Improving Imaging Quality of Real-time Fourier Single-pixel Imaging via Deep Learning

Fourier single pixel imaging (FSPI) is well known for reconstructing high quality images but only at the cost of long imaging time. For real-time applications, FSPI relies on under-sampled reconstructions, failing to provide high quality images. In order to improve imaging quality of real-time FSPI,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 19; H. 19; S. 4190
Hauptverfasser: Rizvi, Saad, Cao, Jie, Zhang, Kaiyu, Hao, Qun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 27.09.2019
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Fourier single pixel imaging (FSPI) is well known for reconstructing high quality images but only at the cost of long imaging time. For real-time applications, FSPI relies on under-sampled reconstructions, failing to provide high quality images. In order to improve imaging quality of real-time FSPI, a fast image reconstruction framework based on deep learning (DL) is proposed. More specifically, a deep convolutional autoencoder network with symmetric skip connection architecture for real time 96 × 96 imaging at very low sampling rates (5–8%) is employed. The network is trained on a large image set and is able to reconstruct diverse images unseen during training. The promising experimental results show that the proposed FSPI coupled with DL (termed DL-FSPI) outperforms conventional FSPI in terms of image quality at very low sampling rates.
AbstractList Fourier single pixel imaging (FSPI) is well known for reconstructing high quality images but only at the cost of long imaging time. For real-time applications, FSPI relies on under-sampled reconstructions, failing to provide high quality images. In order to improve imaging quality of real-time FSPI, a fast image reconstruction framework based on deep learning (DL) is proposed. More specifically, a deep convolutional autoencoder network with symmetric skip connection architecture for real time 96 × 96 imaging at very low sampling rates (5-8%) is employed. The network is trained on a large image set and is able to reconstruct diverse images unseen during training. The promising experimental results show that the proposed FSPI coupled with DL (termed DL-FSPI) outperforms conventional FSPI in terms of image quality at very low sampling rates.Fourier single pixel imaging (FSPI) is well known for reconstructing high quality images but only at the cost of long imaging time. For real-time applications, FSPI relies on under-sampled reconstructions, failing to provide high quality images. In order to improve imaging quality of real-time FSPI, a fast image reconstruction framework based on deep learning (DL) is proposed. More specifically, a deep convolutional autoencoder network with symmetric skip connection architecture for real time 96 × 96 imaging at very low sampling rates (5-8%) is employed. The network is trained on a large image set and is able to reconstruct diverse images unseen during training. The promising experimental results show that the proposed FSPI coupled with DL (termed DL-FSPI) outperforms conventional FSPI in terms of image quality at very low sampling rates.
Fourier single pixel imaging (FSPI) is well known for reconstructing high quality images but only at the cost of long imaging time. For real-time applications, FSPI relies on under-sampled reconstructions, failing to provide high quality images. In order to improve imaging quality of real-time FSPI, a fast image reconstruction framework based on deep learning (DL) is proposed. More specifically, a deep convolutional autoencoder network with symmetric skip connection architecture for real time 96 × 96 imaging at very low sampling rates (5−8%) is employed. The network is trained on a large image set and is able to reconstruct diverse images unseen during training. The promising experimental results show that the proposed FSPI coupled with DL (termed DL-FSPI) outperforms conventional FSPI in terms of image quality at very low sampling rates.
Fourier single pixel imaging (FSPI) is well known for reconstructing high quality images but only at the cost of long imaging time. For real-time applications, FSPI relies on under-sampled reconstructions, failing to provide high quality images. In order to improve imaging quality of real-time FSPI, a fast image reconstruction framework based on deep learning (DL) is proposed. More specifically, a deep convolutional autoencoder network with symmetric skip connection architecture for real time 96 × 96 imaging at very low sampling rates (5–8%) is employed. The network is trained on a large image set and is able to reconstruct diverse images unseen during training. The promising experimental results show that the proposed FSPI coupled with DL (termed DL-FSPI) outperforms conventional FSPI in terms of image quality at very low sampling rates.
Author Cao, Jie
Zhang, Kaiyu
Hao, Qun
Rizvi, Saad
AuthorAffiliation Key Laboratory of Biomimetic Robots and Systems, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; srizvi@bit.edu.cn (S.R.); bitopzky@bit.edu.cn (K.Z.); qhao@bit.edu.cn (Q.H.)
AuthorAffiliation_xml – name: Key Laboratory of Biomimetic Robots and Systems, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; srizvi@bit.edu.cn (S.R.); bitopzky@bit.edu.cn (K.Z.); qhao@bit.edu.cn (Q.H.)
Author_xml – sequence: 1
  givenname: Saad
  orcidid: 0000-0003-3942-0857
  surname: Rizvi
  fullname: Rizvi, Saad
– sequence: 2
  givenname: Jie
  orcidid: 0000-0001-8376-7669
  surname: Cao
  fullname: Cao, Jie
– sequence: 3
  givenname: Kaiyu
  surname: Zhang
  fullname: Zhang, Kaiyu
– sequence: 4
  givenname: Qun
  surname: Hao
  fullname: Hao, Qun
BookMark eNplkUtv1DAQgC1URB9w4B9E4gKHtH7Ejn1BQi2FlVZCPHq2Js5k8cqJg5Os6L_Hy7YVLaexxt989syckqMhDkjIa0bPhTD0YmKGmYoZ-oycsIpXpeacHv1zPian07SllAsh9AtyLJhURnF-Qm5W_Zjizg-bYtXDZh-_LhD8fFvErviGEMrZ91hcxyV5TMX3TAQsR_8bw0PFzkNxhTgWa4Q05MxL8ryDMOGru3hGbq4__rj8XK6_fFpdfliXTjI-l6KlVLHWQdsY4EYjUq2ZAgmCo4TOGNNWDQopwdV15RplOm3q3HIGhWbijKwO3jbC1o7J95BubQRv_yZi2lhIs3cBLTfMIWvatlVYaadMZWRFHTrNdG2czK73B9e4ND22Doc5QXgkfXwz-J92E3dWaaoUM1nw9k6Q4q8Fp9n2fnIYAgwYl8lybkxdS0736Jsn6DbPd8ijslzmdjWrapGpiwPlUpymhJ11fobZx_37PlhG7X799mH9ueLdk4r77__P_gGTi67x
CitedBy_id crossref_primary_10_1103_PhysRevApplied_22_014023
crossref_primary_10_1038_s41598_020_68401_8
crossref_primary_10_3390_photonics8080319
crossref_primary_10_1117_1_JEI_33_2_023044
crossref_primary_10_1016_j_optlastec_2023_109710
crossref_primary_10_1088_1742_6596_2216_1_012092
crossref_primary_10_3390_s24102963
crossref_primary_10_1016_j_optlastec_2023_109651
crossref_primary_10_1002_lpor_202400936
crossref_primary_10_1016_j_optlaseng_2020_106183
crossref_primary_10_3390_electronics10040442
crossref_primary_10_1038_s41598_022_14648_2
crossref_primary_10_3390_photonics10090963
crossref_primary_10_1364_AO_460145
crossref_primary_10_1016_j_optlastec_2022_109005
crossref_primary_10_3788_PI_2025_R03
crossref_primary_10_1109_LSENS_2023_3303046
crossref_primary_10_3390_photonics11020174
crossref_primary_10_1016_j_optcom_2023_130011
crossref_primary_10_1016_j_optlastec_2025_112973
crossref_primary_10_1016_j_optcom_2024_130930
crossref_primary_10_1038_s41598_021_88197_5
crossref_primary_10_1364_OE_559227
crossref_primary_10_1016_j_optlastec_2025_112450
crossref_primary_10_3390_s21010313
crossref_primary_10_1364_OE_566409
crossref_primary_10_3390_electronics12030530
crossref_primary_10_1016_j_optlaseng_2022_107406
crossref_primary_10_1016_j_optlaseng_2023_107580
crossref_primary_10_3390_photonics12060568
crossref_primary_10_3390_s21082721
crossref_primary_10_1016_j_optlaseng_2021_106533
crossref_primary_10_1364_AO_465202
Cites_doi 10.1109/TIP.2003.819861
10.1364/OE.26.002427
10.1038/s41598-018-24731-2
10.1145/1390156.1390294
10.1038/ncomms7225
10.1364/OE.21.023068
10.1103/PhysRevA.78.061802
10.1063/1.3238296
10.1109/TIT.2006.871582
10.1364/OE.25.017466
10.1364/OE.25.019619
10.1364/JOSAA.29.001556
10.1038/s41598-017-12228-3
10.1103/PhysRevLett.104.253603
10.1364/OE.26.016547
10.1109/MSP.2007.914731
10.1364/OE.26.031094
10.1109/TIP.2016.2598681
10.1364/OPTICA.4.001117
10.1364/OE.20.016892
10.1126/science.1234454
10.1038/s41598-018-30390-0
10.1038/s41598-018-20521-y
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s19194190
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_291ce1bddd6e48c6949540cec81879c5
PMC6806619
10_3390_s19194190
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c512t-3d0061dcadb9a298ee08816a5a32e5af999d4be355ac774cb69f897390e083813
IEDL.DBID PIMPY
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000494823200134&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:50:28 EDT 2025
Tue Nov 04 01:55:44 EST 2025
Sun Nov 09 10:36:52 EST 2025
Tue Oct 07 07:36:21 EDT 2025
Sat Nov 29 07:17:33 EST 2025
Tue Nov 18 22:02:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-3d0061dcadb9a298ee08816a5a32e5af999d4be355ac774cb69f897390e083813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8376-7669
0000-0003-3942-0857
OpenAccessLink https://www.proquest.com/publiccontent/docview/2535581473?pq-origsite=%requestingapplication%
PMID 31569622
PQID 2535581473
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_291ce1bddd6e48c6949540cec81879c5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6806619
proquest_miscellaneous_2299775209
proquest_journals_2535581473
crossref_citationtrail_10_3390_s19194190
crossref_primary_10_3390_s19194190
PublicationCentury 2000
PublicationDate 20190927
PublicationDateYYYYMMDD 2019-09-27
PublicationDate_xml – month: 9
  year: 2019
  text: 20190927
  day: 27
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References He (ref_9) 2018; 8
Candes (ref_14) 2008; 25
Wang (ref_27) 2004; 3
Sun (ref_4) 2012; 20
Peng (ref_8) 2018; 26
Shapiro (ref_1) 2008; 78
Huang (ref_11) 2018; 26
Ferri (ref_3) 2010; 104
Zhang (ref_2) 2015; 6
Sun (ref_5) 2013; 340
Sinha (ref_19) 2017; 4
Donoho (ref_15) 2006; 52
ref_25
ref_24
Zhang (ref_10) 2017; 7
ref_23
Cai (ref_16) 2016; 25
Satat (ref_17) 2017; 25
ref_21
Zhang (ref_7) 2017; 25
Katkovnik (ref_12) 2012; 29
Higham (ref_20) 2018; 8
Welsh (ref_6) 2013; 21
Katz (ref_13) 2009; 95
ref_26
Caramazza (ref_18) 2018; 8
Xu (ref_22) 2018; 26
References_xml – volume: 3
  start-page: 600
  year: 2004
  ident: ref_27
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 26
  start-page: 2427
  year: 2018
  ident: ref_22
  article-title: 1000 fps computational ghost imaging using LED-based structured illumination
  publication-title: Opt. Express
  doi: 10.1364/OE.26.002427
– ident: ref_24
– ident: ref_26
– volume: 8
  start-page: 6469
  year: 2018
  ident: ref_9
  article-title: Ghost imaging based on deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24731-2
– ident: ref_21
  doi: 10.1145/1390156.1390294
– volume: 6
  start-page: 6225
  year: 2015
  ident: ref_2
  article-title: Single-pixel imaging by means of Fourier spectrum acquisition
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7225
– volume: 21
  start-page: 23068
  year: 2013
  ident: ref_6
  article-title: Fast full-color computational imaging with single-pixel detectors
  publication-title: Opt. Express
  doi: 10.1364/OE.21.023068
– ident: ref_23
– volume: 78
  start-page: 061802
  year: 2008
  ident: ref_1
  article-title: Computational ghost imaging
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.061802
– volume: 95
  start-page: 131110
  year: 2009
  ident: ref_13
  article-title: Compressive ghost imaging
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3238296
– volume: 52
  start-page: 1289
  year: 2006
  ident: ref_15
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 25
  start-page: 17466
  year: 2017
  ident: ref_17
  article-title: Object classification through scattering media with deep learning on time resolved measurement
  publication-title: Opt. Express
  doi: 10.1364/OE.25.017466
– volume: 25
  start-page: 19619
  year: 2017
  ident: ref_7
  article-title: Hadamard single-pixel imaging versus Fourier single-pixel imaging
  publication-title: Opt. Express
  doi: 10.1364/OE.25.019619
– volume: 29
  start-page: 1556
  year: 2012
  ident: ref_12
  article-title: Compressive sensing computational ghost imaging
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.29.001556
– ident: ref_25
– volume: 7
  start-page: 12029
  year: 2017
  ident: ref_10
  article-title: Fast Fourier single-pixel imaging via binary illumination
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12228-3
– volume: 104
  start-page: 253603
  year: 2010
  ident: ref_3
  article-title: Differential ghost imaging
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.253603
– volume: 26
  start-page: 16547
  year: 2018
  ident: ref_11
  article-title: Computational-weighted Fourier single-pixel imaging via binary illumination
  publication-title: Opt. Express
  doi: 10.1364/OE.26.016547
– volume: 25
  start-page: 21
  year: 2008
  ident: ref_14
  article-title: An Introduction to Compressive Sampling
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.914731
– volume: 26
  start-page: 31094
  year: 2018
  ident: ref_8
  article-title: Micro-tomography via single-pixel imaging
  publication-title: Opt. Express
  doi: 10.1364/OE.26.031094
– volume: 25
  start-page: 5187
  year: 2016
  ident: ref_16
  article-title: DehazeNet: An End-to-End System for Single Image Haze Removal
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2598681
– volume: 4
  start-page: 1117
  year: 2017
  ident: ref_19
  article-title: Lensless computational imaging through deep learning
  publication-title: Optica
  doi: 10.1364/OPTICA.4.001117
– volume: 20
  start-page: 16892
  year: 2012
  ident: ref_4
  article-title: Normalized ghost imaging
  publication-title: Opt. Express
  doi: 10.1364/OE.20.016892
– volume: 340
  start-page: 844
  year: 2013
  ident: ref_5
  article-title: 3D Computational Imaging with Single-Pixel Detectors
  publication-title: Science
  doi: 10.1126/science.1234454
– volume: 8
  start-page: 11945
  year: 2018
  ident: ref_18
  article-title: Neural network identification of people hidden from view with a single-pixel, single-photon detector
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30390-0
– volume: 8
  start-page: 2369
  year: 2018
  ident: ref_20
  article-title: Deep learning for real-time single-pixel video
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-20521-y
SSID ssj0023338
Score 2.5372994
Snippet Fourier single pixel imaging (FSPI) is well known for reconstructing high quality images but only at the cost of long imaging time. For real-time applications,...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4190
SubjectTerms computational imaging
Deep learning
fourier single-pixel imaging
Fourier transforms
Sensors
Signal to noise ratio
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED5G6cP6MNp1ZV7boZU99MU0khz9eGy3hQ1GKF07-mZk6bwGMickaej--51sx8Qw6MterTPId5Lu-6zjO4CPelAqUxAtwVKGNF6tpYUPPB260nDnMlfW6vw_v-vx2Nzf2-utVl-xJqyRB24cdyEs98iLEILCzHhlCdFnA4_exD7ZvlYvHWi7IVMt1ZLEvBodIUmk_mJJrMRmPB68W9mnFunvIct-XeRWohntw6sWIbLLZmYH8AKr17C3pRt4CHfdrwD27XfdZog1Whh_2KxkN4T90tgzno2ahnTsB1lMMZ1PnnDavbGeOPYZcc5aidVfb-Bu9OX209e07Y-QekrTq1SGCECCd6GwTliDSEcGV27opEByNmG_kBVIiMJ5Qnm-ULY0VpNDyJAytTyCnWpW4VtgXKjCCRQlEqTiKliF0njrlPZCovUJnG_8lvtWPDz2sJjmRCKii_POxQmcdabzRjHjX0ZX0fmdQRS5rh9Q6PM29PlzoU_gZBO6vN15y1wMo2A8z7RM4EM3THsmXoS4CmePZEM5WOtYAJSA7oW8N6H-SDV5qNW3lSGUxu27__EFx_CSAFhdsyb0CeysFo94Crt-vZosF-_rJf0Xopn92g
  priority: 102
  providerName: Directory of Open Access Journals
Title Improving Imaging Quality of Real-time Fourier Single-pixel Imaging via Deep Learning
URI https://www.proquest.com/docview/2535581473
https://www.proquest.com/docview/2299775209
https://pubmed.ncbi.nlm.nih.gov/PMC6806619
https://doaj.org/article/291ce1bddd6e48c6949540cec81879c5
Volume 19
WOSCitedRecordID wos000494823200134&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc48F6RZakC4sAlap2kfpwQC61Yia2qhUXlFDn2ZKlUkm7bXcGF3844cUMrIU5cfIgnipPxjL-xJ98AvBKDgsucwhIsEhu5o7UoN5ZFQ11IpnWqi5qd_8tHMZnI2UxN_e_Ra59WufWJtaNu2J5d3jY54b6tjNsx78dDRwvOUpG8WV5FroaUO2v1BTUOoOuItwYd6E5Pz6Zf2wAsoXisYRdKKNTvrylWUSlz7nhnTaqp-_fw5n625M7yM77_fwf-AO55GBq-bebNQ7iF5SO4u0NO-Bgu2v2G8PR7XcsobAg3foZVEZ4TwIxcYfpw3FS9Cz-RxAKj5fwHLto7buY6fI-4DD2P6-UTuBiPPr_7EPkiDJEhLLCJEutQjjXa5krHSiKSX2JcD3USI2mUAKZNc6S30oagpMm5KqQS9H1JkOBAcgidsirxKYQs5rmOMS6QcBvjVnFMpFGaCxMnqEwAr7dqyIxnKHeFMhYZRSpOY1mrsQBetqLLhpbjb0InTpetgGPSri9Uq8vMG2YWK2aQ5dZajqk0XFHEmA4MGunqsJthAMdbtWbevNfZHy0G8KLtJsN0py26xOqaZGihF8JlGQUg9mbQ3oD2e8r5t5rim0uCgkwd_fvhz-AO4bc65S0Wx9DZrK7xOdw2N5v5etWDAzETdSt70D0ZTabnvXrLgdqzX6Oet47f86EeNw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48EYYCiwIJC5Ws2vH9h4QAkrUqGkUQYvak1nvjoul1A5JWuif4jcy6xexhLj1wNUee_34duYb7_gbgJdhPw2ihNISTD3j2qU1N9GGuwOVRlwpX6WlOv-XcTiZREdHcroBv5p_YWxZZeMTS0dtCm2_kW-LgRUC537ovZ1_d23XKLu62rTQqGCxhxc_KGVbvhnt0Pt9JcTw48GHXbfuKuBqCm4r1zM2bButTCKVkBEiTTQeqIHyBNIlEmMyfoI0mtLEjXQSyDSSoSf7ZEjxzaPzXoFNn8De78HmdLQ_PW5TPI8yvkq_yKMDtpeUDUmfW4e_FvXK5gAdRtutx1wLcMNb_9ujuQ03ayrN3lXYvwMbmN-FG2sCi_fgsP1mwkanZT8mVomGXLAiZZ-IJLur7BTZsOrcxz6TxQzdefYTZ-0R55liO4hzVmvRntyHw0u5rwfQy4scHwLjIkiUQJEicU8eGBmgF2mpglALD6V24HXzomNdq6zbZh-zmLIti4m4xYQDL1rTeSUt8jej9xYtrYFVAy83FIuTuHYusZBcI0-MMQH6kQ4kZb1-X6OObC95PXBgqwFOXLuoZfwHNQ48b3eTc7ErRirH4oxsiKyEoa2UciDsYLRzQd09efatlCkPIqKzXD769-DP4Nruwf44Ho8me4_hOvHRsoRPhFvQWy3O8Alc1eerbLl4Ws81Bl8vG8O_AY5laXk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiF64I1qKLAgkLhYya4d23tAiJJGRK2iqFDUm7veHRdLqR2StNC_xq9j1i9iCXHrgas9fn87883u-BuA12E_DaKE0hJMPePapTU30Ya7A5VGXClfpaU6_9fDcDKJTk7kdAN-Nf_C2LLKxieWjtoU2s6R98TACoFzP_R6aV0WMR2O3s-_u7aDlF1pbdppVBA5wKsflL4t342H9K3fCDHa__Lxk1t3GHA1BbqV6xkbwo1WJpFKyAiRBh0P1EB5Aul2iT0ZP0G6stLEk3QSyDSSoSf7ZEixzqPz3oAt2sAp8dva259Mj9p0z6Psr9Iy8uiA3pIyI-lz6_zXImDZKKDDbru1mWvBbnT3f35N9-BOTbHZh2pM3IcNzB_A9prw4kM4budS2Pi87NPEKjGRK1ak7IjIs7vKzpGNqo5-7DNZzNCdZz9x1h5xmSk2RJyzWqP27BEcX8tzPYbNvMhxBxgXQaIEihSJk_LAyAC9SEsVhFp4KLUDb5uPHutafd02AZnFlIVZfMQtPhx41ZrOK8mRvxntWeS0BlYlvNxQLM7i2unEQnKNPDHGBOhHOpCUDft9jTqyPeb1wIHdBkRx7bqW8R8EOfCy3U1Ox64kqRyLC7IhEhOGtoLKgbCD184Ndffk2bdSvjyIiOZy-eTfF38Btwi48eF4cvAUbhNNLSv7RLgLm6vFBT6Dm_pylS0Xz-thx-D0uiH8G33tchM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Imaging+Quality+of+Real-time+Fourier+Single-pixel+Imaging+via+Deep+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Rizvi%2C+Saad&rft.au=Zhang%2C+Kaiyu&rft.au=Hao%2C+Qun&rft.date=2019-09-27&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=19&rft.issue=19&rft.spage=4190&rft_id=info:doi/10.3390%2Fs19194190&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon