pyVHR: a Python framework for remote photoplethysmography

Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective methods relying on data-driven, model-based and statistical approaches have emerged in the past two decades. They exhibit increasing ability t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PeerJ. Computer science Ročník 8; s. e929
Hlavní autori: Boccignone, Giuseppe, Conte, Donatello, Cuculo, Vittorio, D’Amelio, Alessandro, Grossi, Giuliano, Lanzarotti, Raffaella, Mortara, Edoardo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States PeerJ, Inc 15.04.2022
PeerJ
PeerJ Inc
Predmet:
ISSN:2376-5992, 2376-5992
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective methods relying on data-driven, model-based and statistical approaches have emerged in the past two decades. They exhibit increasing ability to estimate the blood volume pulse (BVP) signal upon which BPMs (Beats per Minute) can be estimated. Furthermore, learning-based rPPG methods have been recently proposed. The present pyVHR framework represents a multi-stage pipeline covering the whole process for extracting and analyzing HR fluctuations. It is designed for both theoretical studies and practical applications in contexts where wearable sensors are inconvenient to use. Namely, pyVHR supports either the development, assessment and statistical analysis of novel rPPG methods, either traditional or learning-based, or simply the sound comparison of well-established methods on multiple datasets. It is built up on accelerated Python libraries for video and signal processing as well as equipped with parallel/accelerated ad-hoc procedures paving the way to online processing on a GPU. The whole accelerated process can be safely run in real-time for 30 fps HD videos with an average speedup of around 5. This paper is shaped in the form of a gentle tutorial presentation of the framework.
AbstractList Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective methods relying on data-driven, model-based and statistical approaches have emerged in the past two decades. They exhibit increasing ability to estimate the blood volume pulse (BVP) signal upon which BPMs (Beats per Minute) can be estimated. Furthermore, learning-based rPPG methods have been recently proposed. The present pyVHR framework represents a multi-stage pipeline covering the whole process for extracting and analyzing HR fluctuations. It is designed for both theoretical studies and practical applications in contexts where wearable sensors are inconvenient to use. Namely, pyVHR supports either the development, assessment and statistical analysis of novel rPPG methods, either traditional or learning-based, or simply the sound comparison of well-established methods on multiple datasets. It is built up on accelerated Python libraries for video and signal processing as well as equipped with parallel/accelerated ad-hoc procedures paving the way to online processing on a GPU. The whole accelerated process can be safely run in real-time for 30 fps HD videos with an average speedup of around 5. This paper is shaped in the form of a gentle tutorial presentation of the framework.
Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective methods relying on data-driven, model-based and statistical approaches have emerged in the past two decades. They exhibit increasing ability to estimate the blood volume pulse (BVP) signal upon which BPMs (Beats per Minute) can be estimated. Furthermore, learning-based rPPG methods have been recently proposed. The present pyVHR framework represents a multi-stage pipeline covering the whole process for extracting and analyzing HR fluctuations. It is designed for both theoretical studies and practical applications in contexts where wearable sensors are inconvenient to use. Namely, pyVHR supports either the development, assessment and statistical analysis of novel rPPG methods, either traditional or learning-based, or simply the sound comparison of well-established methods on multiple datasets. It is built up on accelerated Python libraries for video and signal processing as well as equipped with parallel/accelerated ad-hoc procedures paving the way to online processing on a GPU. The whole accelerated process can be safely run in real-time for 30 fps HD videos with an average speedup of around 5. This paper is shaped in the form of a gentle tutorial presentation of the framework.Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective methods relying on data-driven, model-based and statistical approaches have emerged in the past two decades. They exhibit increasing ability to estimate the blood volume pulse (BVP) signal upon which BPMs (Beats per Minute) can be estimated. Furthermore, learning-based rPPG methods have been recently proposed. The present pyVHR framework represents a multi-stage pipeline covering the whole process for extracting and analyzing HR fluctuations. It is designed for both theoretical studies and practical applications in contexts where wearable sensors are inconvenient to use. Namely, pyVHR supports either the development, assessment and statistical analysis of novel rPPG methods, either traditional or learning-based, or simply the sound comparison of well-established methods on multiple datasets. It is built up on accelerated Python libraries for video and signal processing as well as equipped with parallel/accelerated ad-hoc procedures paving the way to online processing on a GPU. The whole accelerated process can be safely run in real-time for 30 fps HD videos with an average speedup of around 5. This paper is shaped in the form of a gentle tutorial presentation of the framework.
ArticleNumber e929
Author Boccignone, Giuseppe
D’Amelio, Alessandro
Cuculo, Vittorio
Grossi, Giuliano
Mortara, Edoardo
Conte, Donatello
Lanzarotti, Raffaella
Author_xml – sequence: 1
  givenname: Giuseppe
  surname: Boccignone
  fullname: Boccignone, Giuseppe
  organization: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
– sequence: 2
  givenname: Donatello
  surname: Conte
  fullname: Conte, Donatello
  organization: Laboratoire d’Informatique Fondamentale et Appliquée de Tours, Université de Tours, Tours, France
– sequence: 3
  givenname: Vittorio
  surname: Cuculo
  fullname: Cuculo, Vittorio
  organization: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
– sequence: 4
  givenname: Alessandro
  surname: D’Amelio
  fullname: D’Amelio, Alessandro
  organization: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
– sequence: 5
  givenname: Giuliano
  surname: Grossi
  fullname: Grossi, Giuliano
  organization: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
– sequence: 6
  givenname: Raffaella
  surname: Lanzarotti
  fullname: Lanzarotti, Raffaella
  organization: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
– sequence: 7
  givenname: Edoardo
  surname: Mortara
  fullname: Mortara, Edoardo
  organization: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35494872$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03652383$$DView record in HAL
BookMark eNptkktv1DAQgC1URB_0xhlF4kIlUvyI45gDUlUBW2klEAKuluMdb7IkcWp7i_LvcXZb1K7wxdb4m2_8mFN0NLgBEHpF8KUQRLwfAfwmN-FSUvkMnVAmypxLSY8erY_ReQgbjDHhJA35Ah0zXsiiEvQEyXH6tfj-IdPZtyk2bsis1z38cf53Zp3PPPQuQjY2Lrqxg9hMoXdrr8dmeomeW90FOL-fz9DPz59-XC_y5dcvN9dXy9xwQmNObC2BaC41ZqwUIEtqGSnKmljNcI0ra2vOgVHQoqgKzoioaE01lCkoaMnO0M3eu3J6o0bf9tpPyulW7QLOr5X2sTUdqJJbwWrBKmxxIYmp5YoLyUxliOS8WCXXx71r3NY9rAwM0evuifTpztA2au3ulMRFQbFIgou9oDlIW1wt1RzDrOSUVeyOJPbtfTHvbrcQourbYKDr9ABuGxQteZVgvNO-OUA3buuH9Kwzhef3qmSiXj8-_b_6D7-ZALoHjHcheLDKtFHH1s2XaTtFsJq7Ru26RpmgUtekpHcHSQ_e_-J_AfyFwzw
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106650
crossref_primary_10_7717_peerj_cs_1912
crossref_primary_10_3390_app13148482
crossref_primary_10_1109_JBHI_2024_3352075
crossref_primary_10_1038_s44325_024_00033_7
crossref_primary_10_1109_TIM_2024_3428631
crossref_primary_10_1038_s44172_025_00363_z
crossref_primary_10_1371_journal_pdig_0000413
crossref_primary_10_3390_s23073387
crossref_primary_10_1016_j_bspc_2024_106582
crossref_primary_10_1016_j_patcog_2025_111511
crossref_primary_10_1016_j_engappai_2024_109905
crossref_primary_10_3390_app14167228
crossref_primary_10_3389_frobt_2023_1266535
crossref_primary_10_1016_j_bspc_2024_107094
crossref_primary_10_1016_j_compbiomed_2024_108873
crossref_primary_10_1109_JBHI_2023_3345486
crossref_primary_10_1038_s43856_024_00519_6
crossref_primary_10_3390_electronics14050890
crossref_primary_10_1002_widm_70039
crossref_primary_10_1016_j_bspc_2024_107158
crossref_primary_10_1016_j_bspc_2023_105608
crossref_primary_10_3389_fphys_2023_1296277
crossref_primary_10_3390_s24041096
crossref_primary_10_3390_math13172749
crossref_primary_10_1016_j_compbiomed_2025_110956
crossref_primary_10_1109_ACCESS_2025_3604336
crossref_primary_10_1007_s11042_024_18901_w
crossref_primary_10_3390_bioengineering9100485
crossref_primary_10_3390_bioengineering10020243
Cites_doi 10.1088/0967-3334/35/9/1913
10.1109/TIP.2019.2947204
10.1088/0967-3334/35/5/807
10.1063/1.2724789
10.1088/2057-1976/aabd09
10.1016/j.patrec.2017.10.017
10.3181/00379727-37-9630
10.1109/LSP.2020.3007086
10.3390/s21113719
10.1109/TAFFC.2021.3056960
10.1007/978-3-642-15387-7_15
10.2307/2532051
10.1186/s12859-017-1486-2
10.1109/ICCVW.2019.00197
10.21105/joss.02173
10.3390/s21186296
10.1109/TBME.2013.2266196
10.1364/OE.16.021434
10.1109/T-AFFC.2011.15
10.1109/TBME.2015.2508602
10.1109/T-AFFC.2011.25
10.1007/978-3-319-41402-7_20
10.1145/3425780
10.1109/TBME.2016.2609282
10.1016/j.earlhumdev.2013.09.016
10.1109/ICCV.2019.00009
10.1109/ACCESS.2020.3040936
10.1016/j.inffus.2020.06.014
10.1007/s11704-016-6243-6
10.1016/0010-4825(88)90041-8
10.1007/s10439-005-5763-2
10.1364/OE.18.010762
ContentType Journal Article
Copyright 2022 Boccignone et al.
2022 Boccignone et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
licence_http://creativecommons.org/publicdomain/zero
2022 Boccignone et al. 2022 Boccignone et al.
Copyright_xml – notice: 2022 Boccignone et al.
– notice: 2022 Boccignone et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: licence_http://creativecommons.org/publicdomain/zero
– notice: 2022 Boccignone et al. 2022 Boccignone et al.
DBID AAYXX
CITATION
NPM
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.7717/peerj-cs.929
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_65f73b7380f0491cb9d5793c8c19554d
PMC9044207
oai:HAL:hal-03652383v1
35494872
10_7717_peerj_cs_929
Genre Journal Article
GrantInformation_xml – fundername: The University of Milan through the APC initiative
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
3V.
ARCSS
M0N
NPM
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
1XC
VOOES
5PM
ID FETCH-LOGICAL-c512t-1fb9e1a59a03367e962f3146b1fa30b08ffb55e32ea7484531782b2ae65e37263
IEDL.DBID K7-
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000789483400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Tue Oct 14 18:56:51 EDT 2025
Tue Nov 04 01:57:56 EST 2025
Wed Nov 05 07:21:19 EST 2025
Thu Oct 02 06:39:27 EDT 2025
Fri Jul 25 05:49:30 EDT 2025
Thu Jan 02 22:54:08 EST 2025
Tue Nov 18 22:07:07 EST 2025
Sat Nov 29 03:45:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deepfake Detection
Remote photoplethysmography
Contactless monitoring
Deep rPPG
Heart Rate Estimation
Computer Vision Remote photoplethysmography
Subjects Human-Computer Interaction
Language English
License https://creativecommons.org/licenses/by/4.0
2022 Boccignone et al.
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-1fb9e1a59a03367e962f3146b1fa30b08ffb55e32ea7484531782b2ae65e37263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4642-4768
OpenAccessLink https://www.proquest.com/docview/2650314689?pq-origsite=%requestingapplication%
PMID 35494872
PQID 2650314689
PQPubID 2045934
ParticipantIDs doaj_primary_oai_doaj_org_article_65f73b7380f0491cb9d5793c8c19554d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9044207
hal_primary_oai_HAL_hal_03652383v1
proquest_miscellaneous_2658652007
proquest_journals_2650314689
pubmed_primary_35494872
crossref_citationtrail_10_7717_peerj_cs_929
crossref_primary_10_7717_peerj_cs_929
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2022
Publisher PeerJ, Inc
PeerJ
PeerJ Inc
Publisher_xml – name: PeerJ, Inc
– name: PeerJ
– name: PeerJ Inc
References Verkruysse (10.7717/peerj-cs.929/ref-60) 2008; 16
Lawrence (10.7717/peerj-cs.929/ref-30) 1989; 45
Mirsky (10.7717/peerj-cs.929/ref-39) 2021; 54
McDuff (10.7717/peerj-cs.929/ref-36) 2019
Benavoli (10.7717/peerj-cs.929/ref-4) 2017; 18
De Haan (10.7717/peerj-cs.929/ref-14) 2013; 60
Pilz (10.7717/peerj-cs.929/ref-44) 2019
Aarts (10.7717/peerj-cs.929/ref-1) 2013; 89
Humphreys (10.7717/peerj-cs.929/ref-27) 2007; 78
Bursic (10.7717/peerj-cs.929/ref-10) 2021
Chen (10.7717/peerj-cs.929/ref-11) 2018
Hertzman (10.7717/peerj-cs.929/ref-24) 1937; 37
Boccignone (10.7717/peerj-cs.929/ref-9) 2020
Unakafov (10.7717/peerj-cs.929/ref-59) 2018; 4
Hernandez-Ortega (10.7717/peerj-cs.929/ref-23) 2020
Katz (10.7717/peerj-cs.929/ref-28) 1988; 18
Heusch (10.7717/peerj-cs.929/ref-25) 2017
Wang (10.7717/peerj-cs.929/ref-62) 2015; 63
Koelstra (10.7717/peerj-cs.929/ref-29) 2011; 3
Niu (10.7717/peerj-cs.929/ref-41) 2018
Boccignone (10.7717/peerj-cs.929/ref-8) 2020; 8
Demšar (10.7717/peerj-cs.929/ref-16) 2006; 7
Stricker (10.7717/peerj-cs.929/ref-55) 2014
Špetlík (10.7717/peerj-cs.929/ref-54) 2018
Wang (10.7717/peerj-cs.929/ref-61) 2016; 64
Rouast (10.7717/peerj-cs.929/ref-50) 2017
Heusch (10.7717/peerj-cs.929/ref-26) 2017
Lugaresi (10.7717/peerj-cs.929/ref-20) 2019
Herbold (10.7717/peerj-cs.929/ref-22) 2020; 5
Liu (10.7717/peerj-cs.929/ref-34) 2021
Rössler (10.7717/peerj-cs.929/ref-49) 2019
Qi (10.7717/peerj-cs.929/ref-47) 2020
Benezeth (10.7717/peerj-cs.929/ref-5) 2018
Balakrishnan (10.7717/peerj-cs.929/ref-2) 2013
Poh (10.7717/peerj-cs.929/ref-46) 2010; 18
Nowara (10.7717/peerj-cs.929/ref-43) 2020
Gideon (10.7717/peerj-cs.929/ref-19) 2021
Soleymani (10.7717/peerj-cs.929/ref-53) 2011; 3
Cheng (10.7717/peerj-cs.929/ref-12) 2021; 21
Bansal (10.7717/peerj-cs.929/ref-3) 2018
Estepp (10.7717/peerj-cs.929/ref-18) 2014
Yu (10.7717/peerj-cs.929/ref-65) 2021
McDuff (10.7717/peerj-cs.929/ref-37) 2015
Pilz (10.7717/peerj-cs.929/ref-45) 2018
Ciftci (10.7717/peerj-cs.929/ref-13) 2020
Ni (10.7717/peerj-cs.929/ref-40) 2021; 21
McDuff (10.7717/peerj-cs.929/ref-35) 2021
Bobbia (10.7717/peerj-cs.929/ref-7) 2019; 124
Sabour (10.7717/peerj-cs.929/ref-52) 2021
Yu (10.7717/peerj-cs.929/ref-64) 2020; 27
Eisinga (10.7717/peerj-cs.929/ref-17) 2017; 18
Wieringa (10.7717/peerj-cs.929/ref-63) 2005; 33
Yu (10.7717/peerj-cs.929/ref-66) 2018
Li (10.7717/peerj-cs.929/ref-32) 2018
De Haan (10.7717/peerj-cs.929/ref-15) 2014; 35
Blazek (10.7717/peerj-cs.929/ref-6) 1996
Graczyk (10.7717/peerj-cs.929/ref-21) 2010
Lewandowska (10.7717/peerj-cs.929/ref-31) 2011
Liu (10.7717/peerj-cs.929/ref-33) 2020; 33
Tarassenko (10.7717/peerj-cs.929/ref-56) 2014; 35
Zhang (10.7717/peerj-cs.929/ref-67) 2016
Rouast (10.7717/peerj-cs.929/ref-51) 2018; 12
Niu (10.7717/peerj-cs.929/ref-42) 2019; 29
Torralba (10.7717/peerj-cs.929/ref-58) 2011
Tolosana (10.7717/peerj-cs.929/ref-57) 2020; 64
McDuff (10.7717/peerj-cs.929/ref-38) 2014
Ramírez (10.7717/peerj-cs.929/ref-48) 2014
References_xml – start-page: 6089
  year: 2021
  ident: 10.7717/peerj-cs.929/ref-10
  article-title: A quantitative evaluation framework of video de-identification methods
– year: 2021
  ident: 10.7717/peerj-cs.929/ref-35
  article-title: Camera measurement of physiological vital signs
– volume: 35
  start-page: 1913
  issue: 9
  year: 2014
  ident: 10.7717/peerj-cs.929/ref-15
  article-title: Improved motion robustness of remote-PPG by using the blood volume pulse signature
  publication-title: Physiological Measurement
  doi: 10.1088/0967-3334/35/9/1913
– volume: 29
  start-page: 2409
  year: 2019
  ident: 10.7717/peerj-cs.929/ref-42
  article-title: Rhythmnet: end-to-end heart rate estimation from face via spatial-temporal representation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2019.2947204
– volume: 35
  start-page: 807
  issue: 5
  year: 2014
  ident: 10.7717/peerj-cs.929/ref-56
  article-title: Non-contact video-based vital sign monitoring using ambient light and auto-regressive models
  publication-title: Physiological Measurement
  doi: 10.1088/0967-3334/35/5/807
– start-page: 153
  year: 2018
  ident: 10.7717/peerj-cs.929/ref-5
  article-title: Remote heart rate variability for emotional state monitoring
– year: 2020
  ident: 10.7717/peerj-cs.929/ref-43
  article-title: The benefit of distraction: denoising remote vitals measurements using inverse attention
– start-page: 548
  year: 2020
  ident: 10.7717/peerj-cs.929/ref-9
  article-title: Stairway to Elders: bridging space, time and emotions in their social environment for wellbeing
– start-page: 562
  year: 2018
  ident: 10.7717/peerj-cs.929/ref-41
  article-title: VIPL-HR: a multi-modal database for pulse estimation from less-constrained face video
– start-page: 4318
  year: 2020
  ident: 10.7717/peerj-cs.929/ref-47
  article-title: DeepRhythm: exposing deepfakes with attentional visual heartbeat rhythms
– volume: 78
  start-page: 044304
  issue: 4
  year: 2007
  ident: 10.7717/peerj-cs.929/ref-27
  article-title: Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry
  publication-title: Review of Scientific Instruments
  doi: 10.1063/1.2724789
– volume: 4
  start-page: 045001
  issue: 4
  year: 2018
  ident: 10.7717/peerj-cs.929/ref-59
  article-title: Pulse rate estimation using imaging photoplethysmography: generic framework and comparison of methods on a publicly available dataset
  publication-title: Biomedical Physics & Engineering Express
  doi: 10.1088/2057-1976/aabd09
– year: 2017
  ident: 10.7717/peerj-cs.929/ref-26
  article-title: A reproducible study on remote heart rate measurement
– volume: 18
  start-page: 2653
  issue: 1
  year: 2017
  ident: 10.7717/peerj-cs.929/ref-4
  article-title: Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis
  publication-title: The Journal of Machine Learning Research
– volume: 124
  start-page: 82
  year: 2019
  ident: 10.7717/peerj-cs.929/ref-7
  article-title: Unsupervised skin tissue segmentation for remote photoplethysmography
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2017.10.017
– volume: 37
  start-page: 529
  issue: 3
  year: 1937
  ident: 10.7717/peerj-cs.929/ref-24
  article-title: Photoelectric plethysmography of the fingers and toes in man
  doi: 10.3181/00379727-37-9630
– volume: 27
  start-page: 1245
  year: 2020
  ident: 10.7717/peerj-cs.929/ref-64
  article-title: Autohr: a strong end-to-end baseline for remote heart rate measurement with neural searching
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2020.3007086
– volume-title: Quantitative Photoplethysmography: basic facts and examination tests for evaluating peripheral vascular funktions
  year: 1996
  ident: 10.7717/peerj-cs.929/ref-6
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.7717/peerj-cs.929/ref-16
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 21
  start-page: 3719
  issue: 11
  year: 2021
  ident: 10.7717/peerj-cs.929/ref-40
  article-title: A review of deep learning-based contactless heart rate measurement methods
  publication-title: Sensors
  doi: 10.3390/s21113719
– year: 2017
  ident: 10.7717/peerj-cs.929/ref-25
  article-title: A reproducible study on remote heart rate measurement
– year: 2021
  ident: 10.7717/peerj-cs.929/ref-52
  article-title: Ubfc-phys: a multimodal database for psychophysiological studies of social stress
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2021.3056960
– start-page: 111
  volume-title: Knowledge-based and intelligent information and engineering systems
  year: 2010
  ident: 10.7717/peerj-cs.929/ref-21
  article-title: Nonparametric statistical analysis of machine learning algorithms for regression problems
  doi: 10.1007/978-3-642-15387-7_15
– volume: 45
  start-page: 255
  year: 1989
  ident: 10.7717/peerj-cs.929/ref-30
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
– start-page: 405
  year: 2011
  ident: 10.7717/peerj-cs.929/ref-31
  article-title: Measuring pulse rate with a webcam - A non-contact method for evaluating cardiac activity
– volume: 18
  start-page: 68
  issue: 1
  year: 2017
  ident: 10.7717/peerj-cs.929/ref-17
  article-title: Exact p-values for pairwise comparison of Friedman rank sums, with application to comparing classifiers
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1486-2
– start-page: 6521
  year: 2019
  ident: 10.7717/peerj-cs.929/ref-36
  article-title: iPhys: an open non-contact imaging-based physiological measurement toolbox
– start-page: 1
  year: 2020
  ident: 10.7717/peerj-cs.929/ref-13
  article-title: How do the hearts of deep fakes beat? Deep fake source detection via interpreting residuals with biological signals
– year: 2019
  ident: 10.7717/peerj-cs.929/ref-44
  article-title: On the vector space in photoplethysmography imaging
  doi: 10.1109/ICCVW.2019.00197
– volume: 5
  start-page: 2173
  issue: 48
  year: 2020
  ident: 10.7717/peerj-cs.929/ref-22
  article-title: Autorank: a python package for automated ranking of classifiers
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.02173
– start-page: 6398
  year: 2015
  ident: 10.7717/peerj-cs.929/ref-37
  article-title: A survey of remote optical photoplethysmographic imaging methods
– start-page: 1462
  year: 2014
  ident: 10.7717/peerj-cs.929/ref-18
  article-title: Recovering pulse rate during motion artifact with a multi-imager array for non-contact imaging photoplethysmography
– volume: 21
  start-page: 6296
  issue: 18
  year: 2021
  ident: 10.7717/peerj-cs.929/ref-12
  article-title: Deep learning methods for remote heart rate measurement: a review and future research agenda
  publication-title: Sensors
  doi: 10.3390/s21186296
– volume: 60
  start-page: 2878
  issue: 10
  year: 2013
  ident: 10.7717/peerj-cs.929/ref-14
  article-title: Robust pulse rate from chrominance-based rPPG
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2013.2266196
– volume: 16
  start-page: 21434
  issue: 26
  year: 2008
  ident: 10.7717/peerj-cs.929/ref-60
  article-title: Remote plethysmographic imaging using ambient light
  publication-title: Optics Express
  doi: 10.1364/OE.16.021434
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  ident: 10.7717/peerj-cs.929/ref-29
  article-title: Deap: a database for emotion analysis; using physiological signals
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/T-AFFC.2011.15
– volume: 63
  start-page: 1974
  issue: 9
  year: 2015
  ident: 10.7717/peerj-cs.929/ref-62
  article-title: A novel algorithm for remote photoplethysmography: spatial subspace rotation
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2015.2508602
– start-page: 3438
  year: 2016
  ident: 10.7717/peerj-cs.929/ref-67
  article-title: Multimodal spontaneous emotion corpus for human behavior analysis
– start-page: 3995
  year: 2021
  ident: 10.7717/peerj-cs.929/ref-19
  article-title: The way to my heart is through contrastive learning: remote photoplethysmography from unlabelled video
– start-page: 2957
  year: 2014
  ident: 10.7717/peerj-cs.929/ref-38
  article-title: Remote measurement of cognitive stress via heart rate variability
– volume: 3
  start-page: 42
  issue: 1
  year: 2011
  ident: 10.7717/peerj-cs.929/ref-53
  article-title: A multimodal database for affect recognition and implicit tagging
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/T-AFFC.2011.25
– start-page: 157
  volume-title: Information Systems and Neuroscience
  year: 2017
  ident: 10.7717/peerj-cs.929/ref-50
  article-title: Using contactless heart rate measurements for real-time assessment of affective states
  doi: 10.1007/978-3-319-41402-7_20
– start-page: 325
  year: 2018
  ident: 10.7717/peerj-cs.929/ref-66
  article-title: Bisenet: bilateral segmentation network for real-time semantic segmentation
– volume: 54
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.929/ref-39
  article-title: The creation and detection of deepfakes: a survey
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3425780
– start-page: 1521
  year: 2011
  ident: 10.7717/peerj-cs.929/ref-58
  article-title: Unbiased look at dataset bias
– volume: 64
  start-page: 1479
  issue: 7
  year: 2016
  ident: 10.7717/peerj-cs.929/ref-61
  article-title: Algorithmic principles of remote PPG
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2016.2609282
– start-page: 3
  year: 2018
  ident: 10.7717/peerj-cs.929/ref-54
  article-title: Visual heart rate estimation with convolutional neural network
– year: 2019
  ident: 10.7717/peerj-cs.929/ref-20
  article-title: Mediapipe: a framework for building perception pipelines
– volume: 89
  start-page: 943
  issue: 12
  year: 2013
  ident: 10.7717/peerj-cs.929/ref-1
  article-title: Non-contact heart rate monitoring utilizing camera photoplethysmography in the neonatal intensive care unit A pilot study
  publication-title: Early Human Development
  doi: 10.1016/j.earlhumdev.2013.09.016
– year: 2019
  ident: 10.7717/peerj-cs.929/ref-49
  article-title: FaceForensics++: learning to detect manipulated facial images
  doi: 10.1109/ICCV.2019.00009
– start-page: 1056
  year: 2014
  ident: 10.7717/peerj-cs.929/ref-55
  article-title: Non-contact video-based pulse rate measurement on a mobile service robot
– year: 2021
  ident: 10.7717/peerj-cs.929/ref-65
  article-title: PhysFormer: facial video-based physiological measurement with temporal difference transformer
– start-page: 349
  year: 2018
  ident: 10.7717/peerj-cs.929/ref-11
  article-title: Deepphys: video-based physiological measurement using convolutional attention networks
– start-page: 242
  year: 2018
  ident: 10.7717/peerj-cs.929/ref-32
  article-title: The obf database: a large face video database for remote physiological signal measurement and atrial fibrillation detection
– start-page: 3430
  year: 2013
  ident: 10.7717/peerj-cs.929/ref-2
  article-title: Detecting pulse from head motions in video
– volume: 8
  start-page: 216083
  year: 2020
  ident: 10.7717/peerj-cs.929/ref-8
  article-title: An open framework for remote-PPG methods and their assessment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3040936
– start-page: 154
  year: 2021
  ident: 10.7717/peerj-cs.929/ref-34
  article-title: MetaPhys: few-shot adaptation for non-contact physiological measurement
– start-page: 1254
  year: 2018
  ident: 10.7717/peerj-cs.929/ref-45
  article-title: Local group invariance for heart rate estimation from face videos in the wild
– volume: 64
  start-page: 131
  year: 2020
  ident: 10.7717/peerj-cs.929/ref-57
  article-title: Deepfakes and beyond: a survey of face manipulation and fake detection
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2020.06.014
– volume: 33
  start-page: 19400
  year: 2020
  ident: 10.7717/peerj-cs.929/ref-33
  article-title: Multi-task temporal shift attention networks for on-device contactless vitals measurement
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 858
  issue: 5
  year: 2018
  ident: 10.7717/peerj-cs.929/ref-51
  article-title: Remote heart rate measurement using low-cost RGB face video: a technical literature review
  publication-title: Frontiers of Computer Science
  doi: 10.1007/s11704-016-6243-6
– volume: 18
  start-page: 145
  issue: 3
  year: 1988
  ident: 10.7717/peerj-cs.929/ref-28
  article-title: Fractals and the analysis of waveforms
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/0010-4825(88)90041-8
– start-page: 474
  year: 2014
  ident: 10.7717/peerj-cs.929/ref-48
  article-title: Color analysis of facial skin: detection of emotional state
– start-page: 119
  year: 2018
  ident: 10.7717/peerj-cs.929/ref-3
  article-title: Recycle-gan: unsupervised video retargeting
– year: 2020
  ident: 10.7717/peerj-cs.929/ref-23
  article-title: Deepfakeson-phys: deepfakes detection based on heart rate estimation
– volume: 33
  start-page: 1034
  issue: 8
  year: 2005
  ident: 10.7717/peerj-cs.929/ref-63
  article-title: Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 Camera”Technology
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-005-5763-2
– volume: 18
  start-page: 10762
  issue: 10
  year: 2010
  ident: 10.7717/peerj-cs.929/ref-46
  article-title: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation
  publication-title: Optics Express
  doi: 10.1364/OE.18.010762
SSID ssj0001511119
Score 2.43309
Snippet Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e929
SubjectTerms Blood volume
Case studies
Cognitive science
Computer Science
Computer Vision
Computer Vision and Pattern Recognition
Contactless monitoring
Datasets
Deep rPPG
Deepfake Detection
Heart rate
Heart Rate Estimation
Human-Computer Interaction
Image Processing
Learning
Pipelining (computers)
Python
Remote photoplethysmography
Signal and Image Processing
Signal processing
Statistical analysis
Video
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0h1AOXfkA_QmllUDlVKbG9ie3eKCraA0KoKoibZTu2lqpkV7sLEv--M0l2u9uq6oWrYyXWG4_njTJ-A_ChUrHWQvocyarPB5oauXtFyoi4ASJG3O5XzNWZOj_X19fmYqXVF9WEdfLAHXBHVZmU9ErqIiGZ5cGbusQ9FXTgBkNhTacvsp6VZKq7H0xHgekq3RWmLEeTGKc_8jD7ZFo2-TsGtVL9GFlGVAj5N8v8s1hyJfqcPoenPW1kx91yX8BGbLbh2aIlA-s9dAfM5OFq-O0zc-zigVQBWFoUXzFkp2wa0TKRTUbjORWOk5Fue83ql3B5-vX7yTDvuyPkAYP0POfJm8hdaVwhJUJuKpEknnueJycLX-iUfFlGKaIjvVD0NSQDXrhY4aASlXwFm824iW-AJUySfI1nn4h8EDh3xknkecK7UItQ1Bl8XOBlQy8dTh0sflpMIQhd26Jrw8wiuhkcLmdPOsmMf8z7QtAv55DQdTuA5re9-e3_zJ_BARpu7R3D4zNLYxibMcvW8p5nsLewq-1ddGYFclPCS-NC9peP0bnoj4lr4viunaMrEqZSGbzutsHyU7IkZR0lMlBrG2RtLetPmptRK-BtisFAFGr3MQB4C1uCbmSQ_GS5B5vz6V18B0_C_fxmNn3fesUvt68Rlw
  priority: 102
  providerName: Directory of Open Access Journals
Title pyVHR: a Python framework for remote photoplethysmography
URI https://www.ncbi.nlm.nih.gov/pubmed/35494872
https://www.proquest.com/docview/2650314689
https://www.proquest.com/docview/2658652007
https://hal.science/hal-03652383
https://pubmed.ncbi.nlm.nih.gov/PMC9044207
https://doaj.org/article/65f73b7380f0491cb9d5793c8c19554d
Volume 8
WOSCitedRecordID wos000789483400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iGwcuG58jMKqA4ITCYruJYy5oQ52K2KpogqlwiWLHoZsgCUk3aRf-dt5Lk5aC4MIlB9tqrfzep_3yewDPQ2mziAvtYbCqvWFEjdy1JGZEFACLHndxFXN2LCeTaDpVcXfg1nRllb1NbA11Vho6I9_nGEoI-k5Ivam-e9Q1im5XuxYaG7DFOGck5--ltzpjCcggqEW9u8TEZb-ytr7wTPNKtTHlyhO1hP3oX2ZUDvlnrPl7yeQvPuho5393fxu2u-jTPViIyx24YYu7sNN3dnA7Rb8Hqro-G5--dlM3viZyATfva7hcDHLd2iLA1q1m5Zzqzwnrbx319X34eDT68HbsdU0WPIO-fu6xXCvL0kClvhCInAp5TjvVLE-Fr_0oz3UQWMFtSrSjqLIYU2ie2hAHJQ_FA9gsysI-BDfHXEtnaEK5ZUPDWKpSgeEi16nJuPEzB172LzwxHQM5NcL4mmAmQvAkLTyJaRKEx4EXy9XVgnnjL-sOCbvlGuLLbgfK-kvSqV8SBrkUWorIzzElYkarLEDLZCLDFAZUuLVniPzab4wPjhMaQxePyXokrpgDez24SafpTbJC1oGny2nUUbp4SQtbXrZropD4raQDuws5Wv6VCIigR3IH5JqEre1lfaY4n7U84MofDrkvH_17W4_hFqdPNoifMtiDzXl9aZ_ATXM1P2_qAWzIaTSArcPRJD4dtCcSg1aJ8HnyY4TPOPiM8_G7k_jTT7kCJ6E
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyptAgYDoCYUm9iaOkRAqj2qrLqsVKlXFxcSOwxZBEpJt0f4pfiMzeeyyILj1wNWxHCf5PPNNPP4G4HEkbBozrj0kq9obxFTIXQtSRkQAWPS47VbM4UiMx_HRkZyswY_-LAylVfY2sTHUaWHoH_k2QyrB6ZyQfFF-86hqFO2u9iU0Wljs2_l3DNnq53uv8ftuMbb75uDV0OuqCngGndvMCzItbZCEMvE5x6nKiGU0sA6yhPvaj7NMh6HlzCaks4kYRSeqWWIjbBQs4jjuOTg_GGCwhOtnEn5Y_tMJyQDJNr9eYKC0XVpbffZM_VQ2HHbp-ZoCAejPppR--Se3_T1F8xeft7vxv72tK3C5Y9fuTrscrsKaza_BRl-5wu0M2XWQ5fxw-O6Zm7iTOYknuFmfo-YiiXcriwC2bjktZpRfT1j-2kl734D3Z_IAN2E9L3J7G9wMY0mdootgNhiYIEhkwpEOM52YlBk_deBJ_4GV6RTWqdDHF4WRFsFBNXBQplYIBwe2Fr3LVlnkL_1eElYWfUgPvGkoqk-qMy8qCjPBteCxn2HIFxgt0xAtr4lNIJEw4tQeIdJWxhjujBS1IYUJkbfx08CBzR5MqrNktVoiyYGHi8tog2hjKcltcdL0iSPS7xIO3Gpxu7gVD0mASDAHxAqiV-ayeiU_njY659LHReaLO_-e1gO4ODx4O1KjvfH-XbjE6HgKaXGGm7A-q07sPbhgTmfHdXW_WawufDxrvP8E4Wl7eg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NgRAvjN8EBgTEnlBoYjdxjITQYFSdVlUVgmnai4kdhw5BEppuqP8afx13-dFSELztgVfHcpzky9139vk7gKeRsGnMuPaQrGqvH1Mhdy1IGREBYNHjNlsxhyMxHsdHR3KyAT-6szCUVtnZxNpQp4WhNfIeQyrB6ZyQ7GVtWsRkb_Cq_OZRBSnaae3KaTQQObCL7xi-VS_39_Bb7zA2ePv-zdBrKwx4Bh3d3AsyLW2QhDLxOcdpy4hldBMdZAn3tR9nmQ5Dy5lNSHMT8YoOVbPERtgoWMRx3AtwUWCMSYHfJDxere-EZIxkk2svMGjqldbOPnumei5rPrvygnWxAPRtU0rF_JPn_p6u-Yv_G2z9z2_uGlxtWbe72_wm12HD5jdgq6to4bYG7ibIcnE4fPfCTdzJgkQV3KzLXXOR3Lszi8C2bjkt5pR3Txj_2kp-34IP5_IAt2EzL3J7F9wMY0ydoutgNuibIEhkwpEmM52YlBk_deBZ97GVaZXXqQDIF4URGEFD1dBQplIIDQd2lr3LRnHkL_1eE26WfUgnvG4oZp9Ua3ZUFGaCa8FjP8NQMDBapiFaZBObQCKRxKk9QdStjTHcHSlqQ2oTIp_jZ4ED2x2wVGvhKrVClQOPl5fRNtGGU5Lb4rTuE0ek6yUcuNNgeHkrHpIwkWAOiDV0r81l_Up-Mq31z6Xf7zNf3Pv3tB7BZYS5Gu2PD-7DFUanVkiiM9yGzfns1D6AS-ZsflLNHtb_rQsfzxvuPwFUi4RO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pyVHR%3A+a+Python+framework+for+remote+photoplethysmography&rft.jtitle=PeerJ.+Computer+science&rft.au=Boccignone%2C+Giuseppe&rft.au=Conte%2C+Donatello&rft.au=Cuculo%2C+Vittorio&rft.au=D%E2%80%99Amelio%2C+Alessandro&rft.date=2022-04-15&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=8&rft.spage=e929&rft_id=info:doi/10.7717%2Fpeerj-cs.929&rft.externalDBID=n%2Fa&rft.externalDocID=10_7717_peerj_cs_929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon