Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics
The renewed effort to eliminate malaria and permanently remove its tremendous burden highlights questions of what combination of tools would be sufficient in various settings and what new tools need to be developed. Gene drive mosquitoes constitute a promising set of tools, with multiple different p...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 2; pp. E255 - E264 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
10.01.2017
|
| Subjects: | |
| ISSN: | 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The renewed effort to eliminate malaria and permanently remove its tremendous burden highlights questions of what combination of tools would be sufficient in various settings and what new tools need to be developed. Gene drive mosquitoes constitute a promising set of tools, with multiple different possible approaches including population replacement with introduced genes limiting malaria transmission, driving-Y chromosomes to collapse a mosquito population, and gene drive disrupting a fertility gene and thereby achieving population suppression or collapse. Each of these approaches has had recent success and advances under laboratory conditions, raising the urgency for understanding how each could be deployed in the real world and the potential impacts of each. New analyses are needed as existing models of gene drive primarily focus on nonseasonal or nonspatial dynamics. We use a mechanistic, spatially explicit, stochastic, individual-based mathematical model to simulate each gene drive approach in a variety of sub-Saharan African settings. Each approach exhibits a broad region of gene construct parameter space with successful elimination of malaria transmission due to the targeted vector species. The introduction of realistic seasonality in vector population dynamics facilitates gene drive success compared with nonseasonal analyses. Spatial simulations illustrate constraints on release timing, frequency, and spatial density in the most challenging settings for construct success. Within its parameter space for success, each gene drive approach provides a tool for malaria elimination unlike anything presently available. Provided potential barriers to success are surmounted, each achieves high efficacy at reducing transmission potential and lower delivery requirements in logistically challenged settings. |
|---|---|
| AbstractList | The renewed effort to eliminate malaria and permanently remove its tremendous burden highlights questions of what combination of tools would be sufficient in various settings and what new tools need to be developed. Gene drive mosquitoes constitute a promising set of tools, with multiple different possible approaches including population replacement with introduced genes limiting malaria transmission, driving-Y chromosomes to collapse a mosquito population, and gene drive disrupting a fertility gene and thereby achieving population suppression or collapse. Each of these approaches has had recent success and advances under laboratory conditions, raising the urgency for understanding how each could be deployed in the real world and the potential impacts of each. New analyses are needed as existing models of gene drive primarily focus on nonseasonal or nonspatial dynamics. We use a mechanistic, spatially explicit, stochastic, individual-based mathematical model to simulate each gene drive approach in a variety of sub-Saharan African settings. Each approach exhibits a broad region of gene construct parameter space with successful elimination of malaria transmission due to the targeted vector species. The introduction of realistic seasonality in vector population dynamics facilitates gene drive success compared with nonseasonal analyses. Spatial simulations illustrate constraints on release timing, frequency, and spatial density in the most challenging settings for construct success. Within its parameter space for success, each gene drive approach provides a tool for malaria elimination unlike anything presently available. Provided potential barriers to success are surmounted, each achieves high efficacy at reducing transmission potential and lower delivery requirements in logistically challenged settings. |
| Author | Eckhoff, Philip A Wenger, Edward A Burt, Austin Godfray, H Charles J |
| Author_xml | – sequence: 1 givenname: Philip A surname: Eckhoff fullname: Eckhoff, Philip A email: peckhoff@idmod.org organization: Institute for Disease Modeling, Bellevue, WA 98005; peckhoff@idmod.org – sequence: 2 givenname: Edward A surname: Wenger fullname: Wenger, Edward A organization: Institute for Disease Modeling, Bellevue, WA 98005 – sequence: 3 givenname: H Charles J surname: Godfray fullname: Godfray, H Charles J organization: Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom – sequence: 4 givenname: Austin surname: Burt fullname: Burt, Austin organization: Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28028208$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kL1PwzAQxS0Eoh8wsyGPLC124jjOiCo-KlVigTm62Bcwiu00doD-90RQpnv3fu9ueAty6oNHQq44W3NW5re9h7jmknMmBefihMw5q_hKiorNyCLGD8ZYVSh2TmaZYpnKmJqTw9b1oBMNLXUh7kebAn1Dj9QM9hNp8NRBB4MFip111kOyk2c9BaqD68f0a0A3XRvs6JdN7xS_-85qm2jsJzox8IYmdH0YpsUcPDir4wU5a6GLeHmcS_L6cP-yeVrtnh-3m7vdShc8SythQCJrGyxboVoOXLdMZpPQogWBhoGQuVTGsKIscm6MaVSjK1VyzFspy2xJbv7-9kPYjxhT7WzU2HXgMYyx5qrISyHKrJqi18fo2Dg0dT9YB8Oh_q8r-wFGZ2_Q |
| CitedBy_id | crossref_primary_10_1186_s12936_018_2442_y crossref_primary_10_1186_s12915_017_0420_4 crossref_primary_10_1080_13102818_2021_1996269 crossref_primary_10_1186_s12936_022_04242_2 crossref_primary_10_1002_eap_2912 crossref_primary_10_1186_s13071_019_3289_y crossref_primary_10_1111_eva_13032 crossref_primary_10_3390_insects15090653 crossref_primary_10_1016_j_ecolmodel_2023_110285 crossref_primary_10_1016_j_molcel_2020_09_003 crossref_primary_10_1073_pnas_2213308119 crossref_primary_10_1089_vbz_2017_2121 crossref_primary_10_1111_mec_17131 crossref_primary_10_1080_03014223_2021_1977345 crossref_primary_10_1186_s13071_021_04789_0 crossref_primary_10_1080_17524032_2019_1702568 crossref_primary_10_1186_s13071_018_3219_4 crossref_primary_10_1016_j_tig_2023_04_004 crossref_primary_10_1146_annurev_ecolsys_031120_101013 crossref_primary_10_1186_s12936_022_04062_4 crossref_primary_10_7554_eLife_41873 crossref_primary_10_2903_j_efsa_2019_e170708 crossref_primary_10_1038_s41437_024_00677_2 crossref_primary_10_1080_20477724_2018_1427192 crossref_primary_10_1186_s12936_018_2288_3 crossref_primary_10_1371_journal_pcbi_1009660 crossref_primary_10_3390_ijerph14091006 crossref_primary_10_1371_journal_pgen_1010550 crossref_primary_10_3389_fgene_2021_780327 crossref_primary_10_1073_pnas_1705868114 crossref_primary_10_1371_journal_ppat_1007034 crossref_primary_10_1038_s41598_017_02744_7 crossref_primary_10_7717_peerj_6793 crossref_primary_10_1093_g3journal_jkac081 crossref_primary_10_1073_pnas_2312456121 crossref_primary_10_1146_annurev_genet_031623_105059 crossref_primary_10_1371_journal_pntd_0007833 crossref_primary_10_1086_736727 crossref_primary_10_1016_j_ecolmodel_2023_110547 crossref_primary_10_1093_g3journal_jkae300 crossref_primary_10_7717_peerj_7921 crossref_primary_10_1038_s41598_019_51181_1 crossref_primary_10_1242_bio_037762 crossref_primary_10_1093_molbev_msaf048 crossref_primary_10_1073_pnas_2221118120 crossref_primary_10_1038_s41467_024_53065_z crossref_primary_10_1089_vbz_2019_2606 crossref_primary_10_1371_journal_pgen_1006796 crossref_primary_10_1371_journal_pcbi_1012046 crossref_primary_10_2903_j_efsa_2020_6297 crossref_primary_10_1111_febs_14160 crossref_primary_10_1002_ps_5385 crossref_primary_10_1186_s13071_019_3414_y crossref_primary_10_1111_eva_12661 crossref_primary_10_1186_s12936_018_2259_8 crossref_primary_10_1002_bies_202000282 crossref_primary_10_1038_s41576_021_00386_0 crossref_primary_10_1186_s12915_020_00834_z crossref_primary_10_1016_j_ecolmodel_2021_109763 crossref_primary_10_1073_pnas_1805278115 crossref_primary_10_1073_pnas_2010214117 crossref_primary_10_1111_mec_16361 crossref_primary_10_3389_fbioe_2022_856981 crossref_primary_10_1073_pnas_1805874115 crossref_primary_10_3389_fgene_2022_891218 crossref_primary_10_1093_ae_tmz001 crossref_primary_10_1016_j_cois_2018_07_014 crossref_primary_10_3390_su10124789 crossref_primary_10_1038_s41598_020_69259_6 crossref_primary_10_1371_journal_pntd_0010894 crossref_primary_10_1534_genetics_116_197632 crossref_primary_10_1007_s00018_019_03382_0 crossref_primary_10_1111_mec_15788 crossref_primary_10_1371_journal_pgen_1008440 crossref_primary_10_1016_j_tpb_2022_02_002 crossref_primary_10_1186_s12915_019_0645_5 crossref_primary_10_1080_21550085_2020_1848197 crossref_primary_10_3897_neobiota_74_82394 crossref_primary_10_1016_j_pt_2017_06_003 crossref_primary_10_1111_eva_13331 crossref_primary_10_1101_gr_262790_120 crossref_primary_10_1007_s41649_018_0071_y crossref_primary_10_1186_s12936_017_1932_7 crossref_primary_10_1111_mec_70028 crossref_primary_10_1186_s12936_021_03674_6 crossref_primary_10_1186_s12936_023_04662_8 crossref_primary_10_1242_jeb_208181 crossref_primary_10_1111_1755_0998_13949 crossref_primary_10_1016_j_jmb_2018_05_044 crossref_primary_10_1186_s12936_019_2978_5 crossref_primary_10_1093_biosci_biz098 crossref_primary_10_1111_1744_7917_12949 crossref_primary_10_1111_jeb_13693 crossref_primary_10_1007_s44297_024_00038_9 crossref_primary_10_1186_s12936_024_05160_1 crossref_primary_10_1002_fee_2215 crossref_primary_10_1111_ele_14232 crossref_primary_10_1111_eva_13285 crossref_primary_10_1098_rspb_2018_0776 crossref_primary_10_1146_annurev_ento_020117_043154 crossref_primary_10_1088_1742_6596_1097_1_012077 crossref_primary_10_1186_s12862_021_01881_y crossref_primary_10_1093_femspd_fty059 crossref_primary_10_1371_journal_pgen_1009740 crossref_primary_10_1371_journal_ppat_1006898 crossref_primary_10_1002_pan3_10186 crossref_primary_10_1038_s42003_024_06809_y |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1611064114 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| EndPage | E264 |
| ExternalDocumentID | 28028208 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c512t-4da6e0fbe7f48f1a1cf062f1ac4fa4ed0a46368dd057531dddb8bc9871e3f6672 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 129 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391439300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Oct 01 15:07:24 EDT 2025 Mon Jul 21 05:59:26 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | mosquitoes Anopheles gene drive malaria elimination |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c512t-4da6e0fbe7f48f1a1cf062f1ac4fa4ed0a46368dd057531dddb8bc9871e3f6672 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/114/2/E255.full.pdf |
| PMID | 28028208 |
| PQID | 1853744729 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1853744729 pubmed_primary_28028208 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-10 |
| PublicationDateYYYYMMDD | 2017-01-10 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2017 |
| SSID | ssj0009580 |
| Score | 2.5702152 |
| Snippet | The renewed effort to eliminate malaria and permanently remove its tremendous burden highlights questions of what combination of tools would be sufficient in... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | E255 |
| SubjectTerms | Animals Anopheles - genetics Gene Drive Technology Insect Vectors - genetics Malaria - transmission Models, Theoretical Mosquito Control Tanzania |
| Title | Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28028208 https://www.proquest.com/docview/1853744729 |
| Volume | 114 |
| WOSCitedRecordID | wos000391439300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UevCi1md9MYIHPcTmZXZzEhGLgpYeFHorm31AoU3aphX9984kW_QiCF5CIARCZnbmm5nd72PsQhnFg1CmnqXZeqyV9lKttUfUWjKhyZKuDgo_825X9PtpzzXcSretchkTq0CtC0U98jblFR7HiAVvJ1OPVKNouuokNFZZI0IoQ17N--IH6a7wl3Q-PGpPclleI8LBKigO6NjOb5iyyi2drf9-1TbbdKgS7mo3aLIVk--wplu3JVw6cumrXfb5VB2LhMLCuCinC1zQgD5kQM8w7kGRw1hisTuUYEaV4BcZDoY5SFCVAIRrHkIloQPUxgXzQUPw4RxK2p6Nz2SuwXFejUDXmvflHnvrPLzeP3pOfsFTiALmaDiZGN9mhttY2EAGyvpJiDcqtjI22pdENia0JsgXBWjhTGQqxQrMRDZJeLjP1vIiN4cMMAGST0gbZX6sBBcZVxmGCm3VDQIw3WLny987QPemmYXMTbEoB98_uMUOahsNJjUPxyAUVDD64ugPbx-zjZASMvVPxAlrWFzc5pStq_f5sJydVX6D127v5Qu4atMF |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+mosquito+gene+drive+on+malaria+elimination+in+a+computational+model+with+explicit+spatial+and+temporal+dynamics&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Eckhoff%2C+Philip+A&rft.au=Wenger%2C+Edward+A&rft.au=Godfray%2C+H+Charles+J&rft.au=Burt%2C+Austin&rft.date=2017-01-10&rft.eissn=1091-6490&rft.volume=114&rft.issue=2&rft.spage=E255&rft_id=info:doi/10.1073%2Fpnas.1611064114&rft_id=info%3Apmid%2F28028208&rft_id=info%3Apmid%2F28028208&rft.externalDocID=28028208 |