Vision-Based Detection of Bolt Loosening Using YOLOv5

Bolted connections have been widely applied in engineering structures, loosening will happen when bolted connections are subjected to continuous cyclic load, and a significant rotation between the nut and the bolt can be observed. Combining deep learning with machine vision, a bolt loosening detecti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 22; číslo 14; s. 5184
Hlavní autori: Sun, Yuhang, Li, Mengxuan, Dong, Ruiwen, Chen, Weiyu, Jiang, Dong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 11.07.2022
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Bolted connections have been widely applied in engineering structures, loosening will happen when bolted connections are subjected to continuous cyclic load, and a significant rotation between the nut and the bolt can be observed. Combining deep learning with machine vision, a bolt loosening detection method based on the fifth version of You Only Look Once (YOLOv5) is proposed, and the rotation of the nut is identified to detect the bolt loosening. Two different circular markers are added to the bolt and the nut separately, and then YOLOv5 is used to identify the circular markers, and the rotation angle of the nut against the bolt is calculated according to the center coordinate of each predicted box. A bolted connection structure is adopted to illustrate the effectiveness of the method. First, 200 images containing bolts and circular markers are collected to make the dataset, which is divided into a training set, verification set and test set. Second, YOLOv5 is used to train the model; the precision rate and recall rate are respectively 99.8% and 100%. Finally, the robustness of the proposed method in different shooting environments is verified by changing the shooting distance, shooting angle and light condition. When using this method to detect the bolt loosening angle, the minimum identifiable angle is 1°, and the maximum detection error is 5.91% when the camera is tilted 45°. The experimental results show that the proposed method can detect the loosening angle of the bolted connection with high accuracy; especially, the tiny angle of bolt loosening can be identified. Even under some difficult shooting conditions, the method still works. The early stage of bolt loosening can be detected by measuring the rotation angle of the nut against the bolt.
AbstractList Bolted connections have been widely applied in engineering structures, loosening will happen when bolted connections are subjected to continuous cyclic load, and a significant rotation between the nut and the bolt can be observed. Combining deep learning with machine vision, a bolt loosening detection method based on the fifth version of You Only Look Once (YOLOv5) is proposed, and the rotation of the nut is identified to detect the bolt loosening. Two different circular markers are added to the bolt and the nut separately, and then YOLOv5 is used to identify the circular markers, and the rotation angle of the nut against the bolt is calculated according to the center coordinate of each predicted box. A bolted connection structure is adopted to illustrate the effectiveness of the method. First, 200 images containing bolts and circular markers are collected to make the dataset, which is divided into a training set, verification set and test set. Second, YOLOv5 is used to train the model; the precision rate and recall rate are respectively 99.8% and 100%. Finally, the robustness of the proposed method in different shooting environments is verified by changing the shooting distance, shooting angle and light condition. When using this method to detect the bolt loosening angle, the minimum identifiable angle is 1°, and the maximum detection error is 5.91% when the camera is tilted 45°. The experimental results show that the proposed method can detect the loosening angle of the bolted connection with high accuracy; especially, the tiny angle of bolt loosening can be identified. Even under some difficult shooting conditions, the method still works. The early stage of bolt loosening can be detected by measuring the rotation angle of the nut against the bolt.
Bolted connections have been widely applied in engineering structures, loosening will happen when bolted connections are subjected to continuous cyclic load, and a significant rotation between the nut and the bolt can be observed. Combining deep learning with machine vision, a bolt loosening detection method based on the fifth version of You Only Look Once (YOLOv5) is proposed, and the rotation of the nut is identified to detect the bolt loosening. Two different circular markers are added to the bolt and the nut separately, and then YOLOv5 is used to identify the circular markers, and the rotation angle of the nut against the bolt is calculated according to the center coordinate of each predicted box. A bolted connection structure is adopted to illustrate the effectiveness of the method. First, 200 images containing bolts and circular markers are collected to make the dataset, which is divided into a training set, verification set and test set. Second, YOLOv5 is used to train the model; the precision rate and recall rate are respectively 99.8% and 100%. Finally, the robustness of the proposed method in different shooting environments is verified by changing the shooting distance, shooting angle and light condition. When using this method to detect the bolt loosening angle, the minimum identifiable angle is 1°, and the maximum detection error is 5.91% when the camera is tilted 45°. The experimental results show that the proposed method can detect the loosening angle of the bolted connection with high accuracy; especially, the tiny angle of bolt loosening can be identified. Even under some difficult shooting conditions, the method still works. The early stage of bolt loosening can be detected by measuring the rotation angle of the nut against the bolt.Bolted connections have been widely applied in engineering structures, loosening will happen when bolted connections are subjected to continuous cyclic load, and a significant rotation between the nut and the bolt can be observed. Combining deep learning with machine vision, a bolt loosening detection method based on the fifth version of You Only Look Once (YOLOv5) is proposed, and the rotation of the nut is identified to detect the bolt loosening. Two different circular markers are added to the bolt and the nut separately, and then YOLOv5 is used to identify the circular markers, and the rotation angle of the nut against the bolt is calculated according to the center coordinate of each predicted box. A bolted connection structure is adopted to illustrate the effectiveness of the method. First, 200 images containing bolts and circular markers are collected to make the dataset, which is divided into a training set, verification set and test set. Second, YOLOv5 is used to train the model; the precision rate and recall rate are respectively 99.8% and 100%. Finally, the robustness of the proposed method in different shooting environments is verified by changing the shooting distance, shooting angle and light condition. When using this method to detect the bolt loosening angle, the minimum identifiable angle is 1°, and the maximum detection error is 5.91% when the camera is tilted 45°. The experimental results show that the proposed method can detect the loosening angle of the bolted connection with high accuracy; especially, the tiny angle of bolt loosening can be identified. Even under some difficult shooting conditions, the method still works. The early stage of bolt loosening can be detected by measuring the rotation angle of the nut against the bolt.
Author Dong, Ruiwen
Sun, Yuhang
Li, Mengxuan
Chen, Weiyu
Jiang, Dong
AuthorAffiliation School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; sunyh@njfu.edu.cn (Y.S.); lmx0727@njfu.edu.cn (M.L.); drw@njfu.edu.cn (R.D.); wychen@njfu.edu.cn (W.C.)
AuthorAffiliation_xml – name: School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; sunyh@njfu.edu.cn (Y.S.); lmx0727@njfu.edu.cn (M.L.); drw@njfu.edu.cn (R.D.); wychen@njfu.edu.cn (W.C.)
Author_xml – sequence: 1
  givenname: Yuhang
  orcidid: 0000-0003-3871-5004
  surname: Sun
  fullname: Sun, Yuhang
– sequence: 2
  givenname: Mengxuan
  surname: Li
  fullname: Li, Mengxuan
– sequence: 3
  givenname: Ruiwen
  surname: Dong
  fullname: Dong, Ruiwen
– sequence: 4
  givenname: Weiyu
  orcidid: 0000-0002-8206-8388
  surname: Chen
  fullname: Chen, Weiyu
– sequence: 5
  givenname: Dong
  orcidid: 0000-0001-9636-8173
  surname: Jiang
  fullname: Jiang, Dong
BookMark eNplkUtvGyEUhVGVqnm0i_6DkbppFpMMb9hUatJXJEveJJW6QswFXKwxpDCO1H9fXKdRk2yAC989HN1zjA5STh6ht3g4o1QP55UQzDhW7AU6woywXhEyHPx3PkTHta6HgVBK1St0SLnSgxLsCPHvscac-gtbves--dnD3Oouh-4iT3O3yLn6FNOqu6m79cdysbzjr9HLYKfq39zvJ-jmy-fry2_9Yvn16vLjogeOydxTPIYRB2WDw1YBkXKUgVPhRiewlgRL3XwASA5eALOSiBFT55SiOjAp6Am62uu6bNfmtsSNLb9NttH8vchlZWyZI0zeECEZhyAdccBGqfUIyiuqNHDNOIWm9WGvdbsdN96BT3Ox0yPRxy8p_jSrfGc0xZop0gTe3wuU_Gvr62w2sYKfJpt83tbmQHOiccuhoe-eoOu8LamNakexQVAuWKPO9xSUXGvxwUCc7W787f84GTyYXbzmId7Wcfqk45_95-wfmhSisg
CitedBy_id crossref_primary_10_3390_s23125655
crossref_primary_10_3390_s23125634
crossref_primary_10_3390_s23010396
crossref_primary_10_35848_1347_4065_ad2b1b
crossref_primary_10_1007_s13349_024_00902_w
crossref_primary_10_1016_j_autcon_2025_106173
crossref_primary_10_1007_s40430_022_03996_9
crossref_primary_10_1007_s42107_025_01316_9
crossref_primary_10_1016_j_measurement_2025_118692
crossref_primary_10_1038_s41598_024_70176_1
crossref_primary_10_1007_s11831_025_10226_7
crossref_primary_10_3390_app14072937
crossref_primary_10_1088_1361_665X_ae053f
crossref_primary_10_1109_ACCESS_2024_3521652
crossref_primary_10_3390_s23094386
crossref_primary_10_3390_app14114385
crossref_primary_10_1007_s40799_024_00754_5
crossref_primary_10_1016_j_engappai_2024_108618
crossref_primary_10_1016_j_measurement_2024_116318
crossref_primary_10_3390_app13032020
crossref_primary_10_1007_s42107_024_01139_0
crossref_primary_10_3390_s23041801
crossref_primary_10_1117_1_JEI_33_4_043044
crossref_primary_10_3390_machines10111039
crossref_primary_10_3390_s24237824
crossref_primary_10_1016_j_prostr_2025_07_072
crossref_primary_10_1177_14759217241268522
crossref_primary_10_1007_s11668_025_02186_8
crossref_primary_10_1109_TIM_2025_3551922
crossref_primary_10_1186_s43088_024_00537_2
crossref_primary_10_1177_14759217241259668
crossref_primary_10_3390_photonics10020198
crossref_primary_10_3390_s23083803
crossref_primary_10_1007_s10921_025_01206_9
crossref_primary_10_1016_j_ymssp_2024_112114
crossref_primary_10_1177_13694332231157260
crossref_primary_10_20965_jrm_2025_p0918
crossref_primary_10_1002_cpe_7713
crossref_primary_10_1007_s41062_025_01860_y
Cites_doi 10.1145/3065386
10.1061/(ASCE)PS.1949-1204.0000504
10.1177/1475921718757459
10.1016/j.jclepro.2020.122206
10.1117/12.2219055
10.1007/978-3-319-54777-0_9
10.1177/14759217211004243
10.3390/s20123382
10.1155/2021/8325398
10.1177/1369433219852565
10.1177/1045389X211018845
10.1016/j.engstruct.2020.110508
10.3390/e23111372
10.1016/j.autcon.2019.102844
10.1109/CVPR.2014.81
10.1061/(ASCE)PS.1949-1204.0000587
10.1111/mice.12797
10.1109/CVPR.2016.91
10.1109/TPAMI.2016.2577031
10.1115/1.1586936
10.1016/j.ymssp.2021.108652
10.1088/1361-665X/aa6e93
10.1016/j.soildyn.2021.106681
10.1109/ICCV.2015.169
10.1007/s10921-019-0626-1
10.1177/1475921719837509
10.1155/2019/2801638
10.1016/j.autcon.2021.104009
10.1002/stc.2943
10.1016/j.compag.2022.107009
10.3390/app11199134
10.1002/stc.2292
10.1007/978-3-319-46448-0_2
10.1002/stc.2741
10.3390/app6110320
10.1016/j.autcon.2016.06.008
10.3390/f12060652
10.1109/CVPR.2016.308
10.1007/s11071-020-05508-7
10.1007/978-3-319-54987-3_4
10.3390/f11080816
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22145184
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_26745cf7d2dc4b799bc8e8389c59453c
PMC9319482
10_3390_s22145184
GrantInformation_xml – fundername: the Qing Lan Project
– fundername: Natural Science Research Project of Higher Education in Jiangsu Province
  grantid: 20KJB460003
– fundername: the National Natural Science Foundation of China
  grantid: 11602112
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c512t-31bfb1f8afd1a8c277b7f536dbd61972179890cc75ce6c4a726b13dd8839f4763
IEDL.DBID DOA
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000833747800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 15:16:01 EDT 2025
Tue Nov 04 01:39:38 EST 2025
Sun Nov 09 12:23:12 EST 2025
Tue Oct 07 07:24:30 EDT 2025
Sat Nov 29 07:16:37 EST 2025
Tue Nov 18 21:39:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-31bfb1f8afd1a8c277b7f536dbd61972179890cc75ce6c4a726b13dd8839f4763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3871-5004
0000-0001-9636-8173
0000-0002-8206-8388
OpenAccessLink https://doaj.org/article/26745cf7d2dc4b799bc8e8389c59453c
PMID 35890864
PQID 2694063564
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_26745cf7d2dc4b799bc8e8389c59453c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9319482
proquest_miscellaneous_2695291518
proquest_journals_2694063564
crossref_citationtrail_10_3390_s22145184
crossref_primary_10_3390_s22145184
PublicationCentury 2000
PublicationDate 20220711
PublicationDateYYYYMMDD 2022-07-11
PublicationDate_xml – month: 7
  year: 2022
  text: 20220711
  day: 11
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gong (ref_49) 2022; 133
ref_12
Zhang (ref_16) 2019; 22
Huynh (ref_41) 2019; 105
Wang (ref_17) 2020; 100
Cha (ref_32) 2017; Volume 2
Huo (ref_13) 2017; 26
Jiang (ref_2) 2014; 33
Cha (ref_38) 2016; 71
Tan (ref_3) 2017; 47
Ramana (ref_40) 2018; 18
Zhou (ref_20) 2022; 198
ref_25
Huang (ref_5) 2022; 168
Junker (ref_10) 1969; 78
ref_23
Yuan (ref_48) 2021; 28
Jiang (ref_1) 2014; 37
Obiechefu (ref_22) 2021; 8
ref_28
Ma (ref_18) 2020; 268
ref_27
ref_26
Jiang (ref_8) 2015; 32
Zhao (ref_42) 2019; 26
ref_36
Xu (ref_14) 2019; 38
ref_31
ref_30
Yang (ref_51) 2022; 29
ref_37
Lu (ref_34) 2021; 12
Xu (ref_35) 2021; 144
Ramana (ref_39) 2017; Volume 5
Jiang (ref_11) 2003; 125
Zhang (ref_44) 2021; 21
Zhou (ref_50) 2021; 2021
Pal (ref_46) 2021; 29
Goodier (ref_9) 1945; 67
Wang (ref_4) 2018; 38
ref_47
ref_45
Ji (ref_21) 2020; 212
Krizhevsky (ref_24) 2017; 60
Ren (ref_29) 2017; 39
Zhang (ref_43) 2019; 19
Zhao (ref_15) 2019; 2019
Xu (ref_19) 2021; 33
ref_7
Xu (ref_33) 2021; 12
ref_6
References_xml – volume: 60
  start-page: 84
  year: 2017
  ident: ref_24
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 12
  start-page: 04020058
  year: 2021
  ident: ref_33
  article-title: Dynamic Analysis and Parameter Optimization of Pipelines with Multidimensional Vibration Isolation and Mitigation Device
  publication-title: J. Pipeline Syst. Eng. Pract.
  doi: 10.1061/(ASCE)PS.1949-1204.0000504
– volume: 18
  start-page: 422
  year: 2018
  ident: ref_40
  article-title: Fully automated vision-based loosened bolt detection using the Viola–Jones algorithm
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718757459
– volume: 268
  start-page: 122206
  year: 2020
  ident: ref_18
  article-title: Ecodesign method of intelligent boom sprayer based on Preferable Brownfield Process
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122206
– ident: ref_23
  doi: 10.1117/12.2219055
– volume: Volume 2
  start-page: 71
  year: 2017
  ident: ref_32
  article-title: Vision-Based Concrete Crack Detection Using a Convolutional Neural Network
  publication-title: Dynamics of Civil Structures
  doi: 10.1007/978-3-319-54777-0_9
– volume: 21
  start-page: 438
  year: 2021
  ident: ref_44
  article-title: Bolt damage identification based on orientation-aware center point estimation network
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217211004243
– ident: ref_45
  doi: 10.3390/s20123382
– volume: 33
  start-page: 35
  year: 2014
  ident: ref_2
  article-title: Parameter identification of bolted-joint based on the model with thin-layer elements with isotropic constitutive relationship
  publication-title: J. Vib. Shock.
– volume: 2021
  start-page: 8325398
  year: 2021
  ident: ref_50
  article-title: Computer Vision-Based Detection for Delayed Fracture of Bolts in Steel Bridges
  publication-title: J. Sens.
  doi: 10.1155/2021/8325398
– volume: 22
  start-page: 2882
  year: 2019
  ident: ref_16
  article-title: Bolt loosening detection based on audio classification
  publication-title: Adv. Struct. Eng.
  doi: 10.1177/1369433219852565
– volume: 29
  start-page: e2873
  year: 2021
  ident: ref_46
  article-title: A deep-learning approach for health monitoring of a steel frame structure with bolted connections
  publication-title: Struct. Control. Health Monit.
– volume: 33
  start-page: 231
  year: 2021
  ident: ref_19
  article-title: New control strategy for suppressing the local vibration of sandwich beams based on the wave propagation method
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X211018845
– volume: 212
  start-page: 110508
  year: 2020
  ident: ref_21
  article-title: Vision-based measurements of deformations and cracks for RC structure tests
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110508
– ident: ref_36
  doi: 10.3390/e23111372
– volume: 105
  start-page: 102844
  year: 2019
  ident: ref_41
  article-title: Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102844
– ident: ref_26
  doi: 10.1109/CVPR.2014.81
– volume: 32
  start-page: 220
  year: 2015
  ident: ref_8
  article-title: Contact interface parameter identification of bolted joint structure with uncertainty using thin layer element method
  publication-title: Eng. Mech.
– volume: 12
  start-page: 04021045
  year: 2021
  ident: ref_34
  article-title: Novel Data-Driven Framework for Predicting Residual Strength of Corroded Pipelines
  publication-title: J. Pipeline Syst. Eng. Pract.
  doi: 10.1061/(ASCE)PS.1949-1204.0000587
– ident: ref_47
  doi: 10.1111/mice.12797
– volume: 38
  start-page: 1169
  year: 2018
  ident: ref_4
  article-title: Anti-loosening Experiment of Composite Bolted Structures Under High Temperature and Vibration Circumstance
  publication-title: J. Vib. Meas. Diagn.
– ident: ref_30
  doi: 10.1109/CVPR.2016.91
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_29
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 125
  start-page: 518
  year: 2003
  ident: ref_11
  article-title: A study of early stage self-loosening of bolted joints
  publication-title: J. Mech. Des.
  doi: 10.1115/1.1586936
– volume: 168
  start-page: 108652
  year: 2022
  ident: ref_5
  article-title: A comprehensive review of loosening detection methods for threaded fasteners
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108652
– volume: 26
  start-page: 104010
  year: 2017
  ident: ref_13
  article-title: A fractal contact theory based model for bolted connection looseness monitoring using piezoceramic transducers
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa6e93
– volume: 144
  start-page: 1006681
  year: 2021
  ident: ref_35
  article-title: Development of hybrid test system for three-dimensional viscoelastic damping frame structures based on Matlab-OpenSees combined programming
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2021.106681
– ident: ref_27
  doi: 10.1109/ICCV.2015.169
– volume: 8
  start-page: 91
  year: 2021
  ident: ref_22
  article-title: Damage detection techniques for structural health monitoring of bridges from computer vision derived parameters
  publication-title: Struct. Monit. Maint.
– volume: 38
  start-page: 85
  year: 2019
  ident: ref_14
  article-title: A Modified Time Reversal Method for Guided Wave Based Bolt Loosening Monitoring in a Lap Joint
  publication-title: J. Nondestruct. Eval.
  doi: 10.1007/s10921-019-0626-1
– volume: 19
  start-page: 105
  year: 2019
  ident: ref_43
  article-title: Autonomous bolt loosening detection using deep learning
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921719837509
– volume: 37
  start-page: 688
  year: 2014
  ident: ref_1
  article-title: Stiffness identification of fixed bolted-joint interface
  publication-title: J. Solid Rocket Technol.
– volume: 2019
  start-page: 2801638
  year: 2019
  ident: ref_15
  article-title: Health Monitoring of Bolt Looseness in Timber Structures Using PZT-Enabled Time-Reversal Method
  publication-title: J. Sens.
  doi: 10.1155/2019/2801638
– volume: 133
  start-page: 104009
  year: 2022
  ident: ref_49
  article-title: Quantitative loosening detection of threaded fasteners using vision-based deep learning and geometric imaging theory
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.104009
– volume: 29
  start-page: e2943
  year: 2022
  ident: ref_51
  article-title: Deep learning-based bolt loosening detection for wind turbine towers
  publication-title: Struct. Control. Health Monit.
  doi: 10.1002/stc.2943
– volume: 198
  start-page: 107009
  year: 2022
  ident: ref_20
  article-title: Finite element explicit dynamics simulation of motion and shedding of jujube fruits under forced vibration
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107009
– ident: ref_6
  doi: 10.3390/app11199134
– volume: 26
  start-page: e2292
  year: 2019
  ident: ref_42
  article-title: Bolt loosening angle detection technology using deep learning
  publication-title: Struct. Control. Health Monit.
  doi: 10.1002/stc.2292
– ident: ref_31
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_25
– volume: 28
  start-page: e2741
  year: 2021
  ident: ref_48
  article-title: Near real-time bolt-loosening detection using mask and region-based convolutional neural network
  publication-title: Struct. Control. Health Monit.
  doi: 10.1002/stc.2741
– volume: 47
  start-page: 337
  year: 2017
  ident: ref_3
  article-title: Thermal adaptive technique for connecting composite material and high-temperature alloy bolt
  publication-title: J. Southeast Univ. (Nat. Sci. Ed.)
– ident: ref_12
  doi: 10.3390/app6110320
– volume: 71
  start-page: 181
  year: 2016
  ident: ref_38
  article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines
  publication-title: Autom. Cons.
  doi: 10.1016/j.autcon.2016.06.008
– volume: 78
  start-page: 314
  year: 1969
  ident: ref_10
  article-title: New criteria for self-loosening of fasteners under vibration
  publication-title: Sae Trans.
– ident: ref_37
  doi: 10.3390/f12060652
– volume: 67
  start-page: 798
  year: 1945
  ident: ref_9
  article-title: Loosening by Vibration of Threaded Fastenings
  publication-title: Mech. Eng.
– ident: ref_28
  doi: 10.1109/CVPR.2016.308
– volume: 100
  start-page: 243
  year: 2020
  ident: ref_17
  article-title: Monitoring of multi-bolt connection looseness using a novel vibro-acoustic method
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-020-05508-7
– volume: Volume 5
  start-page: 23
  year: 2017
  ident: ref_39
  article-title: Automated Vision-Based Loosened Bolt Detection Using the Cascade Detector
  publication-title: Sensors and Instrumentation
  doi: 10.1007/978-3-319-54987-3_4
– ident: ref_7
  doi: 10.3390/f11080816
SSID ssj0023338
Score 2.5696907
Snippet Bolted connections have been widely applied in engineering structures, loosening will happen when bolted connections are subjected to continuous cyclic load,...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5184
SubjectTerms Accuracy
Algorithms
bolt loosening
Deep learning
machine vision
Methods
Neural networks
Support vector machines
Vision systems
YOLOv5
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BlgMcKE8RaFFAHLhEm_gR2yfEtlQgLe0eoGpPUfyCSlVSNml_Px5vNjQS4sQ1HslW5m3PfAPwjkshalH6zPqg5MxIlWntVeY1w1cv4Uzsej9diuNjeXamVkN7dDeUVW5tYjTUG7RnrNsORnhuW4M35nPsv8wRWo19uPqV4QwpfGsdBmrchR0E3spnsLP68nV1PiZgNORjG3QhGlL9eUcQpruQbOKTInT_JN6cVkvecj9Hu__34I_g4RCGph83cvMY7rjmCTy4BU74FPhpbDvPFsHP2fTQ9bFoq0lbny7ayz5dtm3n8FYljWUH6fnJ8uSGP4PvR5--HXzOhiELmQm-vg82WHtdeFl7W9TSECG08JyWVtsSR5IhoJnKjRHcuNKwWpBSF9RaGSIrz4J1eg6zpm3cC0hDcBLorWLUauZyqmtPibZFmVuKwFoJvN_-5soMCOQ4COOyCpkIcqQaOZLA25H0agO78TeiBfJqJECk7PihXf-oBsWrSCkYN15YYg3TQiltpJMhTDNcMU5NAntbtlWD-nbVHy4l8GZcDoqHryl149rrSMOJCgGTTEBMJGRyoOlKc_EzQnirYPmYJC__vfkruE-w2wJxPIs9mPXra7cP98xNf9GtXw_S_RtGCAuh
  priority: 102
  providerName: ProQuest
Title Vision-Based Detection of Bolt Loosening Using YOLOv5
URI https://www.proquest.com/docview/2694063564
https://www.proquest.com/docview/2695291518
https://pubmed.ncbi.nlm.nih.gov/PMC9319482
https://doaj.org/article/26745cf7d2dc4b799bc8e8389c59453c
Volume 22
WOSCitedRecordID wos000833747800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7SpIf2UJo-6Kbp4pQeejGx9bCkY7fd0MJms5QkbE7GetFAsEvWyTG_vSPZu6yhkEsuOkgDlmeseVgz3wB84VKIShQ-tR4POTNSpVp7lXrNwq2XcCZWvV_OxHwul0u12Gr1FXLCOnjgjnHHpBCMGy8ssYZpoZQ20kk0s4YrxqkJ2jcTah1M9aEWxcirwxGiGNQfr0gA5M4lG1ifCNI_8CyHeZFbhubkNbzqPcTkW7ezfdhx9Rt4uYUb-Bb4ZawITydogmzyw7Uxn6pOGp9Mmps2mTXNyoUfHknMCEiuzmZn9_wdXJxMz7__TPv-B6lBM9yietRe515W3uaVNEQILTynhdW2CN3CAtaYyowR3LjCsEqQQufUWolOj2eoON7Dbt3U7gMk6DcgvVWMWs1cRnXlKdE2LzJLA-bVCL6u-VKaHhw89Ki4KTFICCwsNywcwecN6d8OEeN_RJPA3A1BALGOEyjashdt-ZhoR3C4Fk3Zn6xVGSpvswCqh8842izjmQgXHVXtmrtIw4lCX0aOQAxEOtjQcKW-_hPRtRUqJSbJwVO8wUd4QUK5RADizA9ht729c5_gublvr1e3Y3gmliKOcgx7k-l88XscP2McTx-mOLf4dbq4-gdSuvbR
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I0IFAgIJC5RE9uJ7QNCLKXqqul2D6VqTyF-QaUqKZu0iD_Fb8T2JqGRELceuMajxMp8nhnbM98AvE4ZpSXNTKSMXeREMh4JYXhkBHG3XlRLX_V-mNP5nB0d8cUa_OprYVxaZW8TvaFWtXRn5Juu4jJ2ZGrk_dn3yHWNcrerfQuNFSx29c8fdsvWvJttWf2-QWj708HHnajrKhBJ69xaa3SEEYlhpVFJySSiVFCT4kwJlbkeXI7Bi8dS0lTqTJKSokwkWClmQwlD7HK0770G68SCPZ7A-mK2tzgetnjY7vhW_EUY83izQY4IPGFk5PV8c4BRRDvOx7zk4Lbv_G-_5i7c7kLp8MMK-_dgTVf34dYlgsUHkB760vloan21Crd06xPPqrA24bQ-bcO8rhvtToZCnzoRHu_n-xfpQ_h8JfN-BJOqrvRjCG2AZeUVJ1gJomMsSoORUEkWK-zIwQJ42yuykB2LumvmcVrY3ZTTeTHoPIBXg-jZijrkb0JTh4ZBwLF9-wf18mvRGY8CZZSk0lCFlCSCci4k08yGmjLlJMUygI0eGEVngpriDyoCeDkMW-PhboTKStfnXiZF3AZ9LAA6wuBoQuOR6uSbpyHn1noThp78--Mv4MbOwV5e5LP57lO4iVz1iOMlTTZg0i7P9TO4Li_ak2b5vFtLIXy5aoz-BkgKXQ4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I0IFAgIJC7RJrYT2weEWLYrqq62KwRVewrxq61UJWWTFvHX-HXY3iQ0EuLWA9d4lFiZtz3zDcDrlFFa0MxEylglJ5LxSAjDIyOIu_WiWvqu9_05XSzYwQFfbsCvrhfGlVV2NtEbalVJd0Y-dh2XsQNTI2PTlkUsp7P3Z98jN0HK3bR24zTWIrKrf_6w6Vv9bmdqef0Godn2l4-fonbCQCSto2usARJGJIYVRiUFk4hSQU2KMyVU5uZxOTQvHktJU6kzSQqKMpFgpZgNKwyxqmnfew02KbZJzwg2J9uL5ec-3cM2-1tjGWHM43GNHCh4wsjAA_pBAYPodlibecnZze78z7_pLtxuQ-zww1on7sGGLu_DrUvAiw8g3fct9dHE-nAVTnXjC9LKsDLhpDptwnlV1dqdGIW-pCI83JvvXaQP4euV7PsRjMqq1I8htIGXpVecYCWIjrEoDEZCJVmssAMNC-Btx9RctujqbsjHaW6zLMf_vOd_AK960rM1pMjfiCZOMnoChwLuH1Sro7w1KjnKKEmloQopSQTlXEimmQ1BZcpJimUAW52Q5K1pqvM_EhLAy37ZGhV3U1SUujr3NCniNhhkAdCBPA42NFwpT449PDm3Vp0w9OTfH38BN6xg5vOdxe5TuIlcU4mDK022YNSszvUzuC4vmpN69bxVqxC-XbWI_gYfR2Wo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vision-Based+Detection+of+Bolt+Loosening+Using+YOLOv5&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sun%2C+Yuhang&rft.au=Li%2C+Mengxuan&rft.au=Dong%2C+Ruiwen&rft.au=Chen%2C+Weiyu&rft.date=2022-07-11&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=14&rft.spage=5184&rft_id=info:doi/10.3390%2Fs22145184&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22145184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon