Novel feature selection method via kernel tensor decomposition for improved multi-omics data analysis

Background Feature selection of multi-omics data analysis remains challenging owing to the size of omics datasets, comprising approximately 10 2 – 10 5 features. In particular, appropriate methods to weight individual omics datasets are unclear, and the approach adopted has substantial consequences...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC medical genomics Ročník 15; číslo 1; s. 37 - 12
Hlavní autori: Taguchi, Y-h., Turki, Turki
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 24.02.2022
BMC
Predmet:
ISSN:1755-8794, 1755-8794
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Feature selection of multi-omics data analysis remains challenging owing to the size of omics datasets, comprising approximately 10 2 – 10 5 features. In particular, appropriate methods to weight individual omics datasets are unclear, and the approach adopted has substantial consequences for feature selection. In this study, we extended a recently proposed kernel tensor decomposition (KTD)-based unsupervised feature extraction (FE) method to integrate multi-omics datasets obtained from common samples in a weight-free manner. Method KTD-based unsupervised FE was reformatted as the collection of kernelized tensors sharing common samples, which was applied to synthetic and real datasets. Results The proposed advanced KTD-based unsupervised FE method showed comparative performance to that of the previously proposed KTD method, as well as tensor decomposition-based unsupervised FE, but required reduced memory and central processing unit time. Moreover, this advanced KTD method, specifically designed for multi-omics analysis, attributes P values to features, which is rare for existing multi-omics–oriented methods. Conclusions The sample R code is available at https://github.com/tagtag/MultiR/ .
AbstractList Background Feature selection of multi-omics data analysis remains challenging owing to the size of omics datasets, comprising approximately 10 2 – 10 5 features. In particular, appropriate methods to weight individual omics datasets are unclear, and the approach adopted has substantial consequences for feature selection. In this study, we extended a recently proposed kernel tensor decomposition (KTD)-based unsupervised feature extraction (FE) method to integrate multi-omics datasets obtained from common samples in a weight-free manner. Method KTD-based unsupervised FE was reformatted as the collection of kernelized tensors sharing common samples, which was applied to synthetic and real datasets. Results The proposed advanced KTD-based unsupervised FE method showed comparative performance to that of the previously proposed KTD method, as well as tensor decomposition-based unsupervised FE, but required reduced memory and central processing unit time. Moreover, this advanced KTD method, specifically designed for multi-omics analysis, attributes P values to features, which is rare for existing multi-omics–oriented methods. Conclusions The sample R code is available at https://github.com/tagtag/MultiR/ .
Feature selection of multi-omics data analysis remains challenging owing to the size of omics datasets, comprising approximately [Formula: see text]-[Formula: see text] features. In particular, appropriate methods to weight individual omics datasets are unclear, and the approach adopted has substantial consequences for feature selection. In this study, we extended a recently proposed kernel tensor decomposition (KTD)-based unsupervised feature extraction (FE) method to integrate multi-omics datasets obtained from common samples in a weight-free manner. KTD-based unsupervised FE was reformatted as the collection of kernelized tensors sharing common samples, which was applied to synthetic and real datasets. The proposed advanced KTD-based unsupervised FE method showed comparative performance to that of the previously proposed KTD method, as well as tensor decomposition-based unsupervised FE, but required reduced memory and central processing unit time. Moreover, this advanced KTD method, specifically designed for multi-omics analysis, attributes P values to features, which is rare for existing multi-omics-oriented methods. The sample R code is available at https://github.com/tagtag/MultiR/ .
Abstract Background Feature selection of multi-omics data analysis remains challenging owing to the size of omics datasets, comprising approximately $$10^2$$ 10 2 – $$10^5$$ 10 5 features. In particular, appropriate methods to weight individual omics datasets are unclear, and the approach adopted has substantial consequences for feature selection. In this study, we extended a recently proposed kernel tensor decomposition (KTD)-based unsupervised feature extraction (FE) method to integrate multi-omics datasets obtained from common samples in a weight-free manner. Method KTD-based unsupervised FE was reformatted as the collection of kernelized tensors sharing common samples, which was applied to synthetic and real datasets. Results The proposed advanced KTD-based unsupervised FE method showed comparative performance to that of the previously proposed KTD method, as well as tensor decomposition-based unsupervised FE, but required reduced memory and central processing unit time. Moreover, this advanced KTD method, specifically designed for multi-omics analysis, attributes P values to features, which is rare for existing multi-omics–oriented methods. Conclusions The sample R code is available at https://github.com/tagtag/MultiR/ .
Feature selection of multi-omics data analysis remains challenging owing to the size of omics datasets, comprising approximately [Formula: see text]-[Formula: see text] features. In particular, appropriate methods to weight individual omics datasets are unclear, and the approach adopted has substantial consequences for feature selection. In this study, we extended a recently proposed kernel tensor decomposition (KTD)-based unsupervised feature extraction (FE) method to integrate multi-omics datasets obtained from common samples in a weight-free manner.BACKGROUNDFeature selection of multi-omics data analysis remains challenging owing to the size of omics datasets, comprising approximately [Formula: see text]-[Formula: see text] features. In particular, appropriate methods to weight individual omics datasets are unclear, and the approach adopted has substantial consequences for feature selection. In this study, we extended a recently proposed kernel tensor decomposition (KTD)-based unsupervised feature extraction (FE) method to integrate multi-omics datasets obtained from common samples in a weight-free manner.KTD-based unsupervised FE was reformatted as the collection of kernelized tensors sharing common samples, which was applied to synthetic and real datasets.METHODKTD-based unsupervised FE was reformatted as the collection of kernelized tensors sharing common samples, which was applied to synthetic and real datasets.The proposed advanced KTD-based unsupervised FE method showed comparative performance to that of the previously proposed KTD method, as well as tensor decomposition-based unsupervised FE, but required reduced memory and central processing unit time. Moreover, this advanced KTD method, specifically designed for multi-omics analysis, attributes P values to features, which is rare for existing multi-omics-oriented methods.RESULTSThe proposed advanced KTD-based unsupervised FE method showed comparative performance to that of the previously proposed KTD method, as well as tensor decomposition-based unsupervised FE, but required reduced memory and central processing unit time. Moreover, this advanced KTD method, specifically designed for multi-omics analysis, attributes P values to features, which is rare for existing multi-omics-oriented methods.The sample R code is available at https://github.com/tagtag/MultiR/ .CONCLUSIONSThe sample R code is available at https://github.com/tagtag/MultiR/ .
ArticleNumber 37
Author Taguchi, Y-h.
Turki, Turki
Author_xml – sequence: 1
  givenname: Y-h.
  surname: Taguchi
  fullname: Taguchi, Y-h.
  email: tag@granular.com
  organization: Department of Physics, Chuo University
– sequence: 2
  givenname: Turki
  surname: Turki
  fullname: Turki, Turki
  organization: Department of Computer Science, King Abdulaziz University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35209912$$D View this record in MEDLINE/PubMed
BookMark eNp9kjlv3DAQhYnAQXwkfyBFoDKNYl462AQIjBwGjKRxT4zI4ZobSdyQ1AL-96ZXdmC7cDWDmfe-KeadkqM5zEjIR0a_MNa354lxxWlNOa9pGbBaviEnrGuauu-UPHrSH5PTlLaUtrRR7B05Fg2nSjF-QvB32ONYOYS8RKwSjmiyD3M1Yb4Jttp7qP5inIsm45xCrCyaMO1C8geZKxM_7WKh2GpaxuzrMHmTKgsZKphhvE0-vSdvHYwJPzzUM3L94_v1xa_66s_Py4tvV7VpGM81B8WBMQNUMctbBDMoCtYJMFIMzlkmBxickop1gzJohC1bi73ipQhxRi5XrA2w1bvoJ4i3OoDXh0GIGw0xezOiFoK7BqWk0DkJfT902IKURvQdBdd2hfV1Ze2WYUJrcM4RxmfQ55vZ3-hN2Ou-71rWqQL4_ACI4d-CKevJJ4PjCDOGJWneCtE3TLG2SD89vfX_yOObiqBfBSaGlCI6bXyG-weU037UjOr7ROg1EbokQh8SoWWx8hfWR_qrJrGaUhHPG4x6G5ZYnplec90BtffMrw
CitedBy_id crossref_primary_10_1016_j_gene_2022_147038
crossref_primary_10_3389_frai_2023_1237542
crossref_primary_10_1371_journal_pcbi_1012236
crossref_primary_10_1371_journal_pone_0289029
crossref_primary_10_1093_bfgp_elae013
Cites_doi 10.1093/bioinformatics/btt610
10.1212/WNL.0000000000003848
10.1093/bioinformatics/btz822
10.1007/s42979-020-00210-2
10.1093/nar/gkw377
10.1038/s41423-018-0007-1
10.1016/j.biotechadv.2021.107739
10.1001/jamanetworkopen.2019.5718
10.1038/s41598-019-56847-4
10.1016/j.knosys.2021.106834
10.1093/bioinformatics/bty1054
10.1109/TNNLS.2021.3105142
10.1038/s41598-021-87779-7
10.1002/hep.28110
10.1111/j.2517-6161.1996.tb02080.x
10.1186/s13195-018-0378-7
10.1007/s12035-016-9826-1
10.1093/nar/gkv007
10.1016/S0264-410X(00)00466-7
10.1093/nar/gkw936
10.1093/nar/gkv1191
10.1186/s12859-018-2068-7
10.1073/pnas.091062498
10.1038/nprot.2008.211
10.1016/j.patcog.2018.02.020
10.15252/msb.20178124
10.1177/1177932219899051
10.1007/978-3-030-22456-1
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/s12920-022-01181-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1755-8794
EndPage 12
ExternalDocumentID oai_doaj_org_article_332f5e440a7f4a88b7e6a44c3870af67
PMC8876179
35209912
10_1186_s12920_022_01181_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
~8M
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c512t-2a92a11ca091d26eacb90adf3ac43bffd14babf94917b9cec3dadfde892dfd33
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761285000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1755-8794
IngestDate Fri Oct 03 12:51:35 EDT 2025
Tue Nov 04 01:48:04 EST 2025
Thu Sep 04 19:54:40 EDT 2025
Thu Apr 03 07:08:21 EDT 2025
Tue Nov 18 22:49:33 EST 2025
Sat Nov 29 04:12:05 EST 2025
Sat Sep 06 07:29:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Tensor decomposition
Feature selection
Kernel trick
Multiomcis
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-2a92a11ca091d26eacb90adf3ac43bffd14babf94917b9cec3dadfde892dfd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12920-022-01181-4
PMID 35209912
PQID 2633851916
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_332f5e440a7f4a88b7e6a44c3870af67
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8876179
proquest_miscellaneous_2633851916
pubmed_primary_35209912
crossref_citationtrail_10_1186_s12920_022_01181_4
crossref_primary_10_1186_s12920_022_01181_4
springer_journals_10_1186_s12920_022_01181_4
PublicationCentury 2000
PublicationDate 2022-02-24
PublicationDateYYYYMMDD 2022-02-24
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical genomics
PublicationTitleAbbrev BMC Med Genomics
PublicationTitleAlternate BMC Med Genomics
PublicationYear 2022
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References I Subramanian (1181_CR2) 2020; 14
ME Ritchie (1181_CR22) 2015; 43
R Argelaguet (1181_CR26) 2018; 14
PH Huynh (1181_CR3) 2020; 1
X Li (1181_CR15) 2018; 2018
RM Jacobson (1181_CR29) 2001; 19
JA Seoane (1181_CR28) 2013; 30
J Li (1181_CR24) 2019; 36
MV Kuleshov (1181_CR13) 2016; 44
M Khalili (1181_CR17) 2015; 62
C Song (1181_CR18) 2019; 2
DW Huang (1181_CR14) 2008; 4
Y-R Wang (1181_CR20) 2016; 54
1181_CR21
J Pakpoor (1181_CR19) 2017; 88
Y-H Taguchi (1181_CR5) 2021; 217
VG Tusher (1181_CR23) 2001; 98
1181_CR8
YH Taguchi (1181_CR7) 2018
KL Ng (1181_CR12) 2020; 10
PS Reel (1181_CR1) 2021; 49
W Gao (1181_CR31) 2021
L Hong (1181_CR16) 2018; 15
A Singh (1181_CR27) 2019; 35
YH Taguchi (1181_CR4) 2020
R Tibshirani (1181_CR9) 1996; 58
EW Deutsch (1181_CR11) 2016; 45
W Gao (1181_CR30) 2018; 79
A Liaw (1181_CR10) 2002; 2
ATL Lun (1181_CR25) 2015; 44
SS Roy (1181_CR6) 2021; 11
References_xml – volume: 30
  start-page: 838
  issue: 6
  year: 2013
  ident: 1181_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt610
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 1181_CR10
  publication-title: R News
– volume: 88
  start-page: 1630
  issue: 17
  year: 2017
  ident: 1181_CR19
  publication-title: Neurology.
  doi: 10.1212/WNL.0000000000003848
– volume: 36
  start-page: 1785
  issue: 6
  year: 2019
  ident: 1181_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz822
– volume: 2018
  start-page: 1
  year: 2018
  ident: 1181_CR15
  publication-title: Biomed Res Int
– volume: 1
  start-page: 1
  issue: 4
  year: 2020
  ident: 1181_CR3
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-020-00210-2
– volume: 44
  start-page: 90
  issue: W1
  year: 2016
  ident: 1181_CR13
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw377
– volume: 15
  start-page: 1003
  issue: 12
  year: 2018
  ident: 1181_CR16
  publication-title: Cell Mol Immunol
  doi: 10.1038/s41423-018-0007-1
– volume: 49
  year: 2021
  ident: 1181_CR1
  publication-title: Biotechnol Adv.
  doi: 10.1016/j.biotechadv.2021.107739
– volume: 2
  issue: 6
  year: 2019
  ident: 1181_CR18
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.5718
– ident: 1181_CR8
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 1181_CR12
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56847-4
– volume: 217
  year: 2021
  ident: 1181_CR5
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.106834
– volume: 35
  start-page: 3055
  issue: 17
  year: 2019
  ident: 1181_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1054
– year: 2021
  ident: 1181_CR31
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3105142
– volume: 11
  start-page: 8909
  issue: 1
  year: 2021
  ident: 1181_CR6
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-87779-7
– volume: 62
  start-page: 1364
  issue: 5
  year: 2015
  ident: 1181_CR17
  publication-title: Hepatology.
  doi: 10.1002/hep.28110
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 1181_CR9
  publication-title: J R Stat Soc: Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: 1181_CR21
  doi: 10.1186/s13195-018-0378-7
– volume: 54
  start-page: 2338
  issue: 3
  year: 2016
  ident: 1181_CR20
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-016-9826-1
– volume: 43
  start-page: 47
  issue: 7
  year: 2015
  ident: 1181_CR22
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– volume: 19
  start-page: 2418
  issue: 17
  year: 2001
  ident: 1181_CR29
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(00)00466-7
– volume: 45
  start-page: 1100
  issue: D1
  year: 2016
  ident: 1181_CR11
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw936
– volume: 44
  start-page: 45
  issue: 5
  year: 2015
  ident: 1181_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1191
– year: 2018
  ident: 1181_CR7
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-018-2068-7
– volume: 98
  start-page: 5116
  issue: 9
  year: 2001
  ident: 1181_CR23
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.091062498
– volume: 4
  start-page: 44
  issue: 1
  year: 2008
  ident: 1181_CR14
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.211
– volume: 79
  start-page: 328
  year: 2018
  ident: 1181_CR30
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.02.020
– volume: 14
  start-page: 8124
  issue: 6
  year: 2018
  ident: 1181_CR26
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20178124
– volume: 14
  start-page: 117793221989905
  year: 2020
  ident: 1181_CR2
  publication-title: Bioinform Biol Insights
  doi: 10.1177/1177932219899051
– volume-title: Unsupervised feature extraction applied to bioinformatics
  year: 2020
  ident: 1181_CR4
  doi: 10.1007/978-3-030-22456-1
SSID ssj0060591
Score 2.3185484
Snippet Background Feature selection of multi-omics data analysis remains challenging owing to the size of omics datasets, comprising approximately 10 2 – 10 5...
Feature selection of multi-omics data analysis remains challenging owing to the size of omics datasets, comprising approximately [Formula: see text]-[Formula:...
Abstract Background Feature selection of multi-omics data analysis remains challenging owing to the size of omics datasets, comprising approximately $$10^2$$...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 37
SubjectTerms Biomedical and Life Sciences
Biomedicine
Data Analysis
Feature selection
Gene Expression
Genomics
Human Genetics
Kernel trick
Microarrays
Multiomcis
Proteomics
Tensor decomposition
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kEfEivm1fRPCmYSePyeOo4uJBBw972FvIEweXHpmend9vJd09OCrrxVNDJ013UpVKVeerrwBe21xUsItIlyksqZS50IAbM10IjMVSisWWxjP7Wa9W5uLCfv2l1FfFhI30wOPEnQrByzJLufC6SG9M0Fl5KaNARfNFtTzyhbZzMDXaYPTRLZtTZIw6HVgtykQrcr1lWlJ5tA01tv6_uZh_IiV_Oy5tu9DZXbgzuY_k3fjZ9-BG7u_DrS_TAfkDyKvNPl-SkhtfJxlalRucejJWiib7tSff87bHPhW6vtmSlCuqfIJuEXRhybr9Z8iJNLAhrWnLA6lIUuInBpOHcH728fzDJzpVUqARN_Qd5d5yz1j06B0krtDYonx8KsJHKUIpicngQ7ESg7dgY44iYWvKxnK8CPEITvpNn58ASVpHJnLy2hQpSwohlqQYC0XLZJTpgM3z6uLEMl6LXVy6Fm0Y5UZZOJSFa7JwsoM3h2d-jBwb1_Z-X8V16Fn5sdsN1Bo3aY37l9Z08GoWtsP1VA9JfJ83V4PjCoN2dGuZ6uDxKPzDq0TFDFnGO9BHanH0Lcct_fpb4-xGW46-ou3g7axAbjIWwzVjffo_xvoMbvOm-Zxy-RxOdtur_AJuxv1uPWxftnXzE7eTHtU
  priority: 102
  providerName: Directory of Open Access Journals
Title Novel feature selection method via kernel tensor decomposition for improved multi-omics data analysis
URI https://link.springer.com/article/10.1186/s12920-022-01181-4
https://www.ncbi.nlm.nih.gov/pubmed/35209912
https://www.proquest.com/docview/2633851916
https://pubmed.ncbi.nlm.nih.gov/PMC8876179
https://doaj.org/article/332f5e440a7f4a88b7e6a44c3870af67
Volume 15
WOSCitedRecordID wos000761285000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: RBZ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: RSV
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD6s7Rh92f3iXYIGe9vEIkuxrMd1tGywhrCVkT0JXbuwYpc4ze_fkWIHspXC9mKDLliWjo7OkT59B-CNCrGyauzoxNsJFSJEanFhpmOOvpj3LqqYeWa_yOm0ns_VrL8U1g1o9-FIMmvqPK3r6n3HUmAlmtDn-bYkFXtwMElsM8lH__Z90L9onys2XI-5tt7OEpSZ-q8zL_9GSf5xVJpXoJN7_9f2-3C3tzjJh42IPIBboXkId077M_VHEKbtOlyQGDLFJ-lyYBwcLbIJLk3WC0N-hWWDZRLavV0SHxIQvUd7EbR6ySJvTQRPMj6RppvOHUngU2J60pPHcHZyfPbxE-2DL1CHNsCKlkaVhjFn0KDwZYX6GYfU-MiNE9zG6JmwxkYl0N-zygXHPeb6UKsSX5w_gf2mbcIzIF5Kx3jwRtZRiOitddFXjNkoha-rugA2DId2PTF5io9xobODUld6030au0_n7tOigLfbOpcbWo4bSx-lUd6WTJTaOaFdnut-hmrOyzgJQoyNjMLUtZWhMkI4jhrNxEoW8HqQEY1TMJ2rmCa0V50uK_Tz0RJmVQFPNzKz_RRPMCPFygLkjjTttGU3p1n8zDTfqP7RvFQFvBtkSvf6pbvhX5__W_EXcFhmsSxpKV7C_mp5FV7BbbdeLbrlCPbkXOZnPYKDo-Pp7Oso71qMEkZ2hmmzz6ezH6M8AX8DmrYqGA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9RAEC50FfXF-4hnC75p4_QxSfpRxWXF2UFwkH1r-tTBJZFkdn6_1Z1kYHRZ0KdAupokXUdXpb6uAnilQiytmjk693ZOpQyRWtyY6UxgLOa9iyrmOrOLarmsT07Ul_FQWD-h3aeUZLbUWa3r8m3PUmMlmtDn-bQklZfhikxtdlKM_vXbZH_RP1dsOh5z7ry9LShX6j_PvfwbJflHqjTvQIe3_u_db8PN0eMk7wYRuQOXQnMXrh2POfV7EJbtNpySGHKJT9LnxjjILTI0lybbtSE_Q9cgTUK7tx3xIQHRR7QXQa-XrPOvieBJxifSdNK5Jwl8SsxY9OQ-rA4_rj4c0bH5AnXoA2woN4obxpxBh8LzEu0zstT4KIyTwsbombTGRiUx3rPKBSc8jvpQK44XIR7AQdM24REQX1WOieBNVUcpo7fWRV8yZmMlfV3WBbCJHdqNhclTf4xTnQOUutTD8mlcPp2XT8sCXu_m_BrKclxI_T5xeUeZSmrnG233XY8aqoXgcR6knJkqSlPXtgqlkdIJtGgmllUBLycZ0aiCKa9imtCe9ZqXGOejJ8zKAh4OMrN7lEgwI8V4AdWeNO29y_5Is_6Ry3yj-Uf3UhXwZpIpPdqX_oJvffxv5C_g-tHqeKEXn5afn8ANnkWUUy6fwsGmOwvP4KrbbtZ99zwr2W9I6CX3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BQVVfuCnhNBJvYHV9bBI_cq1AlFUFFeqb5RNWVEm12e7vZ-wkKxaqSoinSImtxPZ4jvibbwBeqBBLqyaOTr2dUilDpBYNM50IjMW8d1HFzDN7WM3n9cmJOvotiz-j3ccjyT6nIbE0NauDMx_7LV6XBx1LRZZoQqLnzEkqr8I1iZFMAnV9-fpt1MXoqys2pspc2G_LHGXW_otczb8Rk38cm2ZrNLv5_-O4BTcGT5S87kXnNlwJzR3Y_Tyctd-FMG_X4ZTEkKk_SZcL5uAqkr7oNFkvDPkZlg22SSj4dkl8SAD1AQVG0Bsmi_zLIniScYs0ZUB3JIFSiRnIUO7B8ez98dsPdCjKQB36BivKjeKGMWfQ0fC8RL2NS218FMZJYWP0TFpjo5IYB1rlghMen_pQK44XIe7DTtM24QEQX1WOieBNVUcpo7fWRV8yZmMlfV3WBbBxabQbCMtT3YxTnQOXutT99GmcPp2nT8sCXm76nPV0HZe2fpNWfNMyUW3nG-3yux52rhaCx2mQcmKqKE1d2yqURkonUNOZWFYFPB_lRePWTOctpgntead5ifE_esisLGC_l5_Nq0SCHynGC6i2JGvrW7afNIsfmf4bzQK6naqAV6N86UHvdJeM9eG_NX8Gu0fvZvrw4_zTI9jjWUI55fIx7KyW5-EJXHfr1aJbPs377RdXzi7b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+feature+selection+method+via+kernel+tensor+decomposition+for+improved+multi-omics+data+analysis&rft.jtitle=BMC+medical+genomics&rft.au=Taguchi%2C+Y-h.&rft.au=Turki%2C+Turki&rft.date=2022-02-24&rft.pub=BioMed+Central&rft.eissn=1755-8794&rft.volume=15&rft_id=info:doi/10.1186%2Fs12920-022-01181-4&rft_id=info%3Apmid%2F35209912&rft.externalDocID=PMC8876179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-8794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-8794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-8794&client=summon