Vision-Based Detection of Bolt Loosening Using YOLOv5
Bolted connections have been widely applied in engineering structures, loosening will happen when bolted connections are subjected to continuous cyclic load, and a significant rotation between the nut and the bolt can be observed. Combining deep learning with machine vision, a bolt loosening detecti...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 22; číslo 14; s. 5184 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
11.07.2022
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Bolted connections have been widely applied in engineering structures, loosening will happen when bolted connections are subjected to continuous cyclic load, and a significant rotation between the nut and the bolt can be observed. Combining deep learning with machine vision, a bolt loosening detection method based on the fifth version of You Only Look Once (YOLOv5) is proposed, and the rotation of the nut is identified to detect the bolt loosening. Two different circular markers are added to the bolt and the nut separately, and then YOLOv5 is used to identify the circular markers, and the rotation angle of the nut against the bolt is calculated according to the center coordinate of each predicted box. A bolted connection structure is adopted to illustrate the effectiveness of the method. First, 200 images containing bolts and circular markers are collected to make the dataset, which is divided into a training set, verification set and test set. Second, YOLOv5 is used to train the model; the precision rate and recall rate are respectively 99.8% and 100%. Finally, the robustness of the proposed method in different shooting environments is verified by changing the shooting distance, shooting angle and light condition. When using this method to detect the bolt loosening angle, the minimum identifiable angle is 1°, and the maximum detection error is 5.91% when the camera is tilted 45°. The experimental results show that the proposed method can detect the loosening angle of the bolted connection with high accuracy; especially, the tiny angle of bolt loosening can be identified. Even under some difficult shooting conditions, the method still works. The early stage of bolt loosening can be detected by measuring the rotation angle of the nut against the bolt. |
|---|---|
| AbstractList | Bolted connections have been widely applied in engineering structures, loosening will happen when bolted connections are subjected to continuous cyclic load, and a significant rotation between the nut and the bolt can be observed. Combining deep learning with machine vision, a bolt loosening detection method based on the fifth version of You Only Look Once (YOLOv5) is proposed, and the rotation of the nut is identified to detect the bolt loosening. Two different circular markers are added to the bolt and the nut separately, and then YOLOv5 is used to identify the circular markers, and the rotation angle of the nut against the bolt is calculated according to the center coordinate of each predicted box. A bolted connection structure is adopted to illustrate the effectiveness of the method. First, 200 images containing bolts and circular markers are collected to make the dataset, which is divided into a training set, verification set and test set. Second, YOLOv5 is used to train the model; the precision rate and recall rate are respectively 99.8% and 100%. Finally, the robustness of the proposed method in different shooting environments is verified by changing the shooting distance, shooting angle and light condition. When using this method to detect the bolt loosening angle, the minimum identifiable angle is 1°, and the maximum detection error is 5.91% when the camera is tilted 45°. The experimental results show that the proposed method can detect the loosening angle of the bolted connection with high accuracy; especially, the tiny angle of bolt loosening can be identified. Even under some difficult shooting conditions, the method still works. The early stage of bolt loosening can be detected by measuring the rotation angle of the nut against the bolt. Bolted connections have been widely applied in engineering structures, loosening will happen when bolted connections are subjected to continuous cyclic load, and a significant rotation between the nut and the bolt can be observed. Combining deep learning with machine vision, a bolt loosening detection method based on the fifth version of You Only Look Once (YOLOv5) is proposed, and the rotation of the nut is identified to detect the bolt loosening. Two different circular markers are added to the bolt and the nut separately, and then YOLOv5 is used to identify the circular markers, and the rotation angle of the nut against the bolt is calculated according to the center coordinate of each predicted box. A bolted connection structure is adopted to illustrate the effectiveness of the method. First, 200 images containing bolts and circular markers are collected to make the dataset, which is divided into a training set, verification set and test set. Second, YOLOv5 is used to train the model; the precision rate and recall rate are respectively 99.8% and 100%. Finally, the robustness of the proposed method in different shooting environments is verified by changing the shooting distance, shooting angle and light condition. When using this method to detect the bolt loosening angle, the minimum identifiable angle is 1°, and the maximum detection error is 5.91% when the camera is tilted 45°. The experimental results show that the proposed method can detect the loosening angle of the bolted connection with high accuracy; especially, the tiny angle of bolt loosening can be identified. Even under some difficult shooting conditions, the method still works. The early stage of bolt loosening can be detected by measuring the rotation angle of the nut against the bolt.Bolted connections have been widely applied in engineering structures, loosening will happen when bolted connections are subjected to continuous cyclic load, and a significant rotation between the nut and the bolt can be observed. Combining deep learning with machine vision, a bolt loosening detection method based on the fifth version of You Only Look Once (YOLOv5) is proposed, and the rotation of the nut is identified to detect the bolt loosening. Two different circular markers are added to the bolt and the nut separately, and then YOLOv5 is used to identify the circular markers, and the rotation angle of the nut against the bolt is calculated according to the center coordinate of each predicted box. A bolted connection structure is adopted to illustrate the effectiveness of the method. First, 200 images containing bolts and circular markers are collected to make the dataset, which is divided into a training set, verification set and test set. Second, YOLOv5 is used to train the model; the precision rate and recall rate are respectively 99.8% and 100%. Finally, the robustness of the proposed method in different shooting environments is verified by changing the shooting distance, shooting angle and light condition. When using this method to detect the bolt loosening angle, the minimum identifiable angle is 1°, and the maximum detection error is 5.91% when the camera is tilted 45°. The experimental results show that the proposed method can detect the loosening angle of the bolted connection with high accuracy; especially, the tiny angle of bolt loosening can be identified. Even under some difficult shooting conditions, the method still works. The early stage of bolt loosening can be detected by measuring the rotation angle of the nut against the bolt. |
| Author | Dong, Ruiwen Sun, Yuhang Li, Mengxuan Chen, Weiyu Jiang, Dong |
| AuthorAffiliation | School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; sunyh@njfu.edu.cn (Y.S.); lmx0727@njfu.edu.cn (M.L.); drw@njfu.edu.cn (R.D.); wychen@njfu.edu.cn (W.C.) |
| AuthorAffiliation_xml | – name: School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; sunyh@njfu.edu.cn (Y.S.); lmx0727@njfu.edu.cn (M.L.); drw@njfu.edu.cn (R.D.); wychen@njfu.edu.cn (W.C.) |
| Author_xml | – sequence: 1 givenname: Yuhang orcidid: 0000-0003-3871-5004 surname: Sun fullname: Sun, Yuhang – sequence: 2 givenname: Mengxuan surname: Li fullname: Li, Mengxuan – sequence: 3 givenname: Ruiwen surname: Dong fullname: Dong, Ruiwen – sequence: 4 givenname: Weiyu orcidid: 0000-0002-8206-8388 surname: Chen fullname: Chen, Weiyu – sequence: 5 givenname: Dong orcidid: 0000-0001-9636-8173 surname: Jiang fullname: Jiang, Dong |
| BookMark | eNplkUtvGyEUhVGVqnm0i_6DkbppFpMMb9hUatJXJEveJJW6QswFXKwxpDCO1H9fXKdRk2yAC989HN1zjA5STh6ht3g4o1QP55UQzDhW7AU6woywXhEyHPx3PkTHta6HgVBK1St0SLnSgxLsCPHvscac-gtbves--dnD3Oouh-4iT3O3yLn6FNOqu6m79cdysbzjr9HLYKfq39zvJ-jmy-fry2_9Yvn16vLjogeOydxTPIYRB2WDw1YBkXKUgVPhRiewlgRL3XwASA5eALOSiBFT55SiOjAp6Am62uu6bNfmtsSNLb9NttH8vchlZWyZI0zeECEZhyAdccBGqfUIyiuqNHDNOIWm9WGvdbsdN96BT3Ox0yPRxy8p_jSrfGc0xZop0gTe3wuU_Gvr62w2sYKfJpt83tbmQHOiccuhoe-eoOu8LamNakexQVAuWKPO9xSUXGvxwUCc7W787f84GTyYXbzmId7Wcfqk45_95-wfmhSisg |
| CitedBy_id | crossref_primary_10_3390_s23125655 crossref_primary_10_3390_s23125634 crossref_primary_10_3390_s23010396 crossref_primary_10_35848_1347_4065_ad2b1b crossref_primary_10_1007_s13349_024_00902_w crossref_primary_10_1016_j_autcon_2025_106173 crossref_primary_10_1007_s40430_022_03996_9 crossref_primary_10_1007_s42107_025_01316_9 crossref_primary_10_1016_j_measurement_2025_118692 crossref_primary_10_1038_s41598_024_70176_1 crossref_primary_10_1007_s11831_025_10226_7 crossref_primary_10_3390_app14072937 crossref_primary_10_1088_1361_665X_ae053f crossref_primary_10_1109_ACCESS_2024_3521652 crossref_primary_10_3390_s23094386 crossref_primary_10_3390_app14114385 crossref_primary_10_1007_s40799_024_00754_5 crossref_primary_10_1016_j_engappai_2024_108618 crossref_primary_10_1016_j_measurement_2024_116318 crossref_primary_10_3390_app13032020 crossref_primary_10_1007_s42107_024_01139_0 crossref_primary_10_3390_s23041801 crossref_primary_10_1117_1_JEI_33_4_043044 crossref_primary_10_3390_machines10111039 crossref_primary_10_3390_s24237824 crossref_primary_10_1016_j_prostr_2025_07_072 crossref_primary_10_1177_14759217241268522 crossref_primary_10_1007_s11668_025_02186_8 crossref_primary_10_1109_TIM_2025_3551922 crossref_primary_10_1186_s43088_024_00537_2 crossref_primary_10_1177_14759217241259668 crossref_primary_10_3390_photonics10020198 crossref_primary_10_3390_s23083803 crossref_primary_10_1007_s10921_025_01206_9 crossref_primary_10_1016_j_ymssp_2024_112114 crossref_primary_10_1177_13694332231157260 crossref_primary_10_20965_jrm_2025_p0918 crossref_primary_10_1002_cpe_7713 crossref_primary_10_1007_s41062_025_01860_y |
| Cites_doi | 10.1145/3065386 10.1061/(ASCE)PS.1949-1204.0000504 10.1177/1475921718757459 10.1016/j.jclepro.2020.122206 10.1117/12.2219055 10.1007/978-3-319-54777-0_9 10.1177/14759217211004243 10.3390/s20123382 10.1155/2021/8325398 10.1177/1369433219852565 10.1177/1045389X211018845 10.1016/j.engstruct.2020.110508 10.3390/e23111372 10.1016/j.autcon.2019.102844 10.1109/CVPR.2014.81 10.1061/(ASCE)PS.1949-1204.0000587 10.1111/mice.12797 10.1109/CVPR.2016.91 10.1109/TPAMI.2016.2577031 10.1115/1.1586936 10.1016/j.ymssp.2021.108652 10.1088/1361-665X/aa6e93 10.1016/j.soildyn.2021.106681 10.1109/ICCV.2015.169 10.1007/s10921-019-0626-1 10.1177/1475921719837509 10.1155/2019/2801638 10.1016/j.autcon.2021.104009 10.1002/stc.2943 10.1016/j.compag.2022.107009 10.3390/app11199134 10.1002/stc.2292 10.1007/978-3-319-46448-0_2 10.1002/stc.2741 10.3390/app6110320 10.1016/j.autcon.2016.06.008 10.3390/f12060652 10.1109/CVPR.2016.308 10.1007/s11071-020-05508-7 10.1007/978-3-319-54987-3_4 10.3390/f11080816 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22145184 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_26745cf7d2dc4b799bc8e8389c59453c PMC9319482 10_3390_s22145184 |
| GrantInformation_xml | – fundername: the Qing Lan Project – fundername: Natural Science Research Project of Higher Education in Jiangsu Province grantid: 20KJB460003 – fundername: the National Natural Science Foundation of China grantid: 11602112 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c512t-31bfb1f8afd1a8c277b7f536dbd61972179890cc75ce6c4a726b13dd8839f4763 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000833747800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 15:16:01 EDT 2025 Tue Nov 04 01:39:38 EST 2025 Sun Nov 09 12:23:12 EST 2025 Tue Oct 07 07:24:30 EDT 2025 Sat Nov 29 07:16:37 EST 2025 Tue Nov 18 21:39:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c512t-31bfb1f8afd1a8c277b7f536dbd61972179890cc75ce6c4a726b13dd8839f4763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3871-5004 0000-0001-9636-8173 0000-0002-8206-8388 |
| OpenAccessLink | https://doaj.org/article/26745cf7d2dc4b799bc8e8389c59453c |
| PMID | 35890864 |
| PQID | 2694063564 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_26745cf7d2dc4b799bc8e8389c59453c pubmedcentral_primary_oai_pubmedcentral_nih_gov_9319482 proquest_miscellaneous_2695291518 proquest_journals_2694063564 crossref_citationtrail_10_3390_s22145184 crossref_primary_10_3390_s22145184 |
| PublicationCentury | 2000 |
| PublicationDate | 20220711 |
| PublicationDateYYYYMMDD | 2022-07-11 |
| PublicationDate_xml | – month: 7 year: 2022 text: 20220711 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Gong (ref_49) 2022; 133 ref_12 Zhang (ref_16) 2019; 22 Huynh (ref_41) 2019; 105 Wang (ref_17) 2020; 100 Cha (ref_32) 2017; Volume 2 Huo (ref_13) 2017; 26 Jiang (ref_2) 2014; 33 Cha (ref_38) 2016; 71 Tan (ref_3) 2017; 47 Ramana (ref_40) 2018; 18 Zhou (ref_20) 2022; 198 ref_25 Huang (ref_5) 2022; 168 Junker (ref_10) 1969; 78 ref_23 Yuan (ref_48) 2021; 28 Jiang (ref_1) 2014; 37 Obiechefu (ref_22) 2021; 8 ref_28 Ma (ref_18) 2020; 268 ref_27 ref_26 Jiang (ref_8) 2015; 32 Zhao (ref_42) 2019; 26 ref_36 Xu (ref_14) 2019; 38 ref_31 ref_30 Yang (ref_51) 2022; 29 ref_37 Lu (ref_34) 2021; 12 Xu (ref_35) 2021; 144 Ramana (ref_39) 2017; Volume 5 Jiang (ref_11) 2003; 125 Zhang (ref_44) 2021; 21 Zhou (ref_50) 2021; 2021 Pal (ref_46) 2021; 29 Goodier (ref_9) 1945; 67 Wang (ref_4) 2018; 38 ref_47 ref_45 Ji (ref_21) 2020; 212 Krizhevsky (ref_24) 2017; 60 Ren (ref_29) 2017; 39 Zhang (ref_43) 2019; 19 Zhao (ref_15) 2019; 2019 Xu (ref_19) 2021; 33 ref_7 Xu (ref_33) 2021; 12 ref_6 |
| References_xml | – volume: 60 start-page: 84 year: 2017 ident: ref_24 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 12 start-page: 04020058 year: 2021 ident: ref_33 article-title: Dynamic Analysis and Parameter Optimization of Pipelines with Multidimensional Vibration Isolation and Mitigation Device publication-title: J. Pipeline Syst. Eng. Pract. doi: 10.1061/(ASCE)PS.1949-1204.0000504 – volume: 18 start-page: 422 year: 2018 ident: ref_40 article-title: Fully automated vision-based loosened bolt detection using the Viola–Jones algorithm publication-title: Struct. Health Monit. doi: 10.1177/1475921718757459 – volume: 268 start-page: 122206 year: 2020 ident: ref_18 article-title: Ecodesign method of intelligent boom sprayer based on Preferable Brownfield Process publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.122206 – ident: ref_23 doi: 10.1117/12.2219055 – volume: Volume 2 start-page: 71 year: 2017 ident: ref_32 article-title: Vision-Based Concrete Crack Detection Using a Convolutional Neural Network publication-title: Dynamics of Civil Structures doi: 10.1007/978-3-319-54777-0_9 – volume: 21 start-page: 438 year: 2021 ident: ref_44 article-title: Bolt damage identification based on orientation-aware center point estimation network publication-title: Struct. Health Monit. doi: 10.1177/14759217211004243 – ident: ref_45 doi: 10.3390/s20123382 – volume: 33 start-page: 35 year: 2014 ident: ref_2 article-title: Parameter identification of bolted-joint based on the model with thin-layer elements with isotropic constitutive relationship publication-title: J. Vib. Shock. – volume: 2021 start-page: 8325398 year: 2021 ident: ref_50 article-title: Computer Vision-Based Detection for Delayed Fracture of Bolts in Steel Bridges publication-title: J. Sens. doi: 10.1155/2021/8325398 – volume: 22 start-page: 2882 year: 2019 ident: ref_16 article-title: Bolt loosening detection based on audio classification publication-title: Adv. Struct. Eng. doi: 10.1177/1369433219852565 – volume: 29 start-page: e2873 year: 2021 ident: ref_46 article-title: A deep-learning approach for health monitoring of a steel frame structure with bolted connections publication-title: Struct. Control. Health Monit. – volume: 33 start-page: 231 year: 2021 ident: ref_19 article-title: New control strategy for suppressing the local vibration of sandwich beams based on the wave propagation method publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X211018845 – volume: 212 start-page: 110508 year: 2020 ident: ref_21 article-title: Vision-based measurements of deformations and cracks for RC structure tests publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110508 – ident: ref_36 doi: 10.3390/e23111372 – volume: 105 start-page: 102844 year: 2019 ident: ref_41 article-title: Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.102844 – ident: ref_26 doi: 10.1109/CVPR.2014.81 – volume: 32 start-page: 220 year: 2015 ident: ref_8 article-title: Contact interface parameter identification of bolted joint structure with uncertainty using thin layer element method publication-title: Eng. Mech. – volume: 12 start-page: 04021045 year: 2021 ident: ref_34 article-title: Novel Data-Driven Framework for Predicting Residual Strength of Corroded Pipelines publication-title: J. Pipeline Syst. Eng. Pract. doi: 10.1061/(ASCE)PS.1949-1204.0000587 – ident: ref_47 doi: 10.1111/mice.12797 – volume: 38 start-page: 1169 year: 2018 ident: ref_4 article-title: Anti-loosening Experiment of Composite Bolted Structures Under High Temperature and Vibration Circumstance publication-title: J. Vib. Meas. Diagn. – ident: ref_30 doi: 10.1109/CVPR.2016.91 – volume: 39 start-page: 1137 year: 2017 ident: ref_29 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 125 start-page: 518 year: 2003 ident: ref_11 article-title: A study of early stage self-loosening of bolted joints publication-title: J. Mech. Des. doi: 10.1115/1.1586936 – volume: 168 start-page: 108652 year: 2022 ident: ref_5 article-title: A comprehensive review of loosening detection methods for threaded fasteners publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108652 – volume: 26 start-page: 104010 year: 2017 ident: ref_13 article-title: A fractal contact theory based model for bolted connection looseness monitoring using piezoceramic transducers publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa6e93 – volume: 144 start-page: 1006681 year: 2021 ident: ref_35 article-title: Development of hybrid test system for three-dimensional viscoelastic damping frame structures based on Matlab-OpenSees combined programming publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2021.106681 – ident: ref_27 doi: 10.1109/ICCV.2015.169 – volume: 8 start-page: 91 year: 2021 ident: ref_22 article-title: Damage detection techniques for structural health monitoring of bridges from computer vision derived parameters publication-title: Struct. Monit. Maint. – volume: 38 start-page: 85 year: 2019 ident: ref_14 article-title: A Modified Time Reversal Method for Guided Wave Based Bolt Loosening Monitoring in a Lap Joint publication-title: J. Nondestruct. Eval. doi: 10.1007/s10921-019-0626-1 – volume: 19 start-page: 105 year: 2019 ident: ref_43 article-title: Autonomous bolt loosening detection using deep learning publication-title: Struct. Health Monit. doi: 10.1177/1475921719837509 – volume: 37 start-page: 688 year: 2014 ident: ref_1 article-title: Stiffness identification of fixed bolted-joint interface publication-title: J. Solid Rocket Technol. – volume: 2019 start-page: 2801638 year: 2019 ident: ref_15 article-title: Health Monitoring of Bolt Looseness in Timber Structures Using PZT-Enabled Time-Reversal Method publication-title: J. Sens. doi: 10.1155/2019/2801638 – volume: 133 start-page: 104009 year: 2022 ident: ref_49 article-title: Quantitative loosening detection of threaded fasteners using vision-based deep learning and geometric imaging theory publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.104009 – volume: 29 start-page: e2943 year: 2022 ident: ref_51 article-title: Deep learning-based bolt loosening detection for wind turbine towers publication-title: Struct. Control. Health Monit. doi: 10.1002/stc.2943 – volume: 198 start-page: 107009 year: 2022 ident: ref_20 article-title: Finite element explicit dynamics simulation of motion and shedding of jujube fruits under forced vibration publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107009 – ident: ref_6 doi: 10.3390/app11199134 – volume: 26 start-page: e2292 year: 2019 ident: ref_42 article-title: Bolt loosening angle detection technology using deep learning publication-title: Struct. Control. Health Monit. doi: 10.1002/stc.2292 – ident: ref_31 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_25 – volume: 28 start-page: e2741 year: 2021 ident: ref_48 article-title: Near real-time bolt-loosening detection using mask and region-based convolutional neural network publication-title: Struct. Control. Health Monit. doi: 10.1002/stc.2741 – volume: 47 start-page: 337 year: 2017 ident: ref_3 article-title: Thermal adaptive technique for connecting composite material and high-temperature alloy bolt publication-title: J. Southeast Univ. (Nat. Sci. Ed.) – ident: ref_12 doi: 10.3390/app6110320 – volume: 71 start-page: 181 year: 2016 ident: ref_38 article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines publication-title: Autom. Cons. doi: 10.1016/j.autcon.2016.06.008 – volume: 78 start-page: 314 year: 1969 ident: ref_10 article-title: New criteria for self-loosening of fasteners under vibration publication-title: Sae Trans. – ident: ref_37 doi: 10.3390/f12060652 – volume: 67 start-page: 798 year: 1945 ident: ref_9 article-title: Loosening by Vibration of Threaded Fastenings publication-title: Mech. Eng. – ident: ref_28 doi: 10.1109/CVPR.2016.308 – volume: 100 start-page: 243 year: 2020 ident: ref_17 article-title: Monitoring of multi-bolt connection looseness using a novel vibro-acoustic method publication-title: Nonlinear Dynam. doi: 10.1007/s11071-020-05508-7 – volume: Volume 5 start-page: 23 year: 2017 ident: ref_39 article-title: Automated Vision-Based Loosened Bolt Detection Using the Cascade Detector publication-title: Sensors and Instrumentation doi: 10.1007/978-3-319-54987-3_4 – ident: ref_7 doi: 10.3390/f11080816 |
| SSID | ssj0023338 |
| Score | 2.5696907 |
| Snippet | Bolted connections have been widely applied in engineering structures, loosening will happen when bolted connections are subjected to continuous cyclic load,... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 5184 |
| SubjectTerms | Accuracy Algorithms bolt loosening Deep learning machine vision Methods Neural networks Support vector machines Vision systems YOLOv5 |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BlgMcKE8RaFFAHLhEm_gR2yfEtlQgLe0eoGpPUfyCSlVSNml_Px5vNjQS4sQ1HslW5m3PfAPwjkshalH6zPqg5MxIlWntVeY1w1cv4Uzsej9diuNjeXamVkN7dDeUVW5tYjTUG7RnrNsORnhuW4M35nPsv8wRWo19uPqV4QwpfGsdBmrchR0E3spnsLP68nV1PiZgNORjG3QhGlL9eUcQpruQbOKTInT_JN6cVkvecj9Hu__34I_g4RCGph83cvMY7rjmCTy4BU74FPhpbDvPFsHP2fTQ9bFoq0lbny7ayz5dtm3n8FYljWUH6fnJ8uSGP4PvR5--HXzOhiELmQm-vg82WHtdeFl7W9TSECG08JyWVtsSR5IhoJnKjRHcuNKwWpBSF9RaGSIrz4J1eg6zpm3cC0hDcBLorWLUauZyqmtPibZFmVuKwFoJvN_-5soMCOQ4COOyCpkIcqQaOZLA25H0agO78TeiBfJqJECk7PihXf-oBsWrSCkYN15YYg3TQiltpJMhTDNcMU5NAntbtlWD-nbVHy4l8GZcDoqHryl149rrSMOJCgGTTEBMJGRyoOlKc_EzQnirYPmYJC__vfkruE-w2wJxPIs9mPXra7cP98xNf9GtXw_S_RtGCAuh priority: 102 providerName: ProQuest |
| Title | Vision-Based Detection of Bolt Loosening Using YOLOv5 |
| URI | https://www.proquest.com/docview/2694063564 https://www.proquest.com/docview/2695291518 https://pubmed.ncbi.nlm.nih.gov/PMC9319482 https://doaj.org/article/26745cf7d2dc4b799bc8e8389c59453c |
| Volume | 22 |
| WOSCitedRecordID | wos000833747800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7SpIf2UJo-6Kbp4pQeejGx9bCkY7fd0MJms5QkbE7GetFAsEvWyTG_vSPZu6yhkEsuOkgDlmeseVgz3wB84VKIShQ-tR4POTNSpVp7lXrNwq2XcCZWvV_OxHwul0u12Gr1FXLCOnjgjnHHpBCMGy8ssYZpoZQ20kk0s4YrxqkJ2jcTah1M9aEWxcirwxGiGNQfr0gA5M4lG1ifCNI_8CyHeZFbhubkNbzqPcTkW7ezfdhx9Rt4uYUb-Bb4ZawITydogmzyw7Uxn6pOGp9Mmps2mTXNyoUfHknMCEiuzmZn9_wdXJxMz7__TPv-B6lBM9yietRe515W3uaVNEQILTynhdW2CN3CAtaYyowR3LjCsEqQQufUWolOj2eoON7Dbt3U7gMk6DcgvVWMWs1cRnXlKdE2LzJLA-bVCL6u-VKaHhw89Ki4KTFICCwsNywcwecN6d8OEeN_RJPA3A1BALGOEyjashdt-ZhoR3C4Fk3Zn6xVGSpvswCqh8842izjmQgXHVXtmrtIw4lCX0aOQAxEOtjQcKW-_hPRtRUqJSbJwVO8wUd4QUK5RADizA9ht729c5_gublvr1e3Y3gmliKOcgx7k-l88XscP2McTx-mOLf4dbq4-gdSuvbR |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I0IFAgIJC5RE9uJ7QNCLKXqqul2D6VqTyF-QaUqKZu0iD_Fb8T2JqGRELceuMajxMp8nhnbM98AvE4ZpSXNTKSMXeREMh4JYXhkBHG3XlRLX_V-mNP5nB0d8cUa_OprYVxaZW8TvaFWtXRn5Juu4jJ2ZGrk_dn3yHWNcrerfQuNFSx29c8fdsvWvJttWf2-QWj708HHnajrKhBJ69xaa3SEEYlhpVFJySSiVFCT4kwJlbkeXI7Bi8dS0lTqTJKSokwkWClmQwlD7HK0770G68SCPZ7A-mK2tzgetnjY7vhW_EUY83izQY4IPGFk5PV8c4BRRDvOx7zk4Lbv_G-_5i7c7kLp8MMK-_dgTVf34dYlgsUHkB760vloan21Crd06xPPqrA24bQ-bcO8rhvtToZCnzoRHu_n-xfpQ_h8JfN-BJOqrvRjCG2AZeUVJ1gJomMsSoORUEkWK-zIwQJ42yuykB2LumvmcVrY3ZTTeTHoPIBXg-jZijrkb0JTh4ZBwLF9-wf18mvRGY8CZZSk0lCFlCSCci4k08yGmjLlJMUygI0eGEVngpriDyoCeDkMW-PhboTKStfnXiZF3AZ9LAA6wuBoQuOR6uSbpyHn1noThp78--Mv4MbOwV5e5LP57lO4iVz1iOMlTTZg0i7P9TO4Li_ak2b5vFtLIXy5aoz-BkgKXQ4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I0IFAgIJC7RJrYT2weEWLYrqq62KwRVewrxq61UJWWTFvHX-HXY3iQ0EuLWA9d4lFiZtz3zDcDrlFFa0MxEylglJ5LxSAjDIyOIu_WiWvqu9_05XSzYwQFfbsCvrhfGlVV2NtEbalVJd0Y-dh2XsQNTI2PTlkUsp7P3Z98jN0HK3bR24zTWIrKrf_6w6Vv9bmdqef0Godn2l4-fonbCQCSto2usARJGJIYVRiUFk4hSQU2KMyVU5uZxOTQvHktJU6kzSQqKMpFgpZgNKwyxqmnfew02KbZJzwg2J9uL5ec-3cM2-1tjGWHM43GNHCh4wsjAA_pBAYPodlibecnZze78z7_pLtxuQ-zww1on7sGGLu_DrUvAiw8g3fct9dHE-nAVTnXjC9LKsDLhpDptwnlV1dqdGIW-pCI83JvvXaQP4euV7PsRjMqq1I8htIGXpVecYCWIjrEoDEZCJVmssAMNC-Btx9RctujqbsjHaW6zLMf_vOd_AK960rM1pMjfiCZOMnoChwLuH1Sro7w1KjnKKEmloQopSQTlXEimmQ1BZcpJimUAW52Q5K1pqvM_EhLAy37ZGhV3U1SUujr3NCniNhhkAdCBPA42NFwpT449PDm3Vp0w9OTfH38BN6xg5vOdxe5TuIlcU4mDK022YNSszvUzuC4vmpN69bxVqxC-XbWI_gYfR2Wo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vision-Based+Detection+of+Bolt+Loosening+Using+YOLOv5&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sun%2C+Yuhang&rft.au=Li%2C+Mengxuan&rft.au=Dong%2C+Ruiwen&rft.au=Chen%2C+Weiyu&rft.date=2022-07-11&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=14&rft.spage=5184&rft_id=info:doi/10.3390%2Fs22145184&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22145184 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |