pyVHR: a Python framework for remote photoplethysmography
Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective methods relying on data-driven, model-based and statistical approaches have emerged in the past two decades. They exhibit increasing ability t...
Uložené v:
| Vydané v: | PeerJ. Computer science Ročník 8; s. e929 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
PeerJ, Inc
15.04.2022
PeerJ PeerJ Inc |
| Predmet: | |
| ISSN: | 2376-5992, 2376-5992 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective methods relying on data-driven, model-based and statistical approaches have emerged in the past two decades. They exhibit increasing ability to estimate the blood volume pulse (BVP) signal upon which BPMs (Beats per Minute) can be estimated. Furthermore, learning-based rPPG methods have been recently proposed. The present pyVHR framework represents a multi-stage pipeline covering the whole process for extracting and analyzing HR fluctuations. It is designed for both theoretical studies and practical applications in contexts where wearable sensors are inconvenient to use. Namely, pyVHR supports either the development, assessment and statistical analysis of novel rPPG methods, either traditional or learning-based, or simply the sound comparison of well-established methods on multiple datasets. It is built up on accelerated Python libraries for video and signal processing as well as equipped with parallel/accelerated ad-hoc procedures paving the way to online processing on a GPU. The whole accelerated process can be safely run in real-time for 30 fps HD videos with an average speedup of around 5. This paper is shaped in the form of a gentle tutorial presentation of the framework. |
|---|---|
| AbstractList | Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective methods relying on data-driven, model-based and statistical approaches have emerged in the past two decades. They exhibit increasing ability to estimate the blood volume pulse (BVP) signal upon which BPMs (Beats per Minute) can be estimated. Furthermore, learning-based rPPG methods have been recently proposed. The present pyVHR framework represents a multi-stage pipeline covering the whole process for extracting and analyzing HR fluctuations. It is designed for both theoretical studies and practical applications in contexts where wearable sensors are inconvenient to use. Namely, pyVHR supports either the development, assessment and statistical analysis of novel rPPG methods, either traditional or learning-based, or simply the sound comparison of well-established methods on multiple datasets. It is built up on accelerated Python libraries for video and signal processing as well as equipped with parallel/accelerated ad-hoc procedures paving the way to online processing on a GPU. The whole accelerated process can be safely run in real-time for 30 fps HD videos with an average speedup of around 5. This paper is shaped in the form of a gentle tutorial presentation of the framework. Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective methods relying on data-driven, model-based and statistical approaches have emerged in the past two decades. They exhibit increasing ability to estimate the blood volume pulse (BVP) signal upon which BPMs (Beats per Minute) can be estimated. Furthermore, learning-based rPPG methods have been recently proposed. The present pyVHR framework represents a multi-stage pipeline covering the whole process for extracting and analyzing HR fluctuations. It is designed for both theoretical studies and practical applications in contexts where wearable sensors are inconvenient to use. Namely, pyVHR supports either the development, assessment and statistical analysis of novel rPPG methods, either traditional or learning-based, or simply the sound comparison of well-established methods on multiple datasets. It is built up on accelerated Python libraries for video and signal processing as well as equipped with parallel/accelerated ad-hoc procedures paving the way to online processing on a GPU. The whole accelerated process can be safely run in real-time for 30 fps HD videos with an average speedup of around 5. This paper is shaped in the form of a gentle tutorial presentation of the framework.Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective methods relying on data-driven, model-based and statistical approaches have emerged in the past two decades. They exhibit increasing ability to estimate the blood volume pulse (BVP) signal upon which BPMs (Beats per Minute) can be estimated. Furthermore, learning-based rPPG methods have been recently proposed. The present pyVHR framework represents a multi-stage pipeline covering the whole process for extracting and analyzing HR fluctuations. It is designed for both theoretical studies and practical applications in contexts where wearable sensors are inconvenient to use. Namely, pyVHR supports either the development, assessment and statistical analysis of novel rPPG methods, either traditional or learning-based, or simply the sound comparison of well-established methods on multiple datasets. It is built up on accelerated Python libraries for video and signal processing as well as equipped with parallel/accelerated ad-hoc procedures paving the way to online processing on a GPU. The whole accelerated process can be safely run in real-time for 30 fps HD videos with an average speedup of around 5. This paper is shaped in the form of a gentle tutorial presentation of the framework. |
| ArticleNumber | e929 |
| Author | Boccignone, Giuseppe D’Amelio, Alessandro Cuculo, Vittorio Grossi, Giuliano Mortara, Edoardo Conte, Donatello Lanzarotti, Raffaella |
| Author_xml | – sequence: 1 givenname: Giuseppe surname: Boccignone fullname: Boccignone, Giuseppe organization: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy – sequence: 2 givenname: Donatello surname: Conte fullname: Conte, Donatello organization: Laboratoire d’Informatique Fondamentale et Appliquée de Tours, Université de Tours, Tours, France – sequence: 3 givenname: Vittorio surname: Cuculo fullname: Cuculo, Vittorio organization: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy – sequence: 4 givenname: Alessandro surname: D’Amelio fullname: D’Amelio, Alessandro organization: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy – sequence: 5 givenname: Giuliano surname: Grossi fullname: Grossi, Giuliano organization: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy – sequence: 6 givenname: Raffaella surname: Lanzarotti fullname: Lanzarotti, Raffaella organization: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy – sequence: 7 givenname: Edoardo surname: Mortara fullname: Mortara, Edoardo organization: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35494872$$D View this record in MEDLINE/PubMed https://hal.science/hal-03652383$$DView record in HAL |
| BookMark | eNptkktv1DAQgC1URB_0xhlF4kIlUvyI45gDUlUBW2klEAKuluMdb7IkcWp7i_LvcXZb1K7wxdb4m2_8mFN0NLgBEHpF8KUQRLwfAfwmN-FSUvkMnVAmypxLSY8erY_ReQgbjDHhJA35Ah0zXsiiEvQEyXH6tfj-IdPZtyk2bsis1z38cf53Zp3PPPQuQjY2Lrqxg9hMoXdrr8dmeomeW90FOL-fz9DPz59-XC_y5dcvN9dXy9xwQmNObC2BaC41ZqwUIEtqGSnKmljNcI0ra2vOgVHQoqgKzoioaE01lCkoaMnO0M3eu3J6o0bf9tpPyulW7QLOr5X2sTUdqJJbwWrBKmxxIYmp5YoLyUxliOS8WCXXx71r3NY9rAwM0evuifTpztA2au3ulMRFQbFIgou9oDlIW1wt1RzDrOSUVeyOJPbtfTHvbrcQourbYKDr9ABuGxQteZVgvNO-OUA3buuH9Kwzhef3qmSiXj8-_b_6D7-ZALoHjHcheLDKtFHH1s2XaTtFsJq7Ru26RpmgUtekpHcHSQ_e_-J_AfyFwzw |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106650 crossref_primary_10_7717_peerj_cs_1912 crossref_primary_10_3390_app13148482 crossref_primary_10_1109_JBHI_2024_3352075 crossref_primary_10_1038_s44325_024_00033_7 crossref_primary_10_1109_TIM_2024_3428631 crossref_primary_10_1038_s44172_025_00363_z crossref_primary_10_1371_journal_pdig_0000413 crossref_primary_10_3390_s23073387 crossref_primary_10_1016_j_bspc_2024_106582 crossref_primary_10_1016_j_patcog_2025_111511 crossref_primary_10_1016_j_engappai_2024_109905 crossref_primary_10_3390_app14167228 crossref_primary_10_3389_frobt_2023_1266535 crossref_primary_10_1016_j_bspc_2024_107094 crossref_primary_10_1016_j_compbiomed_2024_108873 crossref_primary_10_1109_JBHI_2023_3345486 crossref_primary_10_1038_s43856_024_00519_6 crossref_primary_10_3390_electronics14050890 crossref_primary_10_1002_widm_70039 crossref_primary_10_1016_j_bspc_2024_107158 crossref_primary_10_1016_j_bspc_2023_105608 crossref_primary_10_3389_fphys_2023_1296277 crossref_primary_10_3390_s24041096 crossref_primary_10_3390_math13172749 crossref_primary_10_1016_j_compbiomed_2025_110956 crossref_primary_10_1109_ACCESS_2025_3604336 crossref_primary_10_1007_s11042_024_18901_w crossref_primary_10_3390_bioengineering9100485 crossref_primary_10_3390_bioengineering10020243 |
| Cites_doi | 10.1088/0967-3334/35/9/1913 10.1109/TIP.2019.2947204 10.1088/0967-3334/35/5/807 10.1063/1.2724789 10.1088/2057-1976/aabd09 10.1016/j.patrec.2017.10.017 10.3181/00379727-37-9630 10.1109/LSP.2020.3007086 10.3390/s21113719 10.1109/TAFFC.2021.3056960 10.1007/978-3-642-15387-7_15 10.2307/2532051 10.1186/s12859-017-1486-2 10.1109/ICCVW.2019.00197 10.21105/joss.02173 10.3390/s21186296 10.1109/TBME.2013.2266196 10.1364/OE.16.021434 10.1109/T-AFFC.2011.15 10.1109/TBME.2015.2508602 10.1109/T-AFFC.2011.25 10.1007/978-3-319-41402-7_20 10.1145/3425780 10.1109/TBME.2016.2609282 10.1016/j.earlhumdev.2013.09.016 10.1109/ICCV.2019.00009 10.1109/ACCESS.2020.3040936 10.1016/j.inffus.2020.06.014 10.1007/s11704-016-6243-6 10.1016/0010-4825(88)90041-8 10.1007/s10439-005-5763-2 10.1364/OE.18.010762 |
| ContentType | Journal Article |
| Copyright | 2022 Boccignone et al. 2022 Boccignone et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. licence_http://creativecommons.org/publicdomain/zero 2022 Boccignone et al. 2022 Boccignone et al. |
| Copyright_xml | – notice: 2022 Boccignone et al. – notice: 2022 Boccignone et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: licence_http://creativecommons.org/publicdomain/zero – notice: 2022 Boccignone et al. 2022 Boccignone et al. |
| DBID | AAYXX CITATION NPM 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
| DOI | 10.7717/peerj-cs.929 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_65f73b7380f0491cb9d5793c8c19554d PMC9044207 oai:HAL:hal-03652383v1 35494872 10_7717_peerj_cs_929 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: The University of Milan through the APC initiative |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM 3V. ARCSS M0N NPM 7XB 8AL 8FK JQ2 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c512t-1fb9e1a59a03367e962f3146b1fa30b08ffb55e32ea7484531782b2ae65e37263 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000789483400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2376-5992 |
| IngestDate | Tue Oct 14 18:56:51 EDT 2025 Tue Nov 04 01:57:56 EST 2025 Wed Nov 05 07:21:19 EST 2025 Thu Oct 02 06:39:27 EDT 2025 Fri Jul 25 05:49:30 EDT 2025 Thu Jan 02 22:54:08 EST 2025 Tue Nov 18 22:07:07 EST 2025 Sat Nov 29 03:45:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deepfake Detection Remote photoplethysmography Contactless monitoring Deep rPPG Heart Rate Estimation Computer Vision Remote photoplethysmography Subjects Human-Computer Interaction |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2022 Boccignone et al. licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c512t-1fb9e1a59a03367e962f3146b1fa30b08ffb55e32ea7484531782b2ae65e37263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4642-4768 |
| OpenAccessLink | https://www.proquest.com/docview/2650314689?pq-origsite=%requestingapplication% |
| PMID | 35494872 |
| PQID | 2650314689 |
| PQPubID | 2045934 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_65f73b7380f0491cb9d5793c8c19554d pubmedcentral_primary_oai_pubmedcentral_nih_gov_9044207 hal_primary_oai_HAL_hal_03652383v1 proquest_miscellaneous_2658652007 proquest_journals_2650314689 pubmed_primary_35494872 crossref_citationtrail_10_7717_peerj_cs_929 crossref_primary_10_7717_peerj_cs_929 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-15 |
| PublicationDateYYYYMMDD | 2022-04-15 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Diego – name: San Diego, USA |
| PublicationTitle | PeerJ. Computer science |
| PublicationTitleAlternate | PeerJ Comput Sci |
| PublicationYear | 2022 |
| Publisher | PeerJ, Inc PeerJ PeerJ Inc |
| Publisher_xml | – name: PeerJ, Inc – name: PeerJ – name: PeerJ Inc |
| References | Verkruysse (10.7717/peerj-cs.929/ref-60) 2008; 16 Lawrence (10.7717/peerj-cs.929/ref-30) 1989; 45 Mirsky (10.7717/peerj-cs.929/ref-39) 2021; 54 McDuff (10.7717/peerj-cs.929/ref-36) 2019 Benavoli (10.7717/peerj-cs.929/ref-4) 2017; 18 De Haan (10.7717/peerj-cs.929/ref-14) 2013; 60 Pilz (10.7717/peerj-cs.929/ref-44) 2019 Aarts (10.7717/peerj-cs.929/ref-1) 2013; 89 Humphreys (10.7717/peerj-cs.929/ref-27) 2007; 78 Bursic (10.7717/peerj-cs.929/ref-10) 2021 Chen (10.7717/peerj-cs.929/ref-11) 2018 Hertzman (10.7717/peerj-cs.929/ref-24) 1937; 37 Boccignone (10.7717/peerj-cs.929/ref-9) 2020 Unakafov (10.7717/peerj-cs.929/ref-59) 2018; 4 Hernandez-Ortega (10.7717/peerj-cs.929/ref-23) 2020 Katz (10.7717/peerj-cs.929/ref-28) 1988; 18 Heusch (10.7717/peerj-cs.929/ref-25) 2017 Wang (10.7717/peerj-cs.929/ref-62) 2015; 63 Koelstra (10.7717/peerj-cs.929/ref-29) 2011; 3 Niu (10.7717/peerj-cs.929/ref-41) 2018 Boccignone (10.7717/peerj-cs.929/ref-8) 2020; 8 Demšar (10.7717/peerj-cs.929/ref-16) 2006; 7 Stricker (10.7717/peerj-cs.929/ref-55) 2014 Špetlík (10.7717/peerj-cs.929/ref-54) 2018 Wang (10.7717/peerj-cs.929/ref-61) 2016; 64 Rouast (10.7717/peerj-cs.929/ref-50) 2017 Heusch (10.7717/peerj-cs.929/ref-26) 2017 Lugaresi (10.7717/peerj-cs.929/ref-20) 2019 Herbold (10.7717/peerj-cs.929/ref-22) 2020; 5 Liu (10.7717/peerj-cs.929/ref-34) 2021 Rössler (10.7717/peerj-cs.929/ref-49) 2019 Qi (10.7717/peerj-cs.929/ref-47) 2020 Benezeth (10.7717/peerj-cs.929/ref-5) 2018 Balakrishnan (10.7717/peerj-cs.929/ref-2) 2013 Poh (10.7717/peerj-cs.929/ref-46) 2010; 18 Nowara (10.7717/peerj-cs.929/ref-43) 2020 Gideon (10.7717/peerj-cs.929/ref-19) 2021 Soleymani (10.7717/peerj-cs.929/ref-53) 2011; 3 Cheng (10.7717/peerj-cs.929/ref-12) 2021; 21 Bansal (10.7717/peerj-cs.929/ref-3) 2018 Estepp (10.7717/peerj-cs.929/ref-18) 2014 Yu (10.7717/peerj-cs.929/ref-65) 2021 McDuff (10.7717/peerj-cs.929/ref-37) 2015 Pilz (10.7717/peerj-cs.929/ref-45) 2018 Ciftci (10.7717/peerj-cs.929/ref-13) 2020 Ni (10.7717/peerj-cs.929/ref-40) 2021; 21 McDuff (10.7717/peerj-cs.929/ref-35) 2021 Bobbia (10.7717/peerj-cs.929/ref-7) 2019; 124 Sabour (10.7717/peerj-cs.929/ref-52) 2021 Yu (10.7717/peerj-cs.929/ref-64) 2020; 27 Eisinga (10.7717/peerj-cs.929/ref-17) 2017; 18 Wieringa (10.7717/peerj-cs.929/ref-63) 2005; 33 Yu (10.7717/peerj-cs.929/ref-66) 2018 Li (10.7717/peerj-cs.929/ref-32) 2018 De Haan (10.7717/peerj-cs.929/ref-15) 2014; 35 Blazek (10.7717/peerj-cs.929/ref-6) 1996 Graczyk (10.7717/peerj-cs.929/ref-21) 2010 Lewandowska (10.7717/peerj-cs.929/ref-31) 2011 Liu (10.7717/peerj-cs.929/ref-33) 2020; 33 Tarassenko (10.7717/peerj-cs.929/ref-56) 2014; 35 Zhang (10.7717/peerj-cs.929/ref-67) 2016 Rouast (10.7717/peerj-cs.929/ref-51) 2018; 12 Niu (10.7717/peerj-cs.929/ref-42) 2019; 29 Torralba (10.7717/peerj-cs.929/ref-58) 2011 Tolosana (10.7717/peerj-cs.929/ref-57) 2020; 64 McDuff (10.7717/peerj-cs.929/ref-38) 2014 Ramírez (10.7717/peerj-cs.929/ref-48) 2014 |
| References_xml | – start-page: 6089 year: 2021 ident: 10.7717/peerj-cs.929/ref-10 article-title: A quantitative evaluation framework of video de-identification methods – year: 2021 ident: 10.7717/peerj-cs.929/ref-35 article-title: Camera measurement of physiological vital signs – volume: 35 start-page: 1913 issue: 9 year: 2014 ident: 10.7717/peerj-cs.929/ref-15 article-title: Improved motion robustness of remote-PPG by using the blood volume pulse signature publication-title: Physiological Measurement doi: 10.1088/0967-3334/35/9/1913 – volume: 29 start-page: 2409 year: 2019 ident: 10.7717/peerj-cs.929/ref-42 article-title: Rhythmnet: end-to-end heart rate estimation from face via spatial-temporal representation publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2019.2947204 – volume: 35 start-page: 807 issue: 5 year: 2014 ident: 10.7717/peerj-cs.929/ref-56 article-title: Non-contact video-based vital sign monitoring using ambient light and auto-regressive models publication-title: Physiological Measurement doi: 10.1088/0967-3334/35/5/807 – start-page: 153 year: 2018 ident: 10.7717/peerj-cs.929/ref-5 article-title: Remote heart rate variability for emotional state monitoring – year: 2020 ident: 10.7717/peerj-cs.929/ref-43 article-title: The benefit of distraction: denoising remote vitals measurements using inverse attention – start-page: 548 year: 2020 ident: 10.7717/peerj-cs.929/ref-9 article-title: Stairway to Elders: bridging space, time and emotions in their social environment for wellbeing – start-page: 562 year: 2018 ident: 10.7717/peerj-cs.929/ref-41 article-title: VIPL-HR: a multi-modal database for pulse estimation from less-constrained face video – start-page: 4318 year: 2020 ident: 10.7717/peerj-cs.929/ref-47 article-title: DeepRhythm: exposing deepfakes with attentional visual heartbeat rhythms – volume: 78 start-page: 044304 issue: 4 year: 2007 ident: 10.7717/peerj-cs.929/ref-27 article-title: Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry publication-title: Review of Scientific Instruments doi: 10.1063/1.2724789 – volume: 4 start-page: 045001 issue: 4 year: 2018 ident: 10.7717/peerj-cs.929/ref-59 article-title: Pulse rate estimation using imaging photoplethysmography: generic framework and comparison of methods on a publicly available dataset publication-title: Biomedical Physics & Engineering Express doi: 10.1088/2057-1976/aabd09 – year: 2017 ident: 10.7717/peerj-cs.929/ref-26 article-title: A reproducible study on remote heart rate measurement – volume: 18 start-page: 2653 issue: 1 year: 2017 ident: 10.7717/peerj-cs.929/ref-4 article-title: Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis publication-title: The Journal of Machine Learning Research – volume: 124 start-page: 82 year: 2019 ident: 10.7717/peerj-cs.929/ref-7 article-title: Unsupervised skin tissue segmentation for remote photoplethysmography publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2017.10.017 – volume: 37 start-page: 529 issue: 3 year: 1937 ident: 10.7717/peerj-cs.929/ref-24 article-title: Photoelectric plethysmography of the fingers and toes in man doi: 10.3181/00379727-37-9630 – volume: 27 start-page: 1245 year: 2020 ident: 10.7717/peerj-cs.929/ref-64 article-title: Autohr: a strong end-to-end baseline for remote heart rate measurement with neural searching publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2020.3007086 – volume-title: Quantitative Photoplethysmography: basic facts and examination tests for evaluating peripheral vascular funktions year: 1996 ident: 10.7717/peerj-cs.929/ref-6 – volume: 7 start-page: 1 year: 2006 ident: 10.7717/peerj-cs.929/ref-16 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 21 start-page: 3719 issue: 11 year: 2021 ident: 10.7717/peerj-cs.929/ref-40 article-title: A review of deep learning-based contactless heart rate measurement methods publication-title: Sensors doi: 10.3390/s21113719 – year: 2017 ident: 10.7717/peerj-cs.929/ref-25 article-title: A reproducible study on remote heart rate measurement – year: 2021 ident: 10.7717/peerj-cs.929/ref-52 article-title: Ubfc-phys: a multimodal database for psychophysiological studies of social stress publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2021.3056960 – start-page: 111 volume-title: Knowledge-based and intelligent information and engineering systems year: 2010 ident: 10.7717/peerj-cs.929/ref-21 article-title: Nonparametric statistical analysis of machine learning algorithms for regression problems doi: 10.1007/978-3-642-15387-7_15 – volume: 45 start-page: 255 year: 1989 ident: 10.7717/peerj-cs.929/ref-30 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics doi: 10.2307/2532051 – start-page: 405 year: 2011 ident: 10.7717/peerj-cs.929/ref-31 article-title: Measuring pulse rate with a webcam - A non-contact method for evaluating cardiac activity – volume: 18 start-page: 68 issue: 1 year: 2017 ident: 10.7717/peerj-cs.929/ref-17 article-title: Exact p-values for pairwise comparison of Friedman rank sums, with application to comparing classifiers publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1486-2 – start-page: 6521 year: 2019 ident: 10.7717/peerj-cs.929/ref-36 article-title: iPhys: an open non-contact imaging-based physiological measurement toolbox – start-page: 1 year: 2020 ident: 10.7717/peerj-cs.929/ref-13 article-title: How do the hearts of deep fakes beat? Deep fake source detection via interpreting residuals with biological signals – year: 2019 ident: 10.7717/peerj-cs.929/ref-44 article-title: On the vector space in photoplethysmography imaging doi: 10.1109/ICCVW.2019.00197 – volume: 5 start-page: 2173 issue: 48 year: 2020 ident: 10.7717/peerj-cs.929/ref-22 article-title: Autorank: a python package for automated ranking of classifiers publication-title: Journal of Open Source Software doi: 10.21105/joss.02173 – start-page: 6398 year: 2015 ident: 10.7717/peerj-cs.929/ref-37 article-title: A survey of remote optical photoplethysmographic imaging methods – start-page: 1462 year: 2014 ident: 10.7717/peerj-cs.929/ref-18 article-title: Recovering pulse rate during motion artifact with a multi-imager array for non-contact imaging photoplethysmography – volume: 21 start-page: 6296 issue: 18 year: 2021 ident: 10.7717/peerj-cs.929/ref-12 article-title: Deep learning methods for remote heart rate measurement: a review and future research agenda publication-title: Sensors doi: 10.3390/s21186296 – volume: 60 start-page: 2878 issue: 10 year: 2013 ident: 10.7717/peerj-cs.929/ref-14 article-title: Robust pulse rate from chrominance-based rPPG publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2013.2266196 – volume: 16 start-page: 21434 issue: 26 year: 2008 ident: 10.7717/peerj-cs.929/ref-60 article-title: Remote plethysmographic imaging using ambient light publication-title: Optics Express doi: 10.1364/OE.16.021434 – volume: 3 start-page: 18 issue: 1 year: 2011 ident: 10.7717/peerj-cs.929/ref-29 article-title: Deap: a database for emotion analysis; using physiological signals publication-title: IEEE Transactions on Affective Computing doi: 10.1109/T-AFFC.2011.15 – volume: 63 start-page: 1974 issue: 9 year: 2015 ident: 10.7717/peerj-cs.929/ref-62 article-title: A novel algorithm for remote photoplethysmography: spatial subspace rotation publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2015.2508602 – start-page: 3438 year: 2016 ident: 10.7717/peerj-cs.929/ref-67 article-title: Multimodal spontaneous emotion corpus for human behavior analysis – start-page: 3995 year: 2021 ident: 10.7717/peerj-cs.929/ref-19 article-title: The way to my heart is through contrastive learning: remote photoplethysmography from unlabelled video – start-page: 2957 year: 2014 ident: 10.7717/peerj-cs.929/ref-38 article-title: Remote measurement of cognitive stress via heart rate variability – volume: 3 start-page: 42 issue: 1 year: 2011 ident: 10.7717/peerj-cs.929/ref-53 article-title: A multimodal database for affect recognition and implicit tagging publication-title: IEEE Transactions on Affective Computing doi: 10.1109/T-AFFC.2011.25 – start-page: 157 volume-title: Information Systems and Neuroscience year: 2017 ident: 10.7717/peerj-cs.929/ref-50 article-title: Using contactless heart rate measurements for real-time assessment of affective states doi: 10.1007/978-3-319-41402-7_20 – start-page: 325 year: 2018 ident: 10.7717/peerj-cs.929/ref-66 article-title: Bisenet: bilateral segmentation network for real-time semantic segmentation – volume: 54 start-page: 1 issue: 1 year: 2021 ident: 10.7717/peerj-cs.929/ref-39 article-title: The creation and detection of deepfakes: a survey publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3425780 – start-page: 1521 year: 2011 ident: 10.7717/peerj-cs.929/ref-58 article-title: Unbiased look at dataset bias – volume: 64 start-page: 1479 issue: 7 year: 2016 ident: 10.7717/peerj-cs.929/ref-61 article-title: Algorithmic principles of remote PPG publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2016.2609282 – start-page: 3 year: 2018 ident: 10.7717/peerj-cs.929/ref-54 article-title: Visual heart rate estimation with convolutional neural network – year: 2019 ident: 10.7717/peerj-cs.929/ref-20 article-title: Mediapipe: a framework for building perception pipelines – volume: 89 start-page: 943 issue: 12 year: 2013 ident: 10.7717/peerj-cs.929/ref-1 article-title: Non-contact heart rate monitoring utilizing camera photoplethysmography in the neonatal intensive care unit A pilot study publication-title: Early Human Development doi: 10.1016/j.earlhumdev.2013.09.016 – year: 2019 ident: 10.7717/peerj-cs.929/ref-49 article-title: FaceForensics++: learning to detect manipulated facial images doi: 10.1109/ICCV.2019.00009 – start-page: 1056 year: 2014 ident: 10.7717/peerj-cs.929/ref-55 article-title: Non-contact video-based pulse rate measurement on a mobile service robot – year: 2021 ident: 10.7717/peerj-cs.929/ref-65 article-title: PhysFormer: facial video-based physiological measurement with temporal difference transformer – start-page: 349 year: 2018 ident: 10.7717/peerj-cs.929/ref-11 article-title: Deepphys: video-based physiological measurement using convolutional attention networks – start-page: 242 year: 2018 ident: 10.7717/peerj-cs.929/ref-32 article-title: The obf database: a large face video database for remote physiological signal measurement and atrial fibrillation detection – start-page: 3430 year: 2013 ident: 10.7717/peerj-cs.929/ref-2 article-title: Detecting pulse from head motions in video – volume: 8 start-page: 216083 year: 2020 ident: 10.7717/peerj-cs.929/ref-8 article-title: An open framework for remote-PPG methods and their assessment publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3040936 – start-page: 154 year: 2021 ident: 10.7717/peerj-cs.929/ref-34 article-title: MetaPhys: few-shot adaptation for non-contact physiological measurement – start-page: 1254 year: 2018 ident: 10.7717/peerj-cs.929/ref-45 article-title: Local group invariance for heart rate estimation from face videos in the wild – volume: 64 start-page: 131 year: 2020 ident: 10.7717/peerj-cs.929/ref-57 article-title: Deepfakes and beyond: a survey of face manipulation and fake detection publication-title: Information Fusion doi: 10.1016/j.inffus.2020.06.014 – volume: 33 start-page: 19400 year: 2020 ident: 10.7717/peerj-cs.929/ref-33 article-title: Multi-task temporal shift attention networks for on-device contactless vitals measurement publication-title: Advances in Neural Information Processing Systems – volume: 12 start-page: 858 issue: 5 year: 2018 ident: 10.7717/peerj-cs.929/ref-51 article-title: Remote heart rate measurement using low-cost RGB face video: a technical literature review publication-title: Frontiers of Computer Science doi: 10.1007/s11704-016-6243-6 – volume: 18 start-page: 145 issue: 3 year: 1988 ident: 10.7717/peerj-cs.929/ref-28 article-title: Fractals and the analysis of waveforms publication-title: Computers in Biology and Medicine doi: 10.1016/0010-4825(88)90041-8 – start-page: 474 year: 2014 ident: 10.7717/peerj-cs.929/ref-48 article-title: Color analysis of facial skin: detection of emotional state – start-page: 119 year: 2018 ident: 10.7717/peerj-cs.929/ref-3 article-title: Recycle-gan: unsupervised video retargeting – year: 2020 ident: 10.7717/peerj-cs.929/ref-23 article-title: Deepfakeson-phys: deepfakes detection based on heart rate estimation – volume: 33 start-page: 1034 issue: 8 year: 2005 ident: 10.7717/peerj-cs.929/ref-63 article-title: Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 Camera”Technology publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-005-5763-2 – volume: 18 start-page: 10762 issue: 10 year: 2010 ident: 10.7717/peerj-cs.929/ref-46 article-title: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation publication-title: Optics Express doi: 10.1364/OE.18.010762 |
| SSID | ssj0001511119 |
| Score | 2.43309 |
| Snippet | Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e929 |
| SubjectTerms | Blood volume Case studies Cognitive science Computer Science Computer Vision Computer Vision and Pattern Recognition Contactless monitoring Datasets Deep rPPG Deepfake Detection Heart rate Heart Rate Estimation Human-Computer Interaction Image Processing Learning Pipelining (computers) Python Remote photoplethysmography Signal and Image Processing Signal processing Statistical analysis Video |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0h1AOXfkA_QmllUDlVKbG9ie3eKCraA0KoKoibZTu2lqpkV7sLEv--M0l2u9uq6oWrYyXWG4_njTJ-A_ChUrHWQvocyarPB5oauXtFyoi4ASJG3O5XzNWZOj_X19fmYqXVF9WEdfLAHXBHVZmU9ErqIiGZ5cGbusQ9FXTgBkNhTacvsp6VZKq7H0xHgekq3RWmLEeTGKc_8jD7ZFo2-TsGtVL9GFlGVAj5N8v8s1hyJfqcPoenPW1kx91yX8BGbLbh2aIlA-s9dAfM5OFq-O0zc-zigVQBWFoUXzFkp2wa0TKRTUbjORWOk5Fue83ql3B5-vX7yTDvuyPkAYP0POfJm8hdaVwhJUJuKpEknnueJycLX-iUfFlGKaIjvVD0NSQDXrhY4aASlXwFm824iW-AJUySfI1nn4h8EDh3xknkecK7UItQ1Bl8XOBlQy8dTh0sflpMIQhd26Jrw8wiuhkcLmdPOsmMf8z7QtAv55DQdTuA5re9-e3_zJ_BARpu7R3D4zNLYxibMcvW8p5nsLewq-1ddGYFclPCS-NC9peP0bnoj4lr4viunaMrEqZSGbzutsHyU7IkZR0lMlBrG2RtLetPmptRK-BtisFAFGr3MQB4C1uCbmSQ_GS5B5vz6V18B0_C_fxmNn3fesUvt68Rlw priority: 102 providerName: Directory of Open Access Journals |
| Title | pyVHR: a Python framework for remote photoplethysmography |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35494872 https://www.proquest.com/docview/2650314689 https://www.proquest.com/docview/2658652007 https://hal.science/hal-03652383 https://pubmed.ncbi.nlm.nih.gov/PMC9044207 https://doaj.org/article/65f73b7380f0491cb9d5793c8c19554d |
| Volume | 8 |
| WOSCitedRecordID | wos000789483400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: P5Z dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: K7- dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: PIMPY dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iGwcuG58jMKqA4ITCYruJYy5oQ52K2KpogqlwiWLHoZsgCUk3aRf-dt5Lk5aC4MIlB9tqrfzep_3yewDPQ2mziAvtYbCqvWFEjdy1JGZEFACLHndxFXN2LCeTaDpVcXfg1nRllb1NbA11Vho6I9_nGEoI-k5Ivam-e9Q1im5XuxYaG7DFOGck5--ltzpjCcggqEW9u8TEZb-ytr7wTPNKtTHlyhO1hP3oX2ZUDvlnrPl7yeQvPuho5393fxu2u-jTPViIyx24YYu7sNN3dnA7Rb8Hqro-G5--dlM3viZyATfva7hcDHLd2iLA1q1m5Zzqzwnrbx319X34eDT68HbsdU0WPIO-fu6xXCvL0kClvhCInAp5TjvVLE-Fr_0oz3UQWMFtSrSjqLIYU2ie2hAHJQ_FA9gsysI-BDfHXEtnaEK5ZUPDWKpSgeEi16nJuPEzB172LzwxHQM5NcL4mmAmQvAkLTyJaRKEx4EXy9XVgnnjL-sOCbvlGuLLbgfK-kvSqV8SBrkUWorIzzElYkarLEDLZCLDFAZUuLVniPzab4wPjhMaQxePyXokrpgDez24SafpTbJC1oGny2nUUbp4SQtbXrZropD4raQDuws5Wv6VCIigR3IH5JqEre1lfaY4n7U84MofDrkvH_17W4_hFqdPNoifMtiDzXl9aZ_ATXM1P2_qAWzIaTSArcPRJD4dtCcSg1aJ8HnyY4TPOPiM8_G7k_jTT7kCJ6E |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyptAgYDoCYUm9iaOkRAqj2qrLqsVKlXFxcSOwxZBEpJt0f4pfiMzeeyyILj1wNWxHCf5PPNNPP4G4HEkbBozrj0kq9obxFTIXQtSRkQAWPS47VbM4UiMx_HRkZyswY_-LAylVfY2sTHUaWHoH_k2QyrB6ZyQfFF-86hqFO2u9iU0Wljs2_l3DNnq53uv8ftuMbb75uDV0OuqCngGndvMCzItbZCEMvE5x6nKiGU0sA6yhPvaj7NMh6HlzCaks4kYRSeqWWIjbBQs4jjuOTg_GGCwhOtnEn5Y_tMJyQDJNr9eYKC0XVpbffZM_VQ2HHbp-ZoCAejPppR--Se3_T1F8xeft7vxv72tK3C5Y9fuTrscrsKaza_BRl-5wu0M2XWQ5fxw-O6Zm7iTOYknuFmfo-YiiXcriwC2bjktZpRfT1j-2kl734D3Z_IAN2E9L3J7G9wMY0mdootgNhiYIEhkwpEOM52YlBk_deBJ_4GV6RTWqdDHF4WRFsFBNXBQplYIBwe2Fr3LVlnkL_1eElYWfUgPvGkoqk-qMy8qCjPBteCxn2HIFxgt0xAtr4lNIJEw4tQeIdJWxhjujBS1IYUJkbfx08CBzR5MqrNktVoiyYGHi8tog2hjKcltcdL0iSPS7xIO3Gpxu7gVD0mASDAHxAqiV-ayeiU_njY659LHReaLO_-e1gO4ODx4O1KjvfH-XbjE6HgKaXGGm7A-q07sPbhgTmfHdXW_WawufDxrvP8E4Wl7eg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NgRAvjN8EBgTEnlBoYjdxjITQYFSdVlUVgmnai4kdhw5BEppuqP8afx13-dFSELztgVfHcpzky9139vk7gKeRsGnMuPaQrGqvH1Mhdy1IGREBYNHjNlsxhyMxHsdHR3KyAT-6szCUVtnZxNpQp4WhNfIeQyrB6ZyQ7GVtWsRkb_Cq_OZRBSnaae3KaTQQObCL7xi-VS_39_Bb7zA2ePv-zdBrKwx4Bh3d3AsyLW2QhDLxOcdpy4hldBMdZAn3tR9nmQ5Dy5lNSHMT8YoOVbPERtgoWMRx3AtwUWCMSYHfJDxere-EZIxkk2svMGjqldbOPnumei5rPrvygnWxAPRtU0rF_JPn_p6u-Yv_G2z9z2_uGlxtWbe72_wm12HD5jdgq6to4bYG7ibIcnE4fPfCTdzJgkQV3KzLXXOR3Lszi8C2bjkt5pR3Txj_2kp-34IP5_IAt2EzL3J7F9wMY0ydoutgNuibIEhkwpEmM52YlBk_deBZ97GVaZXXqQDIF4URGEFD1dBQplIIDQd2lr3LRnHkL_1eE26WfUgnvG4oZp9Ua3ZUFGaCa8FjP8NQMDBapiFaZBObQCKRxKk9QdStjTHcHSlqQ2oTIp_jZ4ED2x2wVGvhKrVClQOPl5fRNtGGU5Lb4rTuE0ek6yUcuNNgeHkrHpIwkWAOiDV0r81l_Up-Mq31z6Xf7zNf3Pv3tB7BZYS5Gu2PD-7DFUanVkiiM9yGzfns1D6AS-ZsflLNHtb_rQsfzxvuPwFUi4RO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pyVHR%3A+a+Python+framework+for+remote+photoplethysmography&rft.jtitle=PeerJ.+Computer+science&rft.au=Boccignone%2C+Giuseppe&rft.au=Conte%2C+Donatello&rft.au=Cuculo%2C+Vittorio&rft.au=D%E2%80%99Amelio%2C+Alessandro&rft.date=2022-04-15&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=8&rft.spage=e929&rft_id=info:doi/10.7717%2Fpeerj-cs.929&rft.externalDBID=n%2Fa&rft.externalDocID=10_7717_peerj_cs_929 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |