Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics

The renewed effort to eliminate malaria and permanently remove its tremendous burden highlights questions of what combination of tools would be sufficient in various settings and what new tools need to be developed. Gene drive mosquitoes constitute a promising set of tools, with multiple different p...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 2; pp. E255 - E264
Main Authors: Eckhoff, Philip A, Wenger, Edward A, Godfray, H Charles J, Burt, Austin
Format: Journal Article
Language:English
Published: United States 10.01.2017
Subjects:
ISSN:1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The renewed effort to eliminate malaria and permanently remove its tremendous burden highlights questions of what combination of tools would be sufficient in various settings and what new tools need to be developed. Gene drive mosquitoes constitute a promising set of tools, with multiple different possible approaches including population replacement with introduced genes limiting malaria transmission, driving-Y chromosomes to collapse a mosquito population, and gene drive disrupting a fertility gene and thereby achieving population suppression or collapse. Each of these approaches has had recent success and advances under laboratory conditions, raising the urgency for understanding how each could be deployed in the real world and the potential impacts of each. New analyses are needed as existing models of gene drive primarily focus on nonseasonal or nonspatial dynamics. We use a mechanistic, spatially explicit, stochastic, individual-based mathematical model to simulate each gene drive approach in a variety of sub-Saharan African settings. Each approach exhibits a broad region of gene construct parameter space with successful elimination of malaria transmission due to the targeted vector species. The introduction of realistic seasonality in vector population dynamics facilitates gene drive success compared with nonseasonal analyses. Spatial simulations illustrate constraints on release timing, frequency, and spatial density in the most challenging settings for construct success. Within its parameter space for success, each gene drive approach provides a tool for malaria elimination unlike anything presently available. Provided potential barriers to success are surmounted, each achieves high efficacy at reducing transmission potential and lower delivery requirements in logistically challenged settings.
AbstractList The renewed effort to eliminate malaria and permanently remove its tremendous burden highlights questions of what combination of tools would be sufficient in various settings and what new tools need to be developed. Gene drive mosquitoes constitute a promising set of tools, with multiple different possible approaches including population replacement with introduced genes limiting malaria transmission, driving-Y chromosomes to collapse a mosquito population, and gene drive disrupting a fertility gene and thereby achieving population suppression or collapse. Each of these approaches has had recent success and advances under laboratory conditions, raising the urgency for understanding how each could be deployed in the real world and the potential impacts of each. New analyses are needed as existing models of gene drive primarily focus on nonseasonal or nonspatial dynamics. We use a mechanistic, spatially explicit, stochastic, individual-based mathematical model to simulate each gene drive approach in a variety of sub-Saharan African settings. Each approach exhibits a broad region of gene construct parameter space with successful elimination of malaria transmission due to the targeted vector species. The introduction of realistic seasonality in vector population dynamics facilitates gene drive success compared with nonseasonal analyses. Spatial simulations illustrate constraints on release timing, frequency, and spatial density in the most challenging settings for construct success. Within its parameter space for success, each gene drive approach provides a tool for malaria elimination unlike anything presently available. Provided potential barriers to success are surmounted, each achieves high efficacy at reducing transmission potential and lower delivery requirements in logistically challenged settings.
Author Eckhoff, Philip A
Wenger, Edward A
Burt, Austin
Godfray, H Charles J
Author_xml – sequence: 1
  givenname: Philip A
  surname: Eckhoff
  fullname: Eckhoff, Philip A
  email: peckhoff@idmod.org
  organization: Institute for Disease Modeling, Bellevue, WA 98005; peckhoff@idmod.org
– sequence: 2
  givenname: Edward A
  surname: Wenger
  fullname: Wenger, Edward A
  organization: Institute for Disease Modeling, Bellevue, WA 98005
– sequence: 3
  givenname: H Charles J
  surname: Godfray
  fullname: Godfray, H Charles J
  organization: Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
– sequence: 4
  givenname: Austin
  surname: Burt
  fullname: Burt, Austin
  organization: Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28028208$$D View this record in MEDLINE/PubMed
BookMark eNo1kL1PwzAQxS0Eoh8wsyGPLC124jjOiCo-KlVigTm62Bcwiu00doD-90RQpnv3fu9ueAty6oNHQq44W3NW5re9h7jmknMmBefihMw5q_hKiorNyCLGD8ZYVSh2TmaZYpnKmJqTw9b1oBMNLXUh7kebAn1Dj9QM9hNp8NRBB4MFip111kOyk2c9BaqD68f0a0A3XRvs6JdN7xS_-85qm2jsJzox8IYmdH0YpsUcPDir4wU5a6GLeHmcS_L6cP-yeVrtnh-3m7vdShc8SythQCJrGyxboVoOXLdMZpPQogWBhoGQuVTGsKIscm6MaVSjK1VyzFspy2xJbv7-9kPYjxhT7WzU2HXgMYyx5qrISyHKrJqi18fo2Dg0dT9YB8Oh_q8r-wFGZ2_Q
CitedBy_id crossref_primary_10_1186_s12936_018_2442_y
crossref_primary_10_1186_s12915_017_0420_4
crossref_primary_10_1080_13102818_2021_1996269
crossref_primary_10_1186_s12936_022_04242_2
crossref_primary_10_1002_eap_2912
crossref_primary_10_1186_s13071_019_3289_y
crossref_primary_10_1111_eva_13032
crossref_primary_10_3390_insects15090653
crossref_primary_10_1016_j_ecolmodel_2023_110285
crossref_primary_10_1016_j_molcel_2020_09_003
crossref_primary_10_1073_pnas_2213308119
crossref_primary_10_1089_vbz_2017_2121
crossref_primary_10_1111_mec_17131
crossref_primary_10_1080_03014223_2021_1977345
crossref_primary_10_1186_s13071_021_04789_0
crossref_primary_10_1080_17524032_2019_1702568
crossref_primary_10_1186_s13071_018_3219_4
crossref_primary_10_1016_j_tig_2023_04_004
crossref_primary_10_1146_annurev_ecolsys_031120_101013
crossref_primary_10_1186_s12936_022_04062_4
crossref_primary_10_7554_eLife_41873
crossref_primary_10_2903_j_efsa_2019_e170708
crossref_primary_10_1038_s41437_024_00677_2
crossref_primary_10_1080_20477724_2018_1427192
crossref_primary_10_1186_s12936_018_2288_3
crossref_primary_10_1371_journal_pcbi_1009660
crossref_primary_10_3390_ijerph14091006
crossref_primary_10_1371_journal_pgen_1010550
crossref_primary_10_3389_fgene_2021_780327
crossref_primary_10_1073_pnas_1705868114
crossref_primary_10_1371_journal_ppat_1007034
crossref_primary_10_1038_s41598_017_02744_7
crossref_primary_10_7717_peerj_6793
crossref_primary_10_1093_g3journal_jkac081
crossref_primary_10_1073_pnas_2312456121
crossref_primary_10_1146_annurev_genet_031623_105059
crossref_primary_10_1371_journal_pntd_0007833
crossref_primary_10_1086_736727
crossref_primary_10_1016_j_ecolmodel_2023_110547
crossref_primary_10_1093_g3journal_jkae300
crossref_primary_10_7717_peerj_7921
crossref_primary_10_1038_s41598_019_51181_1
crossref_primary_10_1242_bio_037762
crossref_primary_10_1093_molbev_msaf048
crossref_primary_10_1073_pnas_2221118120
crossref_primary_10_1038_s41467_024_53065_z
crossref_primary_10_1089_vbz_2019_2606
crossref_primary_10_1371_journal_pgen_1006796
crossref_primary_10_1371_journal_pcbi_1012046
crossref_primary_10_2903_j_efsa_2020_6297
crossref_primary_10_1111_febs_14160
crossref_primary_10_1002_ps_5385
crossref_primary_10_1186_s13071_019_3414_y
crossref_primary_10_1111_eva_12661
crossref_primary_10_1186_s12936_018_2259_8
crossref_primary_10_1002_bies_202000282
crossref_primary_10_1038_s41576_021_00386_0
crossref_primary_10_1186_s12915_020_00834_z
crossref_primary_10_1016_j_ecolmodel_2021_109763
crossref_primary_10_1073_pnas_1805278115
crossref_primary_10_1073_pnas_2010214117
crossref_primary_10_1111_mec_16361
crossref_primary_10_3389_fbioe_2022_856981
crossref_primary_10_1073_pnas_1805874115
crossref_primary_10_3389_fgene_2022_891218
crossref_primary_10_1093_ae_tmz001
crossref_primary_10_1016_j_cois_2018_07_014
crossref_primary_10_3390_su10124789
crossref_primary_10_1038_s41598_020_69259_6
crossref_primary_10_1371_journal_pntd_0010894
crossref_primary_10_1534_genetics_116_197632
crossref_primary_10_1007_s00018_019_03382_0
crossref_primary_10_1111_mec_15788
crossref_primary_10_1371_journal_pgen_1008440
crossref_primary_10_1016_j_tpb_2022_02_002
crossref_primary_10_1186_s12915_019_0645_5
crossref_primary_10_1080_21550085_2020_1848197
crossref_primary_10_3897_neobiota_74_82394
crossref_primary_10_1016_j_pt_2017_06_003
crossref_primary_10_1111_eva_13331
crossref_primary_10_1101_gr_262790_120
crossref_primary_10_1007_s41649_018_0071_y
crossref_primary_10_1186_s12936_017_1932_7
crossref_primary_10_1111_mec_70028
crossref_primary_10_1186_s12936_021_03674_6
crossref_primary_10_1186_s12936_023_04662_8
crossref_primary_10_1242_jeb_208181
crossref_primary_10_1111_1755_0998_13949
crossref_primary_10_1016_j_jmb_2018_05_044
crossref_primary_10_1186_s12936_019_2978_5
crossref_primary_10_1093_biosci_biz098
crossref_primary_10_1111_1744_7917_12949
crossref_primary_10_1111_jeb_13693
crossref_primary_10_1007_s44297_024_00038_9
crossref_primary_10_1186_s12936_024_05160_1
crossref_primary_10_1002_fee_2215
crossref_primary_10_1111_ele_14232
crossref_primary_10_1111_eva_13285
crossref_primary_10_1098_rspb_2018_0776
crossref_primary_10_1146_annurev_ento_020117_043154
crossref_primary_10_1088_1742_6596_1097_1_012077
crossref_primary_10_1186_s12862_021_01881_y
crossref_primary_10_1093_femspd_fty059
crossref_primary_10_1371_journal_pgen_1009740
crossref_primary_10_1371_journal_ppat_1006898
crossref_primary_10_1002_pan3_10186
crossref_primary_10_1038_s42003_024_06809_y
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1611064114
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage E264
ExternalDocumentID 28028208
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c512t-4da6e0fbe7f48f1a1cf062f1ac4fa4ed0a46368dd057531dddb8bc9871e3f6672
IEDL.DBID 7X8
ISICitedReferencesCount 129
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391439300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Oct 01 15:07:24 EDT 2025
Mon Jul 21 05:59:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords mosquitoes
Anopheles
gene drive
malaria
elimination
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-4da6e0fbe7f48f1a1cf062f1ac4fa4ed0a46368dd057531dddb8bc9871e3f6672
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/114/2/E255.full.pdf
PMID 28028208
PQID 1853744729
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1853744729
pubmed_primary_28028208
PublicationCentury 2000
PublicationDate 2017-01-10
PublicationDateYYYYMMDD 2017-01-10
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
SSID ssj0009580
Score 2.5702152
Snippet The renewed effort to eliminate malaria and permanently remove its tremendous burden highlights questions of what combination of tools would be sufficient in...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage E255
SubjectTerms Animals
Anopheles - genetics
Gene Drive Technology
Insect Vectors - genetics
Malaria - transmission
Models, Theoretical
Mosquito Control
Tanzania
Title Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics
URI https://www.ncbi.nlm.nih.gov/pubmed/28028208
https://www.proquest.com/docview/1853744729
Volume 114
WOSCitedRecordID wos000391439300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UevCi1md9MYIHPcTmZXZzEhGLgpYeFHorm31AoU3aphX9984kW_QiCF5CIARCZnbmm5nd72PsQhnFg1CmnqXZeqyV9lKttUfUWjKhyZKuDgo_825X9PtpzzXcSretchkTq0CtC0U98jblFR7HiAVvJ1OPVKNouuokNFZZI0IoQ17N--IH6a7wl3Q-PGpPclleI8LBKigO6NjOb5iyyi2drf9-1TbbdKgS7mo3aLIVk--wplu3JVw6cumrXfb5VB2LhMLCuCinC1zQgD5kQM8w7kGRw1hisTuUYEaV4BcZDoY5SFCVAIRrHkIloQPUxgXzQUPw4RxK2p6Nz2SuwXFejUDXmvflHnvrPLzeP3pOfsFTiALmaDiZGN9mhttY2EAGyvpJiDcqtjI22pdENia0JsgXBWjhTGQqxQrMRDZJeLjP1vIiN4cMMAGST0gbZX6sBBcZVxmGCm3VDQIw3WLny987QPemmYXMTbEoB98_uMUOahsNJjUPxyAUVDD64ugPbx-zjZASMvVPxAlrWFzc5pStq_f5sJydVX6D127v5Qu4atMF
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+mosquito+gene+drive+on+malaria+elimination+in+a+computational+model+with+explicit+spatial+and+temporal+dynamics&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Eckhoff%2C+Philip+A&rft.au=Wenger%2C+Edward+A&rft.au=Godfray%2C+H+Charles+J&rft.au=Burt%2C+Austin&rft.date=2017-01-10&rft.eissn=1091-6490&rft.volume=114&rft.issue=2&rft.spage=E255&rft_id=info:doi/10.1073%2Fpnas.1611064114&rft_id=info%3Apmid%2F28028208&rft_id=info%3Apmid%2F28028208&rft.externalDocID=28028208