 issue: 5 year: 2008 ident: 10.1016/j.jcp.2012.12.007_b0155 article-title: Fluid-structure interaction in lower airways of CT-based lung geometries publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.1763 – volume: 45 start-page: 11 issue: 1 year: 2011 ident: 10.1016/j.jcp.2012.12.007_b0060 article-title: Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2010.517578 – ident: 10.1016/j.jcp.2012.12.007_b0255 – volume: 107 start-page: 912 issue: 3 year: 2009 ident: 10.1016/j.jcp.2012.12.007_b0235 article-title: Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.00324.2009 – volume: 191 start-page: 561 issue: 6–7 year: 2001 ident: 10.1016/j.jcp.2012.12.007_b0090 article-title: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/S0045-7825(01)00302-4 – year: 2001 ident: 10.1016/j.jcp.2012.12.007_b0005 – ident: 10.1016/j.jcp.2012.12.007_b0190 – volume: 55 start-page: 97 year: 1984 ident: 10.1016/j.jcp.2012.12.007_b0010 article-title: Particles causing lung disease publication-title: Environmental Health Perspectives doi: 10.1289/ehp.845597 – volume: 21 start-page: 749 issue: 3 year: 1966 ident: 10.1016/j.jcp.2012.12.007_b0200 article-title: Regional distribution of inspired gas in the lung publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1966.21.3.749 – start-page: 376 year: 2003 ident: 10.1016/j.jcp.2012.12.007_b0095 article-title: Numerical treatment of defective boundary conditions for the Navier–Stokes equations publication-title: SIAM Journal on Numerical Analysis – volume: 41 start-page: 106 issue: 1 year: 2008 ident: 10.1016/j.jcp.2012.12.007_b0080 article-title: Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2007.07.009 – volume: 195 start-page: 3776 issue: 29–32 year: 2006 ident: 10.1016/j.jcp.2012.12.007_b0110 article-title: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2005.04.014 – volume: 132 start-page: 081002 year: 2010 ident: 10.1016/j.jcp.2012.12.007_b0130 article-title: Structured tree impedance outflow boundary conditions for 3D lung simulations publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.4001679 – year: 1963 ident: 10.1016/j.jcp.2012.12.007_b0035 – volume: 38 start-page: 3550 issue: 12 year: 2010 ident: 10.1016/j.jcp.2012.12.007_b0055 article-title: Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-010-0110-7 – volume: 34 start-page: 1691 issue: 11 year: 2006 ident: 10.1016/j.jcp.2012.12.007_b0135 article-title: An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-006-9184-7 – volume: 68 start-page: 507 year: 2006 ident: 10.1016/j.jcp.2012.12.007_b0015 article-title: Stress transmission in the lung: pathways from organ to molecule publication-title: Annual Review Physiology doi: 10.1146/annurev.physiol.68.072304.114110 – volume: 13 start-page: 113 issue: 1 year: 2006 ident: 10.1016/j.jcp.2012.12.007_b0230 article-title: An imaging-based computational approach to model ventilation distribution and soft-tissue deformation in the ovine lung publication-title: Academic Radiology doi: 10.1016/j.acra.2005.09.088 – volume: 59 start-page: 468 year: 1985 ident: 10.1016/j.jcp.2012.12.007_b0175 article-title: Effect of body orientation on regional lung expansion: a computed tomographic approach publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1985.59.2.468 – volume: 32 start-page: 460 issue: 4 year: 1972 ident: 10.1016/j.jcp.2012.12.007_b0240 article-title: Glottis opening and airway resistance publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1972.32.4.460 – volume: 102 start-page: 1535 issue: 4 year: 2007 ident: 10.1016/j.jcp.2012.12.007_b0220 article-title: Effect of low-xenon and krypton supplementation on signal/noise of regional CT-based ventilation measurements publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.01235.2005 – volume: 42 start-page: 1869 issue: 12 year: 2009 ident: 10.1016/j.jcp.2012.12.007_b0075 article-title: Particle deposition in a CT-scanned human lung airway publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2009.05.004 – volume: 36 start-page: 1496 issue: 9 year: 2008 ident: 10.1016/j.jcp.2012.12.007_b0105 article-title: Outflow boundary conditions for arterial networks with multiple outlets publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-008-9527-7 – volume: 38 start-page: 1836 year: 2010 ident: 10.1016/j.jcp.2012.12.007_b0160 article-title: Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-010-9956-y – volume: 32 start-page: 1421 year: 2010 ident: 10.1016/j.jcp.2012.12.007_b0025 article-title: Image-based modeling of lung structure and function publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.22382 – volume: 56 start-page: 203 issue: 1 year: 2011 ident: 10.1016/j.jcp.2012.12.007_b0165 article-title: A cubic B-spline-based hybrid registration of lung CT images for a dynamic airway geometric model with large deformation publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/56/1/013 – volume: vol. 3 start-page: 163 year: 1977 ident: 10.1016/j.jcp.2012.12.007_b0225 article-title: Gas flow and mixing in the airways – volume: 21 start-page: 101901 issue: 10 year: 2009 ident: 10.1016/j.jcp.2012.12.007_b0050 article-title: On intra- and intersubject variabilities of airflow in the human lungs publication-title: Physics of Fluids doi: 10.1063/1.3247170 – volume: 38 start-page: 1129 issue: 5 year: 2005 ident: 10.1016/j.jcp.2012.12.007_b0100 article-title: Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2004.05.027 – volume: 37 start-page: 286 issue: 2 year: 2009 ident: 10.1016/j.jcp.2012.12.007_b0245 article-title: Explaining clustered ventilation defects via a minimal number of airway closure locations publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-008-9603-z – volume: 163 start-page: 189 issue: 1–3 year: 2008 ident: 10.1016/j.jcp.2012.12.007_b0020 article-title: Role of mechanical stress in regulating airway surface hydration and mucus clearance rates publication-title: Respiratory Physiology & Neurobiology doi: 10.1016/j.resp.2008.04.020 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.jcp.2012.12.007_b0170 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1979.4310076 – volume: 10 start-page: 1104 issue: 10 year: 2003 ident: 10.1016/j.jcp.2012.12.007_b0180 article-title: Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function publication-title: Academic Radiology doi: 10.1016/S1076-6332(03)00330-1 |
| SSID | ssj0008548 |
| Score | 2.4057827 |
| Snippet | A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung... |
| SourceID | pubmedcentral osti proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 168 |
| SubjectTerms | AIR FLOW Airways ALGORITHMS ANIMAL TISSUES Boundary condition Breathing COMPARATIVE EVALUATIONS COMPUTERIZED TOMOGRAPHY ENGINEERING FLOW RATE FLUID MECHANICS Image registration INTERPOLATION LAMINAR FLOW LARGE-EDDY SIMULATION LUNGS Mathematical analysis Mathematical models MDCT Multiscale Pulmonary air flow Regional Regional ventilation RESPIRATION Ventilation |
| Title | A multiscale MDCT image-based breathing lung model with time-varying regional ventilation |
| URI | https://dx.doi.org/10.1016/j.jcp.2012.12.007 https://www.ncbi.nlm.nih.gov/pubmed/23794749 https://www.proquest.com/docview/1671593777 https://www.proquest.com/docview/1826571286 https://www.osti.gov/biblio/22233603 https://pubmed.ncbi.nlm.nih.gov/PMC3685439 |
| Volume | 244 |
| WOSCitedRecordID | wos000319456900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECUap4deui9O04AFemqhQjIpkToaaYo0QIMeXMA5CRIlojZsybCz9e8zw0VWnMZoDwUMwdBCy3qPw8fRcIaQDzFLGU9lHMgq4gGPcgnfuAxiJlCgg0FU3BSbEKencjxOf7jXBStTTkDUtby-Thf_FWrYB2Dj0tl_gLttFHbAdwAdtgA7bP8K-KENElzBw4cu--Vw9GkyB6MR4HgFahNFovE6zaCb20I4zhk7mVfBZb40656wXoPxEZpwyNkavrs6Vpm6EN6naD0lrVA_sykKwKYUfow0sQSNCSI4mVw1zXr3caO1c8iieV67WUf5lSub_b1aLn_XbkWFc1Zg4QjhnRV-8UAUoCbtGuAB5x0TGtkyO3dMu_UyTD9PFaYZjQbGi2sr5nZQXcwNrAMGdkbYZKgb-bT9oR2yOxBxKntkd_jtaHzSjt8y5nb8drfq34WbqMCNX8dc0q69-4RNrwFb_af5y2YYbkfXjJ6Sxw5IOrREekYeVPVz8sRNTqgz_asX5GxI17yiyCva4RVteUWRV9TwiiKvaJdX1POKdnj1kvz8ejQ6PA5cXY5AgTw8D2KlGONhCapHxaJQUkiVKJjnV2VeFiEDFchYXuVM6LAoE6XDsMi1TLXQUhcwprwivbqpqzeERiqsuCjKMteac64LmP9De0kVhUzlKeuT0D_UTLmk9Vg7ZZb56MRpBpBkCEkGH4CkTz62lyxsxpZtJ3OPVOYkp5WSGdBu22X7iCpegqmWFcakwTWotVkSwl2_92hnYK3xFVxeV83FKosSAfMHJoTYcg7M-GMBujHpk9eWIe0f8WTrE3GLO-0JmC3-9pF68stkjcdKEzD72Lu3zbfk0brL7pPe-fKiekceqkug1vKA7IixPHB95QaGednX |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiscale+MDCT+image-based+breathing+lung+model+with+time-varying+regional+ventilation&rft.jtitle=Journal+of+computational+physics&rft.au=Yin%2C+Youbing&rft.au=Choi%2C+Jiwoong&rft.au=Hoffman%2C+Eric+A&rft.au=Tawhai%2C+Merryn+H&rft.date=2013-07-01&rft.issn=0021-9991&rft.volume=244&rft.spage=168&rft_id=info:doi/10.1016%2Fj.jcp.2012.12.007&rft_id=info%3Apmid%2F23794749&rft.externalDocID=23794749 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |