Serotonin drives striatal synaptic plasticity in a sex-related manner

Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions – including motor control, learning and reward processing – and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and sero...

Full description

Saved in:
Bibliographic Details
Published in:Neurobiology of disease Vol. 158; p. 105448
Main Authors: Campanelli, Federica, Marino, Gioia, Barsotti, Noemi, Natale, Giuseppina, Calabrese, Valeria, Cardinale, Antonella, Ghiglieri, Veronica, Maddaloni, Giacomo, Usiello, Alessandro, Calabresi, Paolo, Pasqualetti, Massimo, Picconi, Barbara
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.10.2021
Elsevier
Subjects:
ISSN:0969-9961, 1095-953X, 1095-953X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions – including motor control, learning and reward processing – and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity. Mice (males and females, 2–6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1°C) and maintained on a 12/12h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals. Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation. We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects. •Tph2 catalyzes the rate-limiting step in 5-HT biosynthesis via subsequent decarboxylation.•Neurotransmitter systems (DA and 5-HT) are differently regulated between sexes.•Serotonergic and dopaminergic interplay modulates synaptic activity within the striatal nucleus.•Tph2 gene dosage exerts a primary role in modulating bidirectional synaptic plasticity in a sex-related manner.
AbstractList Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions - including motor control, learning and reward processing - and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity. Mice (males and females, 2-6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1°C) and maintained on a 12/12h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2 mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2 , mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2 ), Heterozygous (Tph2 ), and Mutant serotonin-depleted (Tph2 ) animals. Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2 mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2 ). Once LTP is induced, only the Tph2 female mice present a loss of synaptic depotentiation. We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects.
Introduction: Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions – including motor control, learning and reward processing – and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity. Methods: Mice (males and females, 2–6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1°C) and maintained on a 12/12h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals. Results: Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation. Conclusion: We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects.
Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions – including motor control, learning and reward processing – and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity. Mice (males and females, 2–6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1°C) and maintained on a 12/12h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals. Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation. We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects. •Tph2 catalyzes the rate-limiting step in 5-HT biosynthesis via subsequent decarboxylation.•Neurotransmitter systems (DA and 5-HT) are differently regulated between sexes.•Serotonergic and dopaminergic interplay modulates synaptic activity within the striatal nucleus.•Tph2 gene dosage exerts a primary role in modulating bidirectional synaptic plasticity in a sex-related manner.
Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions - including motor control, learning and reward processing - and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity.INTRODUCTIONPlasticity at corticostriatal synapses is a key substrate for a variety of brain functions - including motor control, learning and reward processing - and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity.Mice (males and females, 2-6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1°C) and maintained on a 12/12h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals.METHODSMice (males and females, 2-6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1°C) and maintained on a 12/12h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals.Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation.RESULTSUsing male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation.We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects.CONCLUSIONWe showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects.
ArticleNumber 105448
Author Maddaloni, Giacomo
Usiello, Alessandro
Calabresi, Paolo
Pasqualetti, Massimo
Picconi, Barbara
Campanelli, Federica
Calabrese, Valeria
Marino, Gioia
Barsotti, Noemi
Ghiglieri, Veronica
Natale, Giuseppina
Cardinale, Antonella
Author_xml – sequence: 1
  givenname: Federica
  surname: Campanelli
  fullname: Campanelli, Federica
  organization: Laboratory of Neurophysiology, Santa Lucia Foundation IRCCS, Rome 00143, Italy
– sequence: 2
  givenname: Gioia
  surname: Marino
  fullname: Marino, Gioia
  organization: Laboratory of Neurophysiology, Santa Lucia Foundation IRCCS, Rome 00143, Italy
– sequence: 3
  givenname: Noemi
  surname: Barsotti
  fullname: Barsotti, Noemi
  organization: Department of Biology Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
– sequence: 4
  givenname: Giuseppina
  surname: Natale
  fullname: Natale, Giuseppina
  organization: Laboratory of Neurophysiology, Santa Lucia Foundation IRCCS, Rome 00143, Italy
– sequence: 5
  givenname: Valeria
  surname: Calabrese
  fullname: Calabrese, Valeria
  organization: Department of Medicine, Università degli Studi di Perugia, Perugia 06123, Italy
– sequence: 6
  givenname: Antonella
  surname: Cardinale
  fullname: Cardinale, Antonella
  organization: Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
– sequence: 7
  givenname: Veronica
  surname: Ghiglieri
  fullname: Ghiglieri, Veronica
  organization: Università Telematica San Raffaele, Rome 00166, Italy
– sequence: 8
  givenname: Giacomo
  surname: Maddaloni
  fullname: Maddaloni, Giacomo
  organization: Department of Biology Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
– sequence: 9
  givenname: Alessandro
  surname: Usiello
  fullname: Usiello, Alessandro
  organization: Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, Luigi Vanvitelli, Caserta 81100, Italy
– sequence: 10
  givenname: Paolo
  surname: Calabresi
  fullname: Calabresi, Paolo
  organization: Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
– sequence: 11
  givenname: Massimo
  surname: Pasqualetti
  fullname: Pasqualetti, Massimo
  organization: Department of Biology Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
– sequence: 12
  givenname: Barbara
  surname: Picconi
  fullname: Picconi, Barbara
  email: barbara.picconi@uniroma5.it
  organization: Laboratory Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome 00166, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34280523$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1uFDEUhS0URDaBB6BBU9LM4p-xZywqFAWIFIkCkOisO_Yd5MVrL7Y3yr49DhtSpAjVta3znWudc0ZOYopIyGtG14wy9W6zjrNbc8pZu8thmJ6RFaNa9lqKHydkRbXSvdaKnZKzUjaUMib1-IKcioFPVHKxIpdfMaeaoo-dy_4GS1dq9lAhdOUQYVe97XYBSpu-Hromg67gbZ8xQEXXbSFGzC_J8wVCwVf385x8_3j57eJzf_3l09XFh-veSsZrL-ZFcIQFlXaTEEo6tUzDOFq5OA7tONlxcYoKCXywTo3jLEdwKDhYOelJnJOro69LsDG77LeQDyaBN38fUv5pILevBjRi5NMEVgCd5UAt15apGRVq1ezYDM3r7dFrl9PvPZZqtr5YDAEipn0xXEohOdNUNumbe-l-3qJ7WPwvxiZgR4HNqZSMy4OEUXNXldmYVpW5q8ocq2rM-IhpCUP1KdYMPjxJvj-S2KK-8ZhNsR6jRecz2tqy8E_S-hFtg4_eQviFh_-wfwDZ2r_E
CitedBy_id crossref_primary_10_2174_011570159X336597241217062042
crossref_primary_10_1016_j_neuro_2023_12_007
crossref_primary_10_3389_fnins_2022_994735
crossref_primary_10_1016_j_heliyon_2024_e38192
crossref_primary_10_3390_brainsci14050514
Cites_doi 10.1126/science.1097540
10.1006/frne.2001.0225
10.3389/neuro.08.026.2009
10.1093/brain/awm082
10.1021/acschemneuro.8b00655
10.1152/jn.1999.82.6.3575
10.1016/0306-4522(92)90401-M
10.1385/ENDO:11:3:257
10.1016/S0306-4522(02)00026-X
10.1371/journal.pone.0035538
10.3389/fncel.2017.00202
10.1016/0278-5846(88)90061-9
10.1016/j.biochi.2018.11.016
10.1210/endo.137.10.8828498
10.1002/cne.902290308
10.1038/mp.2012.128
10.1523/JNEUROSCI.1816-05.2005
10.1016/j.pneurobio.2016.03.004
10.1093/brain/awp194
10.1016/j.nbd.2004.01.007
10.1523/JNEUROSCI.6250-10.2011
10.3390/ijms20225729
10.1016/j.neuron.2018.04.008
10.1016/j.neuron.2012.09.013
10.1016/j.neuron.2015.10.007
10.1523/ENEURO.0376-16.2017
10.1111/j.1460-9568.1992.tb00119.x
10.1016/j.pbb.2017.05.001
10.1038/npp.2015.270
10.1038/nn1040
10.1111/jnc.13280
10.1016/j.biopsych.2014.04.002
10.1016/0006-8993(96)00006-6
10.1073/pnas.0810793106
10.1038/nmeth.2019
10.1523/JNEUROSCI.22-13-05442.2002
10.1523/JNEUROSCI.2149-10.2010
10.1016/j.celrep.2019.01.014
10.1016/0006-8993(90)90535-J
10.1139/jpn.0431
10.1523/JNEUROSCI.2664-12.2012
10.1038/nm.4050
10.1038/srep10933
10.1038/s41598-018-30291-2
10.1515/tnsci-2016-0007
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.nbd.2021.105448
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1095-953X
ExternalDocumentID oai_doaj_org_article_37288ac3a0b540c29c16be6e96e321ba
34280523
10_1016_j_nbd_2021_105448
S0969996121001972
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABTEW
ABUFD
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
K-O
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SSH
SSN
SSZ
T5K
X7M
XPP
Z5R
ZGI
ZMT
ZU3
~G-
~HD
0SF
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
NCXOZ
RIG
9DU
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c512t-3bf32eafe69d83365d6f8477c5fd2af848c7fd6035a24cd677b57ade32ac58983
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000697459200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0969-9961
1095-953X
IngestDate Tue Oct 14 19:01:18 EDT 2025
Sun Sep 28 00:43:11 EDT 2025
Mon Jul 21 05:25:05 EDT 2025
Sat Nov 29 07:07:42 EST 2025
Tue Nov 18 20:33:50 EST 2025
Fri Feb 23 02:45:26 EST 2024
Tue Oct 14 19:30:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tph2
Striatum
Dopamine
Functional recovery
Serotonin
Synaptic plasticity
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-3bf32eafe69d83365d6f8477c5fd2af848c7fd6035a24cd677b57ade32ac58983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/37288ac3a0b540c29c16be6e96e321ba
PMID 34280523
PQID 2553521905
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_37288ac3a0b540c29c16be6e96e321ba
proquest_miscellaneous_2553521905
pubmed_primary_34280523
crossref_primary_10_1016_j_nbd_2021_105448
crossref_citationtrail_10_1016_j_nbd_2021_105448
elsevier_sciencedirect_doi_10_1016_j_nbd_2021_105448
elsevier_clinicalkey_doi_10_1016_j_nbd_2021_105448
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of disease
PublicationTitleAlternate Neurobiol Dis
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Lu (bb0120) 1999; 11
Heiming (bb0100) 2009; 3
Bethea (bb0015) 1996; 137
Cerovic (bb0060) 2015; 77
Schindelin (bb0205) 2012; 9
Paille (bb0180) 2010; 30
Gras (bb0090) 2002; 22
Ogawa, Watabe-Uchida (bb0165) 2018; 174
Mathur (bb0145) 2011; 31
Ottersen, Storm-Mathisen (bb0175) 1984; 229
Carta (bb0045) 2007; 130
Duman (bb0075) 2016; 22
Bagetta (bb0010) 2012; 32
Ghiglieri (bb0085) 2015; 5
Alenina (bb0005) 2009; 106
De Deurwaerdere, Di Giovanni (bb0070) 2017; 151
Cavaccini (bb0050) 2018; 98
Kaneko (bb0105) 1990; 507
Maddaloni (bb0130) 2017; 11
Pratelli, Pasqualetti (bb0195) 2019; 161
Cervo (bb0065) 2005; 25
Maddaloni (bb0135) 2018; 8
Wang (bb0220) 2019; 26
Fornal (bb0080) 1996; 716
Bethea (bb0020) 2002; 23
Nicholas (bb0160) 1992; 48
Trudeau (bb0215) 2004; 29
Nazzi (bb0155) 2019; 10
Calabresi (bb0030) 1992; 4
Svob Strac (bb0210) 2016; 7
Centonze (bb0055) 1999; 82
Paredes (bb0185) 2019; 20
Migliarini (bb0150) 2013; 18
Kuo (bb0110) 2016; 41
Lesch, Waider (bb0115) 2012; 76
Pratelli (bb0200) 2017; 4
Carli (bb0035) 2015; 135
Gu (bb0095) 2002; 111
Martella (bb0140) 2009; 132
Okaty (bb0170) 2015; 88
Picconi (bb0190) 2003; 6
Zhang (bb0225) 2004; 305
Byers (bb0025) 2012; 7
Lundblad (bb0125) 2004; 16
Carlsson, Carlsson (bb0040) 1988; 12
Svob Strac (10.1016/j.nbd.2021.105448_bb0210) 2016; 7
Picconi (10.1016/j.nbd.2021.105448_bb0190) 2003; 6
Lesch (10.1016/j.nbd.2021.105448_bb0115) 2012; 76
Kaneko (10.1016/j.nbd.2021.105448_bb0105) 1990; 507
Cervo (10.1016/j.nbd.2021.105448_bb0065) 2005; 25
Lu (10.1016/j.nbd.2021.105448_bb0120) 1999; 11
Carlsson (10.1016/j.nbd.2021.105448_bb0040) 1988; 12
Paredes (10.1016/j.nbd.2021.105448_bb0185) 2019; 20
Pratelli (10.1016/j.nbd.2021.105448_bb0200) 2017; 4
Ottersen (10.1016/j.nbd.2021.105448_bb0175) 1984; 229
Duman (10.1016/j.nbd.2021.105448_bb0075) 2016; 22
Pratelli (10.1016/j.nbd.2021.105448_bb0195) 2019; 161
Carta (10.1016/j.nbd.2021.105448_bb0045) 2007; 130
Gu (10.1016/j.nbd.2021.105448_bb0095) 2002; 111
Maddaloni (10.1016/j.nbd.2021.105448_bb0130) 2017; 11
Maddaloni (10.1016/j.nbd.2021.105448_bb0135) 2018; 8
Migliarini (10.1016/j.nbd.2021.105448_bb0150) 2013; 18
Martella (10.1016/j.nbd.2021.105448_bb0140) 2009; 132
Bethea (10.1016/j.nbd.2021.105448_bb0015) 1996; 137
Byers (10.1016/j.nbd.2021.105448_bb0025) 2012; 7
Carli (10.1016/j.nbd.2021.105448_bb0035) 2015; 135
Okaty (10.1016/j.nbd.2021.105448_bb0170) 2015; 88
Heiming (10.1016/j.nbd.2021.105448_bb0100) 2009; 3
Ghiglieri (10.1016/j.nbd.2021.105448_bb0085) 2015; 5
Bagetta (10.1016/j.nbd.2021.105448_bb0010) 2012; 32
Fornal (10.1016/j.nbd.2021.105448_bb0080) 1996; 716
Wang (10.1016/j.nbd.2021.105448_bb0220) 2019; 26
Nicholas (10.1016/j.nbd.2021.105448_bb0160) 1992; 48
Mathur (10.1016/j.nbd.2021.105448_bb0145) 2011; 31
Bethea (10.1016/j.nbd.2021.105448_bb0020) 2002; 23
Calabresi (10.1016/j.nbd.2021.105448_bb0030) 1992; 4
Schindelin (10.1016/j.nbd.2021.105448_bb0205) 2012; 9
Kuo (10.1016/j.nbd.2021.105448_bb0110) 2016; 41
Lundblad (10.1016/j.nbd.2021.105448_bb0125) 2004; 16
Trudeau (10.1016/j.nbd.2021.105448_bb0215) 2004; 29
De Deurwaerdere (10.1016/j.nbd.2021.105448_bb0070) 2017; 151
Alenina (10.1016/j.nbd.2021.105448_bb0005) 2009; 106
Centonze (10.1016/j.nbd.2021.105448_bb0055) 1999; 82
Nazzi (10.1016/j.nbd.2021.105448_bb0155) 2019; 10
Zhang (10.1016/j.nbd.2021.105448_bb0225) 2004; 305
Gras (10.1016/j.nbd.2021.105448_bb0090) 2002; 22
Ogawa (10.1016/j.nbd.2021.105448_bb0165) 2018; 174
Cavaccini (10.1016/j.nbd.2021.105448_bb0050) 2018; 98
Paille (10.1016/j.nbd.2021.105448_bb0180) 2010; 30
Cerovic (10.1016/j.nbd.2021.105448_bb0060) 2015; 77
References_xml – volume: 88
  start-page: 774
  year: 2015
  end-page: 791
  ident: bb0170
  article-title: Multi-scale molecular deconstruction of the serotonin neuron system
  publication-title: Neuron
– volume: 5
  start-page: 10933
  year: 2015
  ident: bb0085
  article-title: Rhes influences striatal cAMP/PKA-dependent signaling and synaptic plasticity in a gender-sensitive fashion
  publication-title: Sci. Rep.
– volume: 507
  start-page: 151
  year: 1990
  end-page: 154
  ident: bb0105
  article-title: Immunohistochemical demonstration of glutaminase in catecholaminergic and serotoninergic neurons of rat brain
  publication-title: Brain Res.
– volume: 76
  start-page: 175
  year: 2012
  end-page: 191
  ident: bb0115
  article-title: Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders
  publication-title: Neuron
– volume: 10
  start-page: 3218
  year: 2019
  end-page: 3224
  ident: bb0155
  article-title: Fluoxetine induces morphological rearrangements of serotonergic fibers in the hippocampus
  publication-title: ACS Chem. Neurosci.
– volume: 111
  start-page: 815
  year: 2002
  end-page: 835
  ident: bb0095
  article-title: Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity
  publication-title: Neuroscience
– volume: 4
  start-page: 929
  year: 1992
  end-page: 935
  ident: bb0030
  article-title: Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels
  publication-title: Eur. J. Neurosci.
– volume: 98
  start-page: 801
  year: 2018
  end-page: 816.e7
  ident: bb0050
  article-title: Serotonergic signaling controls input-specific synaptic plasticity at striatal circuits
  publication-title: Neuron
– volume: 11
  start-page: 257
  year: 1999
  end-page: 267
  ident: bb0120
  article-title: Ovarian steroid action on tryptophan hydroxylase protein and serotonin compared to localization of ovarian steroid receptors in midbrain of guinea pigs
  publication-title: Endocrine
– volume: 130
  start-page: 1819
  year: 2007
  end-page: 1833
  ident: bb0045
  article-title: Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats
  publication-title: Brain
– volume: 77
  start-page: 106
  year: 2015
  end-page: 115
  ident: bb0060
  article-title: Derangement of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and extracellular signal-regulated kinase (ERK) dependent striatal plasticity in L-DOPA-induced dyskinesia
  publication-title: Biol. Psychiatry
– volume: 174
  start-page: 9
  year: 2018
  end-page: 22
  ident: bb0165
  article-title: Organization of dopamine and serotonin system: anatomical and functional mapping of monosynaptic inputs using rabies virus
  publication-title: Pharmacol. Biochem. Behav.
– volume: 106
  start-page: 10332
  year: 2009
  end-page: 10337
  ident: bb0005
  article-title: Growth retardation and altered autonomic control in mice lacking brain serotonin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 41
  start-page: 1223
  year: 2016
  end-page: 1230
  ident: bb0110
  article-title: Chronic enhancement of serotonin facilitates excitatory transcranial direct current stimulation-induced neuroplasticity
  publication-title: Neuropsychopharmacology
– volume: 16
  start-page: 110
  year: 2004
  end-page: 123
  ident: bb0125
  article-title: A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function
  publication-title: Neurobiol. Dis.
– volume: 22
  start-page: 5442
  year: 2002
  end-page: 5451
  ident: bb0090
  article-title: A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons
  publication-title: J. Neurosci.
– volume: 135
  start-page: 674
  year: 2015
  end-page: 685
  ident: bb0035
  article-title: Tph2 gene deletion enhances amphetamine-induced hypermotility: effect of 5-HT restoration and role of striatal noradrenaline release
  publication-title: J. Neurochem.
– volume: 20
  year: 2019
  ident: bb0185
  article-title: An association of serotonin with pain disorders and its modulation by estrogens
  publication-title: Int. J. Mol. Sci.
– volume: 151
  start-page: 175
  year: 2017
  end-page: 236
  ident: bb0070
  article-title: Serotonergic modulation of the activity of mesencephalic dopaminergic systems: therapeutic implications
  publication-title: Prog. Neurobiol.
– volume: 8
  start-page: 11847
  year: 2018
  ident: bb0135
  article-title: Serotonin depletion causes valproate-responsive manic-like condition and increased hippocampal neuroplasticity that are reversed by stress
  publication-title: Sci. Rep.
– volume: 132
  start-page: 2336
  year: 2009
  end-page: 2349
  ident: bb0140
  article-title: Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine
  publication-title: Brain
– volume: 7
  start-page: 35
  year: 2016
  end-page: 49
  ident: bb0210
  article-title: The serotonergic system and cognitive function
  publication-title: Transl. Neurosci.
– volume: 161
  start-page: 3
  year: 2019
  end-page: 14
  ident: bb0195
  article-title: Serotonergic neurotransmission manipulation for the understanding of brain development and function: learning from Tph2 genetic models
  publication-title: Biochimie
– volume: 4
  year: 2017
  ident: bb0200
  article-title: Perturbation of serotonin homeostasis during adulthood affects serotonergic neuronal circuitry
  publication-title: eNeuro
– volume: 32
  start-page: 17921
  year: 2012
  end-page: 17931
  ident: bb0010
  article-title: Rebalance of striatal NMDA/AMPA receptor ratio underlies the reduced emergence of dyskinesia during D2-like dopamine agonist treatment in experimental Parkinson’s disease
  publication-title: J. Neurosci.
– volume: 11
  start-page: 202
  year: 2017
  ident: bb0130
  article-title: Development of serotonergic fibers in the post-natal mouse brain
  publication-title: Front. Cell. Neurosci.
– volume: 18
  start-page: 1106
  year: 2013
  end-page: 1118
  ident: bb0150
  article-title: Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation
  publication-title: Mol. Psychiatry
– volume: 229
  start-page: 374
  year: 1984
  end-page: 392
  ident: bb0175
  article-title: Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique
  publication-title: J. Comp. Neurol.
– volume: 716
  start-page: 123
  year: 1996
  end-page: 133
  ident: bb0080
  article-title: A subgroup of dorsal raphe serotonergic neurons in the cat is strongly activated during oral-buccal movements
  publication-title: Brain Res.
– volume: 305
  start-page: 217
  year: 2004
  ident: bb0225
  article-title: Tryptophan hydroxylase-2 controls brain serotonin synthesis
  publication-title: Science
– volume: 6
  start-page: 501
  year: 2003
  end-page: 506
  ident: bb0190
  article-title: Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia
  publication-title: Nat. Neurosci.
– volume: 12
  start-page: 53
  year: 1988
  end-page: 61
  ident: bb0040
  article-title: A regional study of sex differences in rat brain serotonin
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
– volume: 3
  start-page: 26
  year: 2009
  ident: bb0100
  article-title: Living in a dangerous world: the shaping of behavioral profile by early environment and 5-HTT genotype
  publication-title: Front. Behav. Neurosci.
– volume: 26
  start-page: 1128
  year: 2019
  end-page: 1142.e7
  ident: bb0220
  article-title: Dorsal raphe dual serotonin-glutamate neurons drive reward by establishing excitatory synapses on VTA mesoaccumbens dopamine neurons
  publication-title: Cell Rep.
– volume: 7
  year: 2012
  ident: bb0025
  article-title: Mouse estrous cycle identification tool and images
  publication-title: PLoS One
– volume: 82
  start-page: 3575
  year: 1999
  end-page: 3579
  ident: bb0055
  article-title: Unilateral dopamine denervation blocks corticostriatal LTP
  publication-title: J. Neurophysiol.
– volume: 25
  start-page: 8165
  year: 2005
  end-page: 8172
  ident: bb0065
  article-title: Genotype-dependent activity of tryptophan hydroxylase-2 determines the response to citalopram in a mouse model of depression
  publication-title: J. Neurosci.
– volume: 30
  start-page: 14182
  year: 2010
  end-page: 14193
  ident: bb0180
  article-title: Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition
  publication-title: J. Neurosci.
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: bb0205
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 29
  start-page: 296
  year: 2004
  end-page: 310
  ident: bb0215
  article-title: Glutamate co-transmission as an emerging concept in monoamine neuron function
  publication-title: J. Psychiatry Neurosci.
– volume: 137
  start-page: 4372
  year: 1996
  end-page: 4383
  ident: bb0015
  article-title: Steroid regulation of estrogen and progestin receptor messenger ribonucleic acid in monkey hypothalamus and pituitary
  publication-title: Endocrinology
– volume: 48
  start-page: 545
  year: 1992
  end-page: 559
  ident: bb0160
  article-title: Serotonin-, substance P- and glutamate/aspartate-like immunoreactivities in medullo-spinal pathways of rat and primate
  publication-title: Neuroscience
– volume: 31
  start-page: 7402
  year: 2011
  end-page: 7411
  ident: bb0145
  article-title: Serotonin induces long-term depression at corticostriatal synapses
  publication-title: J. Neurosci.
– volume: 23
  start-page: 41
  year: 2002
  end-page: 100
  ident: bb0020
  article-title: Diverse actions of ovarian steroids in the serotonin neural system
  publication-title: Front. Neuroendocrinol.
– volume: 22
  start-page: 238
  year: 2016
  end-page: 249
  ident: bb0075
  article-title: Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants
  publication-title: Nat. Med.
– volume: 305
  start-page: 217
  year: 2004
  ident: 10.1016/j.nbd.2021.105448_bb0225
  article-title: Tryptophan hydroxylase-2 controls brain serotonin synthesis
  publication-title: Science
  doi: 10.1126/science.1097540
– volume: 23
  start-page: 41
  year: 2002
  ident: 10.1016/j.nbd.2021.105448_bb0020
  article-title: Diverse actions of ovarian steroids in the serotonin neural system
  publication-title: Front. Neuroendocrinol.
  doi: 10.1006/frne.2001.0225
– volume: 3
  start-page: 26
  year: 2009
  ident: 10.1016/j.nbd.2021.105448_bb0100
  article-title: Living in a dangerous world: the shaping of behavioral profile by early environment and 5-HTT genotype
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/neuro.08.026.2009
– volume: 130
  start-page: 1819
  year: 2007
  ident: 10.1016/j.nbd.2021.105448_bb0045
  article-title: Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats
  publication-title: Brain
  doi: 10.1093/brain/awm082
– volume: 10
  start-page: 3218
  year: 2019
  ident: 10.1016/j.nbd.2021.105448_bb0155
  article-title: Fluoxetine induces morphological rearrangements of serotonergic fibers in the hippocampus
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro.8b00655
– volume: 82
  start-page: 3575
  year: 1999
  ident: 10.1016/j.nbd.2021.105448_bb0055
  article-title: Unilateral dopamine denervation blocks corticostriatal LTP
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1999.82.6.3575
– volume: 48
  start-page: 545
  year: 1992
  ident: 10.1016/j.nbd.2021.105448_bb0160
  article-title: Serotonin-, substance P- and glutamate/aspartate-like immunoreactivities in medullo-spinal pathways of rat and primate
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(92)90401-M
– volume: 11
  start-page: 257
  year: 1999
  ident: 10.1016/j.nbd.2021.105448_bb0120
  article-title: Ovarian steroid action on tryptophan hydroxylase protein and serotonin compared to localization of ovarian steroid receptors in midbrain of guinea pigs
  publication-title: Endocrine
  doi: 10.1385/ENDO:11:3:257
– volume: 111
  start-page: 815
  year: 2002
  ident: 10.1016/j.nbd.2021.105448_bb0095
  article-title: Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(02)00026-X
– volume: 7
  year: 2012
  ident: 10.1016/j.nbd.2021.105448_bb0025
  article-title: Mouse estrous cycle identification tool and images
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0035538
– volume: 11
  start-page: 202
  year: 2017
  ident: 10.1016/j.nbd.2021.105448_bb0130
  article-title: Development of serotonergic fibers in the post-natal mouse brain
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2017.00202
– volume: 12
  start-page: 53
  year: 1988
  ident: 10.1016/j.nbd.2021.105448_bb0040
  article-title: A regional study of sex differences in rat brain serotonin
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
  doi: 10.1016/0278-5846(88)90061-9
– volume: 161
  start-page: 3
  year: 2019
  ident: 10.1016/j.nbd.2021.105448_bb0195
  article-title: Serotonergic neurotransmission manipulation for the understanding of brain development and function: learning from Tph2 genetic models
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2018.11.016
– volume: 137
  start-page: 4372
  year: 1996
  ident: 10.1016/j.nbd.2021.105448_bb0015
  article-title: Steroid regulation of estrogen and progestin receptor messenger ribonucleic acid in monkey hypothalamus and pituitary
  publication-title: Endocrinology
  doi: 10.1210/endo.137.10.8828498
– volume: 229
  start-page: 374
  year: 1984
  ident: 10.1016/j.nbd.2021.105448_bb0175
  article-title: Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902290308
– volume: 18
  start-page: 1106
  year: 2013
  ident: 10.1016/j.nbd.2021.105448_bb0150
  article-title: Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2012.128
– volume: 25
  start-page: 8165
  year: 2005
  ident: 10.1016/j.nbd.2021.105448_bb0065
  article-title: Genotype-dependent activity of tryptophan hydroxylase-2 determines the response to citalopram in a mouse model of depression
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1816-05.2005
– volume: 151
  start-page: 175
  year: 2017
  ident: 10.1016/j.nbd.2021.105448_bb0070
  article-title: Serotonergic modulation of the activity of mesencephalic dopaminergic systems: therapeutic implications
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2016.03.004
– volume: 132
  start-page: 2336
  year: 2009
  ident: 10.1016/j.nbd.2021.105448_bb0140
  article-title: Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine
  publication-title: Brain
  doi: 10.1093/brain/awp194
– volume: 16
  start-page: 110
  year: 2004
  ident: 10.1016/j.nbd.2021.105448_bb0125
  article-title: A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2004.01.007
– volume: 31
  start-page: 7402
  year: 2011
  ident: 10.1016/j.nbd.2021.105448_bb0145
  article-title: Serotonin induces long-term depression at corticostriatal synapses
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6250-10.2011
– volume: 20
  year: 2019
  ident: 10.1016/j.nbd.2021.105448_bb0185
  article-title: An association of serotonin with pain disorders and its modulation by estrogens
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20225729
– volume: 98
  start-page: 801
  year: 2018
  ident: 10.1016/j.nbd.2021.105448_bb0050
  article-title: Serotonergic signaling controls input-specific synaptic plasticity at striatal circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.04.008
– volume: 76
  start-page: 175
  year: 2012
  ident: 10.1016/j.nbd.2021.105448_bb0115
  article-title: Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.09.013
– volume: 88
  start-page: 774
  year: 2015
  ident: 10.1016/j.nbd.2021.105448_bb0170
  article-title: Multi-scale molecular deconstruction of the serotonin neuron system
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.10.007
– volume: 4
  year: 2017
  ident: 10.1016/j.nbd.2021.105448_bb0200
  article-title: Perturbation of serotonin homeostasis during adulthood affects serotonergic neuronal circuitry
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0376-16.2017
– volume: 4
  start-page: 929
  year: 1992
  ident: 10.1016/j.nbd.2021.105448_bb0030
  article-title: Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.1992.tb00119.x
– volume: 174
  start-page: 9
  year: 2018
  ident: 10.1016/j.nbd.2021.105448_bb0165
  article-title: Organization of dopamine and serotonin system: anatomical and functional mapping of monosynaptic inputs using rabies virus
  publication-title: Pharmacol. Biochem. Behav.
  doi: 10.1016/j.pbb.2017.05.001
– volume: 41
  start-page: 1223
  year: 2016
  ident: 10.1016/j.nbd.2021.105448_bb0110
  article-title: Chronic enhancement of serotonin facilitates excitatory transcranial direct current stimulation-induced neuroplasticity
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2015.270
– volume: 6
  start-page: 501
  year: 2003
  ident: 10.1016/j.nbd.2021.105448_bb0190
  article-title: Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1040
– volume: 135
  start-page: 674
  year: 2015
  ident: 10.1016/j.nbd.2021.105448_bb0035
  article-title: Tph2 gene deletion enhances amphetamine-induced hypermotility: effect of 5-HT restoration and role of striatal noradrenaline release
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.13280
– volume: 77
  start-page: 106
  year: 2015
  ident: 10.1016/j.nbd.2021.105448_bb0060
  article-title: Derangement of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and extracellular signal-regulated kinase (ERK) dependent striatal plasticity in L-DOPA-induced dyskinesia
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2014.04.002
– volume: 716
  start-page: 123
  year: 1996
  ident: 10.1016/j.nbd.2021.105448_bb0080
  article-title: A subgroup of dorsal raphe serotonergic neurons in the cat is strongly activated during oral-buccal movements
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(96)00006-6
– volume: 106
  start-page: 10332
  year: 2009
  ident: 10.1016/j.nbd.2021.105448_bb0005
  article-title: Growth retardation and altered autonomic control in mice lacking brain serotonin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0810793106
– volume: 9
  start-page: 676
  year: 2012
  ident: 10.1016/j.nbd.2021.105448_bb0205
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 22
  start-page: 5442
  year: 2002
  ident: 10.1016/j.nbd.2021.105448_bb0090
  article-title: A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-13-05442.2002
– volume: 30
  start-page: 14182
  year: 2010
  ident: 10.1016/j.nbd.2021.105448_bb0180
  article-title: Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2149-10.2010
– volume: 26
  start-page: 1128
  year: 2019
  ident: 10.1016/j.nbd.2021.105448_bb0220
  article-title: Dorsal raphe dual serotonin-glutamate neurons drive reward by establishing excitatory synapses on VTA mesoaccumbens dopamine neurons
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.01.014
– volume: 507
  start-page: 151
  year: 1990
  ident: 10.1016/j.nbd.2021.105448_bb0105
  article-title: Immunohistochemical demonstration of glutaminase in catecholaminergic and serotoninergic neurons of rat brain
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(90)90535-J
– volume: 29
  start-page: 296
  year: 2004
  ident: 10.1016/j.nbd.2021.105448_bb0215
  article-title: Glutamate co-transmission as an emerging concept in monoamine neuron function
  publication-title: J. Psychiatry Neurosci.
  doi: 10.1139/jpn.0431
– volume: 32
  start-page: 17921
  year: 2012
  ident: 10.1016/j.nbd.2021.105448_bb0010
  article-title: Rebalance of striatal NMDA/AMPA receptor ratio underlies the reduced emergence of dyskinesia during D2-like dopamine agonist treatment in experimental Parkinson’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2664-12.2012
– volume: 22
  start-page: 238
  year: 2016
  ident: 10.1016/j.nbd.2021.105448_bb0075
  article-title: Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants
  publication-title: Nat. Med.
  doi: 10.1038/nm.4050
– volume: 5
  start-page: 10933
  year: 2015
  ident: 10.1016/j.nbd.2021.105448_bb0085
  article-title: Rhes influences striatal cAMP/PKA-dependent signaling and synaptic plasticity in a gender-sensitive fashion
  publication-title: Sci. Rep.
  doi: 10.1038/srep10933
– volume: 8
  start-page: 11847
  year: 2018
  ident: 10.1016/j.nbd.2021.105448_bb0135
  article-title: Serotonin depletion causes valproate-responsive manic-like condition and increased hippocampal neuroplasticity that are reversed by stress
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30291-2
– volume: 7
  start-page: 35
  year: 2016
  ident: 10.1016/j.nbd.2021.105448_bb0210
  article-title: The serotonergic system and cognitive function
  publication-title: Transl. Neurosci.
  doi: 10.1515/tnsci-2016-0007
SSID ssj0011597
Score 2.3803756
Snippet Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions – including motor control, learning and reward processing – and is...
Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions - including motor control, learning and reward processing - and is...
Introduction: Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions – including motor control, learning and reward...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105448
SubjectTerms Animals
Animals, Genetically Modified
Dopamine
Electrophysiological Phenomena
Female
Functional recovery
Glutamic Acid - physiology
Long-Term Potentiation
Male
Mice
Neostriatum - physiology
Nerve Fibers
Neuronal Plasticity - physiology
Parkinson Disease, Secondary - physiopathology
Serotonin
Serotonin - physiology
Sex Characteristics
Striatum
Synapses - physiology
Synaptic plasticity
Synaptic Transmission - physiology
Tph2
Tryptophan Hydroxylase - metabolism
Title Serotonin drives striatal synaptic plasticity in a sex-related manner
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0969996121001972
https://dx.doi.org/10.1016/j.nbd.2021.105448
https://www.ncbi.nlm.nih.gov/pubmed/34280523
https://www.proquest.com/docview/2553521905
https://doaj.org/article/37288ac3a0b540c29c16be6e96e321ba
Volume 158
WOSCitedRecordID wos000697459200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-953X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011597
  issn: 0969-9961
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-953X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011597
  issn: 0969-9961
  databaseCode: AIEXJ
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQYgLghbKAl0ZCXFAikjs-JHjgrYqCCoOgPZm-Sm1arPVblp1_z1jJ1mVA-2FWxTZiT0ee755eAbgXW05tz5F1CCcLmoZq0LhYVkgGKmUdTFWOU_372_y-FgtFs2PG6W-UkxYnx64J9xHJqlSxjFTWgQXjjauEjaI0IjAaGUzNELUMypTg_8AhbQcfZg5mqu1KS0orVJd2zoV-7khhXKy_r-E0b_AZhY6h0_hyYAWyawf5TO4F9pd2Ju1qCmfb8h7kuM3s2F8Fx59H9zkezDHE2DZJUMr8auUV5bk6hyIs8l60xo8JRy5QNicIqq7DcFmhqzDdZEvtgRPzk0qyPUcfh3Of34-KoZ6CYVDsd0VzEZGg4lBNF4xJrgXEYWPdDx6avBRORm9KBk3tHZeSGm5NB7paBxXjWIvYKddtuElkCYZOkKkNpamZq5WtHKINJznlosmlBMoR_ppNyQTTzUtzvQYNXaqkeQ6kVz3JJ_Ah22Xiz6Txm2NP6VF2TZMSbDzC2QNPbCGvos1JkDHJdXjPVM8GfFDJ7f9ud52GkBIDy7u6vZ25BmNGzR5XUwblpdrjTobglzEXXwC-z0zbafFUPlLdvlX_2O6r-FxGlAfafgGdrrVZTiAh-6qO1mvpnBfLtQUHsy-zBdfp3m3_AGT-xRh
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Serotonin+drives+striatal+synaptic+plasticity+in+a+sex-related+manner&rft.jtitle=Neurobiology+of+disease&rft.au=Campanelli%2C+Federica&rft.au=Marino%2C+Gioia&rft.au=Barsotti%2C+Noemi&rft.au=Natale%2C+Giuseppina&rft.date=2021-10-01&rft.pub=Elsevier+Inc&rft.issn=0969-9961&rft.eissn=1095-953X&rft.volume=158&rft_id=info:doi/10.1016%2Fj.nbd.2021.105448&rft.externalDocID=S0969996121001972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-9961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-9961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-9961&client=summon