Tight bounds for periodicity theorems on the unbounded Knapsack problem

► Developed three new periodicity bounds for UKP. ► Proved each new bound is tight. ► Showed two new bounds subsume known results. Three new bounds for periodicity theorems on the unbounded Knapsack problem are developed. Periodicity theorems specify when it is optimal to pack one unit of the best i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of operational research Ročník 215; číslo 2; s. 319 - 324
Hlavní autori: Huang, Ping H., Lawley, Mark, Morin, Thomas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.12.2011
Elsevier
Elsevier Sequoia S.A
Edícia:European Journal of Operational Research
Predmet:
ISSN:0377-2217, 1872-6860
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ► Developed three new periodicity bounds for UKP. ► Proved each new bound is tight. ► Showed two new bounds subsume known results. Three new bounds for periodicity theorems on the unbounded Knapsack problem are developed. Periodicity theorems specify when it is optimal to pack one unit of the best item (the one with the highest profit-to-weight ratio). The successive applications of periodicity theorems can drastically reduce the size of the Knapsack problem under analysis, theoretical or empirical. We prove that each new bound is tight in the sense that no smaller bound exists under the given condition.
AbstractList Three new bounds for periodicity theorems on the unbounded Knapsack problem are developed. Periodicity theorems specify when it is optimal to pack one unit of the best item (the one with the highest profit-to-weight ratio). The successive applications of periodicity theorems can drastically reduce the size of the Knapsack problem under analysis, theoretical or empirical. We prove that each new bound is tight in the sense that no smaller bound exists under the given condition. [PUBLICATION ABSTRACT]
Three new bounds for periodicity theorems on the unbounded Knapsack problem are developed. Periodicity theorems specify when it is optimal to pack one unit of the best item (the one with the highest profit-to-weight ratio). The successive applications of periodicity theorems can drastically reduce the size of the Knapsack problem under analysis, theoretical or empirical. We prove that each new bound is tight in the sense that no smaller bound exists under the given condition.
► Developed three new periodicity bounds for UKP. ► Proved each new bound is tight. ► Showed two new bounds subsume known results. Three new bounds for periodicity theorems on the unbounded Knapsack problem are developed. Periodicity theorems specify when it is optimal to pack one unit of the best item (the one with the highest profit-to-weight ratio). The successive applications of periodicity theorems can drastically reduce the size of the Knapsack problem under analysis, theoretical or empirical. We prove that each new bound is tight in the sense that no smaller bound exists under the given condition.
Author Huang, Ping H.
Lawley, Mark
Morin, Thomas
Author_xml – sequence: 1
  givenname: Ping H.
  surname: Huang
  fullname: Huang, Ping H.
  email: huang74@purdue.edu
  organization: Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana 47907, United States
– sequence: 2
  givenname: Mark
  surname: Lawley
  fullname: Lawley, Mark
  organization: School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
– sequence: 3
  givenname: Thomas
  surname: Morin
  fullname: Morin, Thomas
  organization: School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, United States
BackLink http://www.econis.eu/PPNSET?PPN=668782579$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24443352$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeejores/v_3a215_3ay_3a2011_3ai_3a2_3ap_3a319-324.htm$$DView record in RePEc
BookMark eNp9kcFu1DAQhiNUJLaFF-BChIQ4JbUdO7YlLqiCUrUSl3K2bGfCOiR2sJNK-_Y43QWhHmppPHP4_pnR_OfFmQ8eiuItRjVGuL0cahhCrAnCuEZtjTB6Ueyw4KRqRYvOih1qOK8IwfxVcZ7SgBDCDLNdcX3vfu6X0oTVd6nsQyxniC50zrrlUC57CBGmVAa_1eXqH0Hoyluv56Ttr3KOwYwwvS5e9npM8OaUL4ofX7_cX32r7r5f31x9vqssw2SpmNE9NVZ2LbZaWEyF5kaaloOAxlIjOtNzRJhEjaEUJEOSaGmNQI2FHnfNRfHx2DfP_b1CWtTkkoVx1B7CmpQkLZGEU57J90_IIazR5-WUEIwKhhDL0O0RijCDVXN0k44HBfnle0JSD6rRBLP8H7Yq3zcnt5U55hwNlqohVO2XKXf7cBqpk9VjH7W3Lv3rSiilTcNI5t4dObDB_we0reCCMC4zIY6EjSGlCL3KfujFBb9E7UaFkdp8V4Pa9lSPe6FWZd-zlDyR_m3_rOjTaaPs3YODqJJ14C10LoJdVBfcc_I_ySrG3w
CODEN EJORDT
CitedBy_id crossref_primary_10_1016_j_cor_2021_105692
crossref_primary_10_1007_s10479_019_03368_y
crossref_primary_10_1016_j_orl_2012_05_001
crossref_primary_10_1016_j_cor_2014_03_008
crossref_primary_10_1007_s10288_019_00409_x
crossref_primary_10_1088_1742_6596_2174_1_012011
Cites_doi 10.1287/opre.11.6.863
10.1016/S0362-546X(01)00658-7
10.3844/jcssp.2007.138.143
10.1016/S0377-2217(99)00453-1
10.1016/j.orl.2009.05.003
10.1016/S0377-2217(99)00265-9
10.1287/opre.14.6.1045
10.1016/j.disopt.2008.09.004
10.1016/j.ejor.2006.02.018
10.1287/opre.18.3.432
10.1016/S0377-2217(02)00810-X
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. Dec 1, 2011
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Dec 1, 2011
DBID AAYXX
CITATION
OQ6
IQODW
DKI
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
DOI 10.1016/j.ejor.2011.06.010
DatabaseName CrossRef
ECONIS
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Materials Business File
Materials Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Materials Research Database
Materials Business File
DatabaseTitleList Technology Research Database
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1872-6860
EndPage 324
ExternalDocumentID 2436707471
eeeejores_v_3a215_3ay_3a2011_3ai_3a2_3ap_3a319_324_htm
24443352
668782579
10_1016_j_ejor_2011_06_010
S037722171100539X
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
OQ6
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
08R
0R
1
41
6XO
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
ID FETCH-LOGICAL-c512t-5baf4bc9d61ca8c148a7b9b67e8e3c4b8dbf7025903b44e95092a9cb803cef1d3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295245900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sun Sep 28 11:43:53 EDT 2025
Sun Nov 09 08:39:55 EST 2025
Wed Aug 18 03:49:07 EDT 2021
Mon Jul 21 09:16:12 EDT 2025
Sat Mar 08 16:10:34 EST 2025
Tue Nov 18 22:43:52 EST 2025
Sat Nov 29 01:41:02 EST 2025
Fri Feb 23 02:32:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Integer programming
Combinatorial optimization
Number theory
Periodicity
Knapsack problem
Empirical method
Profit
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c512t-5baf4bc9d61ca8c148a7b9b67e8e3c4b8dbf7025903b44e95092a9cb803cef1d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 885485005
PQPubID 45678
PageCount 6
ParticipantIDs proquest_miscellaneous_926292747
proquest_journals_885485005
repec_primary_eeeejores_v_3a215_3ay_3a2011_3ai_3a2_3ap_3a319_324_htm
pascalfrancis_primary_24443352
econis_primary_668782579
crossref_citationtrail_10_1016_j_ejor_2011_06_010
crossref_primary_10_1016_j_ejor_2011_06_010
elsevier_sciencedirect_doi_10_1016_j_ejor_2011_06_010
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle European Journal of Operational Research
PublicationTitle European journal of operational research
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Serre (b0075) 1973
Toth (b0095) 2000; 125
Kohli, Krishnamurti, Mirchandani (b0050) 2004; 154
Nemhauser, Wolsey (b0065) 1988
Caccetta, Kulanoot (b0010) 2001; 47
Hardy, Wright (b0040) 1938
Hu (b0045) 1969
Mathur, Venkateshan (b0060) 2007; 178
Poirriez, Yanev, Andonov (b0070) 2009; 6
Kellerer, Pferschy, Pisinger (b0035) 2004
Shapiro (b0080) 1970; 18
Martello, Toth (b0055) 1990
Gilmore, Gomory (b0030) 1963; 11
Gilmore, Gomory (b0025) 1966; 14
Andonov, Poirriez, Rajopadhye (b0005) 2000; 123
Garey, Johnson (b0015) 1990
Srisuwannapa, Charnsethikul (b0085) 2007; 3
Garfinkel, Nemhauser (b0020) 1972
Tamir (b0090) 2009; 37
Kellerer (10.1016/j.ejor.2011.06.010_b0035) 2004
Caccetta (10.1016/j.ejor.2011.06.010_b0010) 2001; 47
Kohli (10.1016/j.ejor.2011.06.010_b0050) 2004; 154
Tamir (10.1016/j.ejor.2011.06.010_b0090) 2009; 37
Mathur (10.1016/j.ejor.2011.06.010_b0060) 2007; 178
Poirriez (10.1016/j.ejor.2011.06.010_b0070) 2009; 6
Toth (10.1016/j.ejor.2011.06.010_b0095) 2000; 125
Hu (10.1016/j.ejor.2011.06.010_b0045) 1969
Shapiro (10.1016/j.ejor.2011.06.010_b0080) 1970; 18
Andonov (10.1016/j.ejor.2011.06.010_b0005) 2000; 123
Srisuwannapa (10.1016/j.ejor.2011.06.010_b0085) 2007; 3
Gilmore (10.1016/j.ejor.2011.06.010_b0030) 1963; 11
Garfinkel (10.1016/j.ejor.2011.06.010_b0020) 1972
Nemhauser (10.1016/j.ejor.2011.06.010_b0065) 1988
Hardy (10.1016/j.ejor.2011.06.010_b0040) 1938
Serre (10.1016/j.ejor.2011.06.010_b0075) 1973
Martello (10.1016/j.ejor.2011.06.010_b0055) 1990
Garey (10.1016/j.ejor.2011.06.010_b0015) 1990
Gilmore (10.1016/j.ejor.2011.06.010_b0025) 1966; 14
References_xml – year: 1990
  ident: b0015
  article-title: Computers and Intractability: A Guide to the Theory of NP Completeness
– volume: 47
  start-page: 5547
  year: 2001
  end-page: 5558
  ident: b0010
  article-title: Computational aspects of hard Knapsack problems
  publication-title: Nonlinear Analysis
– volume: 123
  start-page: 394
  year: 2000
  end-page: 407
  ident: b0005
  article-title: Unbounded Knapsack problem: dynamic programming revisited
  publication-title: European Journal of Operational Research
– year: 2004
  ident: b0035
  article-title: Knapsack Problems
– volume: 18
  start-page: 432
  year: 1970
  end-page: 440
  ident: b0080
  article-title: Turnpike theorem for integer programming problem
  publication-title: Operations Research
– year: 1969
  ident: b0045
  article-title: Integer Programming and Network Flows
– year: 1972
  ident: b0020
  article-title: Integer Programming
– volume: 14
  start-page: 1045
  year: 1966
  end-page: 1074
  ident: b0025
  article-title: The theory and computation of Knapsack functions
  publication-title: Operations Research
– year: 1988
  ident: b0065
  article-title: Integer and Combinatorial Optimization
– volume: 6
  start-page: 110
  year: 2009
  end-page: 124
  ident: b0070
  article-title: A hybrid algorithm for the unbounded Knapsack problem
  publication-title: Discrete Optimization
– volume: 154
  start-page: 36
  year: 2004
  end-page: 45
  ident: b0050
  article-title: Average performance of Greedy heuristics for the integer Knapsack problem
  publication-title: European Journal of Operational Research
– volume: 3
  start-page: 138
  year: 2007
  end-page: 143
  ident: b0085
  article-title: An exact algorithm for the unbounded Knapsack problem with minimizing maximum processing time
  publication-title: Journal of Computer Science
– volume: 11
  start-page: 863
  year: 1963
  end-page: 888
  ident: b0030
  article-title: A linear programming approach to the cutting stock problem – Part II
  publication-title: Operations Research
– volume: 125
  start-page: 222
  year: 2000
  end-page: 238
  ident: b0095
  article-title: Optimization engineering techniques for the exact solution of NP-hard combination optimization problems
  publication-title: European Journal of Operational Research
– year: 1938
  ident: b0040
  article-title: An Introduction to the Theory of Numbers
– year: 1973
  ident: b0075
  article-title: A Course in Arithmetic
– volume: 178
  start-page: 738
  year: 2007
  end-page: 754
  ident: b0060
  article-title: A new lower bound for the linear Knapsack problem with general integer variables
  publication-title: European Journal of Operational Research
– year: 1990
  ident: b0055
  article-title: Knapsack Problems: Algorithms and Computer Implementation
– volume: 37
  start-page: 303
  year: 2009
  end-page: 306
  ident: b0090
  article-title: New pseudopolynomial complexity bounds for the bounded and other integer Knapsack related problems
  publication-title: Operations Research Letters
– volume: 11
  start-page: 863
  year: 1963
  ident: 10.1016/j.ejor.2011.06.010_b0030
  article-title: A linear programming approach to the cutting stock problem – Part II
  publication-title: Operations Research
  doi: 10.1287/opre.11.6.863
– volume: 47
  start-page: 5547
  year: 2001
  ident: 10.1016/j.ejor.2011.06.010_b0010
  article-title: Computational aspects of hard Knapsack problems
  publication-title: Nonlinear Analysis
  doi: 10.1016/S0362-546X(01)00658-7
– year: 2004
  ident: 10.1016/j.ejor.2011.06.010_b0035
– volume: 3
  start-page: 138
  year: 2007
  ident: 10.1016/j.ejor.2011.06.010_b0085
  article-title: An exact algorithm for the unbounded Knapsack problem with minimizing maximum processing time
  publication-title: Journal of Computer Science
  doi: 10.3844/jcssp.2007.138.143
– volume: 125
  start-page: 222
  year: 2000
  ident: 10.1016/j.ejor.2011.06.010_b0095
  article-title: Optimization engineering techniques for the exact solution of NP-hard combination optimization problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(99)00453-1
– volume: 37
  start-page: 303
  year: 2009
  ident: 10.1016/j.ejor.2011.06.010_b0090
  article-title: New pseudopolynomial complexity bounds for the bounded and other integer Knapsack related problems
  publication-title: Operations Research Letters
  doi: 10.1016/j.orl.2009.05.003
– volume: 123
  start-page: 394
  year: 2000
  ident: 10.1016/j.ejor.2011.06.010_b0005
  article-title: Unbounded Knapsack problem: dynamic programming revisited
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(99)00265-9
– volume: 14
  start-page: 1045
  year: 1966
  ident: 10.1016/j.ejor.2011.06.010_b0025
  article-title: The theory and computation of Knapsack functions
  publication-title: Operations Research
  doi: 10.1287/opre.14.6.1045
– year: 1990
  ident: 10.1016/j.ejor.2011.06.010_b0015
– volume: 6
  start-page: 110
  year: 2009
  ident: 10.1016/j.ejor.2011.06.010_b0070
  article-title: A hybrid algorithm for the unbounded Knapsack problem
  publication-title: Discrete Optimization
  doi: 10.1016/j.disopt.2008.09.004
– volume: 178
  start-page: 738
  year: 2007
  ident: 10.1016/j.ejor.2011.06.010_b0060
  article-title: A new lower bound for the linear Knapsack problem with general integer variables
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.02.018
– year: 1988
  ident: 10.1016/j.ejor.2011.06.010_b0065
– year: 1938
  ident: 10.1016/j.ejor.2011.06.010_b0040
– volume: 18
  start-page: 432
  year: 1970
  ident: 10.1016/j.ejor.2011.06.010_b0080
  article-title: Turnpike theorem for integer programming problem
  publication-title: Operations Research
  doi: 10.1287/opre.18.3.432
– year: 1972
  ident: 10.1016/j.ejor.2011.06.010_b0020
– year: 1969
  ident: 10.1016/j.ejor.2011.06.010_b0045
– year: 1973
  ident: 10.1016/j.ejor.2011.06.010_b0075
– volume: 154
  start-page: 36
  year: 2004
  ident: 10.1016/j.ejor.2011.06.010_b0050
  article-title: Average performance of Greedy heuristics for the integer Knapsack problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(02)00810-X
– year: 1990
  ident: 10.1016/j.ejor.2011.06.010_b0055
SSID ssj0001515
Score 2.0431745
Snippet ► Developed three new periodicity bounds for UKP. ► Proved each new bound is tight. ► Showed two new bounds subsume known results. Three new bounds for...
Three new bounds for periodicity theorems on the unbounded Knapsack problem are developed. Periodicity theorems specify when it is optimal to pack one unit of...
SourceID proquest
repec
pascalfrancis
econis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 319
SubjectTerms Applied sciences
Combinatorial optimization
Combinatorial optimization Integer programming Knapsack problem Number theory Periodicity
Empirical analysis
Exact sciences and technology
Flows in networks. Combinatorial problems
Integer programming
Knapsack problem
Mathematical programming
Number theory
Operational research
Operational research and scientific management
Operational research. Management science
Optimization
Optimization techniques
Periodicity
Studies
Theorems
Title Tight bounds for periodicity theorems on the unbounded Knapsack problem
URI https://dx.doi.org/10.1016/j.ejor.2011.06.010
http://www.econis.eu/PPNSET?PPN=668782579
http://econpapers.repec.org/article/eeeejores/v_3a215_3ay_3a2011_3ai_3a2_3ap_3a319-324.htm
https://www.proquest.com/docview/885485005
https://www.proquest.com/docview/926292747
Volume 215
WOSCitedRecordID wos000295245900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKOiEQ4lJAC4PJD7xVqZo4F_txgsG4TZMYqG-W4zpay5ZWTVuGxI_nnNjJmk1MgESlRFaauknO55PPx-dCyMtAB1iniPssj4QfqSTxhRKBH-c8YjoZR6zydv_6MT064qOROO50ftaxMOuztCj4xYWY_1dRwzEQNobO_oW4m07hALRB6LAHscP-zwSP0-1-huWSqlwLmJl4MsMVdODbNm7xvF4j6K-K6kRgnR8KNS-V_tZ3JWZ-a7J39BUOLGpDossYdHqJEWeFPkZDxOGg8fpR352JfDNE6BP6AF5xVho3htW2T8f1ABkblJWmfhja8MyBsTqWp6GfcFtGoFbCoQ3qdGgLN1QqcyrVvp2Zjbi-pvitDWI6MNPZwiVmTQZD5zHbTqj9GS8Krwmz5cVMjG6RbpjGAtR6d__dweh98yZHsletQrmbcEFX1j_w6j-1iM02WjMmZYvh3JurEsZdbgumtGY03YWZG71BbE4ekvtuRkL3LZIekY4peuR2HRDRIw_qwh_UvQd65O5GFsvH5G2FOGoRRwFxdANxtEYcnRXYpg3iaI046hD3hHx5c3Dy6tB39Tl8DTRx6ceZyqNMi3ESaMU1TKxVmoksSQ03TEcZH2d5CpxaDFkWRUYANw2V0BkfMm3yYMyekq1iVpgdQrUKhzw3MLvPFdIqwVRigNsCeRaZjpVHgvrhSu2S12MNlTNZeylOJQpEokAkumoGQ4_0m9_MbeqWG8_esTJrzk0SDvQ5ToVH4lqK0vFSyzcloO_GLvdaIm96BkodYayjR3ZrDEg3gEvJeRzxGJDpEdp8CzofF_JUYWarUmKOT4HmJI-8rpDT9GzgA1dhSrmWTMGggv0PbOFVMTXBJmxz2ODhShhN8nR5_uwfb3CX3LnUBM_J1nKxMi_Itl4vJ-Viz42mX1Ke6Sg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tight+bounds+for+periodicity+theorems+on+the+unbounded+Knapsack+problem&rft.jtitle=European+journal+of+operational+research&rft.au=Huang%2C+Ping+H.&rft.au=Lawley%2C+Mark&rft.au=Morin%2C+Thomas&rft.date=2011-12-01&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=215&rft.issue=2&rft.spage=319&rft.epage=324&rft_id=info:doi/10.1016%2Fj.ejor.2011.06.010&rft.externalDocID=S037722171100539X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon