Digital Eddy Current Detection Method Based on High-Speed Sampling with STM32

The electromagnetic eddy current non-destructive testing system enables the non-destructive analysis of surface defect information on tested materials. Based on the principles of eddy current detection, this paper presents a digital eddy current detection method using high-speed sampling based on ST...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) Jg. 15; H. 6; S. 775
Hauptverfasser: Cao, Xiong, Li, Erlong, Yuan, Zilan, Zheng, Kaituo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 11.06.2024
MDPI
Schlagworte:
ISSN:2072-666X, 2072-666X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electromagnetic eddy current non-destructive testing system enables the non-destructive analysis of surface defect information on tested materials. Based on the principles of eddy current detection, this paper presents a digital eddy current detection method using high-speed sampling based on STM32. A differential eddy current coil is used as the detection probe, and the combination of a differential bridge and a differential amplifier circuit helps to reduce common-mode noise interference. The detection signal is collected via an STM32-based acquisition circuit and transmitted to the host computer through Ethernet for digital demodulation processing. The host computer performs operations such as smoothing averaging, sinusoidal fitting, and outlier removal to extract the amplitude and phase of the detection signal. The system also visually displays the condition of the tested object’s surface in real time through graphical visualization. Testing showed that this system can operate at frequencies up to 8.84 MHz and clearly identify defects as narrow as 1 mm on the surface of the tested steel plate.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-666X
2072-666X
DOI:10.3390/mi15060775