SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode

In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 22; číslo 15; s. 5817
Hlavní autori: Liu, Haiying, Sun, Fengqian, Gu, Jason, Deng, Lixia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 04.08.2022
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%.
AbstractList In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%.
In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%.In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%.
Author Deng, Lixia
Gu, Jason
Liu, Haiying
Sun, Fengqian
AuthorAffiliation 1 School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
2 School of Electrical and Computer Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
AuthorAffiliation_xml – name: 1 School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
– name: 2 School of Electrical and Computer Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
Author_xml – sequence: 1
  givenname: Haiying
  surname: Liu
  fullname: Liu, Haiying
– sequence: 2
  givenname: Fengqian
  surname: Sun
  fullname: Sun, Fengqian
– sequence: 3
  givenname: Jason
  surname: Gu
  fullname: Gu, Jason
– sequence: 4
  givenname: Lixia
  surname: Deng
  fullname: Deng, Lixia
BookMark eNplkk2P0zAQhi20iP2AA_8gEhc4hLVjO3Y4IJWFQqWiHhYOnCzHHrepkrjYThH_HocuiF0unlfjZ94Z2XOJzkY_AkLPCX5NaYOvY1URziURj9AFYRUrZVXhs3_0ObqMcY9xRSmVT9A55Q0XVPALpG6X5bfNenPkb4pFse62u_QD5rO4HXTfF5t2DyYV7yHl0PmxWPRbH7q0G4p3OoItcmo1HII_Zr0EnaYAxXKKM_rZW3iKHjvdR3h2F6_Q1-WHLzefyvXm4-pmsS4NJ1UqiWOsaiwxhFlqicQNBWOooUJboFIS07bCQo1dLYAYZ1pW40Ywo7kTLWnoFVqdfK3Xe3UI3aDDT-V1p34nfNgqHVJnelBOuhaYkYJRyQipW9eSmnCbRW7GXfZ6e_I6TO0A1sCYgu7vmd6_Gbud2vqjaqggRNJs8PLOIPjvE8Skhi4a6Hs9gp-iqgSuiGSCsYy-eIDu_RTG_FQzhYVo6kZm6vpEmeBjDOCU6ZKe_yP373pFsJoXQf1dhFzx6kHFn_H_Z38BfCuypA
CitedBy_id crossref_primary_10_3390_agriengineering6040261
crossref_primary_10_3390_app14135841
crossref_primary_10_1016_j_imavis_2023_104855
crossref_primary_10_3390_agronomy14081808
crossref_primary_10_1049_ipr2_70134
crossref_primary_10_3389_fcomp_2024_1480481
crossref_primary_10_3390_agronomy15040996
crossref_primary_10_3390_electronics12102323
crossref_primary_10_3390_diagnostics14151672
crossref_primary_10_3390_rs16132465
crossref_primary_10_3390_s22218480
crossref_primary_10_1587_transinf_2024EDP7204
crossref_primary_10_1109_ACCESS_2024_3459868
crossref_primary_10_3390_s24113596
crossref_primary_10_1007_s11554_024_01567_w
crossref_primary_10_1109_ACCESS_2024_3515201
crossref_primary_10_1109_ACCESS_2025_3589512
crossref_primary_10_1007_s11760_024_03369_w
crossref_primary_10_3390_drones9080514
crossref_primary_10_1016_j_inffus_2024_102369
crossref_primary_10_1109_JRFID_2024_3384483
crossref_primary_10_1016_j_cosrev_2025_100736
crossref_primary_10_3389_fmicb_2023_1240936
crossref_primary_10_1016_j_measen_2024_101214
crossref_primary_10_1080_17480272_2024_2319663
crossref_primary_10_1109_LSP_2024_3477263
crossref_primary_10_1007_s11227_024_06121_w
crossref_primary_10_1016_j_dsp_2025_105268
crossref_primary_10_1016_j_lfs_2024_123209
crossref_primary_10_3390_electronics12163421
crossref_primary_10_3390_electronics12224589
crossref_primary_10_3390_info15040178
crossref_primary_10_1016_j_neucom_2024_127941
crossref_primary_10_3390_electronics14050876
crossref_primary_10_1111_cas_16330
crossref_primary_10_35633_inmateh_76_07
crossref_primary_10_1109_ACCESS_2025_3573651
crossref_primary_10_1186_s44147_025_00644_6
crossref_primary_10_1109_ACCESS_2024_3383047
crossref_primary_10_1111_mice_70034
crossref_primary_10_3390_agriengineering7030063
crossref_primary_10_3390_app13179989
crossref_primary_10_3389_fbioe_2024_1432737
crossref_primary_10_1038_s41598_022_27189_5
crossref_primary_10_3390_s23010097
crossref_primary_10_1007_s11554_024_01558_x
crossref_primary_10_2478_jofnem_2023_0045
crossref_primary_10_1371_journal_pone_0304657
crossref_primary_10_3390_s23177310
crossref_primary_10_3390_s25020438
crossref_primary_10_3390_su151914326
crossref_primary_10_1007_s44443_025_00116_0
crossref_primary_10_1109_LGRS_2023_3327878
crossref_primary_10_3390_agronomy12123054
crossref_primary_10_1109_ACCESS_2025_3582136
crossref_primary_10_1109_ACCESS_2023_3241005
crossref_primary_10_1109_ACCESS_2024_3415385
crossref_primary_10_3390_jmse11010106
crossref_primary_10_3390_electronics12020377
crossref_primary_10_3390_math11163538
crossref_primary_10_21595_jme_2025_24634
crossref_primary_10_3390_math12070957
crossref_primary_10_1155_acis_6263757
crossref_primary_10_3390_math10224366
crossref_primary_10_1109_ACCESS_2025_3595175
crossref_primary_10_1109_ACCESS_2025_3526458
crossref_primary_10_1017_S0263574725000475
crossref_primary_10_3390_s22228820
crossref_primary_10_3390_info15040239
crossref_primary_10_3390_f15071176
crossref_primary_10_3390_app13137367
crossref_primary_10_1007_s42979_024_03520_x
Cites_doi 10.1109/CVPR52729.2023.00721
10.1109/CVPR.2018.00418
10.1109/CVPR.2017.690
10.1109/CVPR.2014.81
10.1109/ICCVW54120.2021.00312
10.1109/TPAMI.2015.2389824
10.1109/ICCV.2017.322
10.1109/CVPR.2019.00720
10.1109/CVPR.2017.106
10.1109/ICCVW.2019.00011
10.1109/ICPR.2006.479
10.1007/978-3-319-46448-0_2
10.3390/e24040487
10.1109/CVPR.2018.00913
10.1109/CVPR.2016.91
10.1109/CVPR.2009.5206848
10.1109/WACV45572.2020.9093394
10.1109/SLT48900.2021.9383531
10.1109/TPAMI.2021.3119563
10.1109/CVPR.2017.634
10.3390/s22135012
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2019.00075
10.1109/CVPR.2016.596
10.1109/CVPR42600.2020.01079
10.1109/CVPR.2018.00377
10.1109/CVPR.2019.00533
10.1109/ICCV.2015.169
10.3390/e23111437
10.1109/CVPRW50498.2020.00203
10.1016/j.imavis.2020.103910
10.1109/WACV45572.2020.9093445
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22155817
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f8fbe4c874384116bfb1615d6bfade5f
PMC9371183
10_3390_s22155817
GrantInformation_xml – fundername: QLUTGJHZ2018019
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c512t-1f4429d1c14d3d18093ecc3c37ade3881cbb7de60f67e1cfcb460974ca5f7b193
IEDL.DBID 7X7
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839985700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:51:20 EDT 2025
Tue Nov 04 01:46:20 EST 2025
Sun Nov 09 13:04:36 EST 2025
Tue Oct 07 07:11:52 EDT 2025
Tue Nov 18 21:19:39 EST 2025
Sat Nov 29 07:14:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-1f4429d1c14d3d18093ecc3c37ade3881cbb7de60f67e1cfcb460974ca5f7b193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2700779698?pq-origsite=%requestingapplication%
PMID 35957375
PQID 2700779698
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_f8fbe4c874384116bfb1615d6bfade5f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371183
proquest_miscellaneous_2702184744
proquest_journals_2700779698
crossref_citationtrail_10_3390_s22155817
crossref_primary_10_3390_s22155817
PublicationCentury 2000
PublicationDate 20220804
PublicationDateYYYYMMDD 2022-08-04
PublicationDate_xml – month: 8
  year: 2022
  text: 20220804
  day: 4
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_36
ref_13
ref_35
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
ref_30
ref_19
ref_18
ref_17
ref_16
ref_15
ref_37
He (ref_12) 2015; 37
ref_25
ref_24
ref_23
Tong (ref_38) 2020; 97
ref_22
ref_21
ref_20
ref_1
ref_3
ref_2
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
ref_5
ref_4
ref_7
Ren (ref_14) 2015; 28
ref_6
References_xml – ident: ref_28
  doi: 10.1109/CVPR52729.2023.00721
– ident: ref_8
  doi: 10.1109/CVPR.2018.00418
– ident: ref_17
  doi: 10.1109/CVPR.2017.690
– ident: ref_11
  doi: 10.1109/CVPR.2014.81
– ident: ref_4
  doi: 10.1109/ICCVW54120.2021.00312
– volume: 37
  start-page: 1904
  year: 2015
  ident: ref_12
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref_15
  doi: 10.1109/ICCV.2017.322
– ident: ref_24
  doi: 10.1109/CVPR.2019.00720
– ident: ref_37
– ident: ref_23
  doi: 10.1109/CVPR.2017.106
– ident: ref_5
  doi: 10.1109/ICCVW.2019.00011
– ident: ref_18
– ident: ref_31
  doi: 10.1109/ICPR.2006.479
– ident: ref_21
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_6
  doi: 10.3390/e24040487
– ident: ref_26
  doi: 10.1109/CVPR.2018.00913
– ident: ref_16
  doi: 10.1109/CVPR.2016.91
– ident: ref_9
  doi: 10.1109/CVPR.2009.5206848
– ident: ref_35
  doi: 10.1109/WACV45572.2020.9093394
– ident: ref_25
– ident: ref_30
  doi: 10.1109/SLT48900.2021.9383531
– ident: ref_36
  doi: 10.1109/TPAMI.2021.3119563
– ident: ref_29
  doi: 10.1109/CVPR.2017.634
– ident: ref_1
  doi: 10.3390/s22135012
– ident: ref_10
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref_34
  doi: 10.1109/CVPR.2019.00075
– volume: 28
  start-page: 91
  year: 2015
  ident: ref_14
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_33
  doi: 10.1109/CVPR.2016.596
– ident: ref_27
  doi: 10.1109/CVPR42600.2020.01079
– ident: ref_22
  doi: 10.1109/CVPR.2018.00377
– ident: ref_7
  doi: 10.1109/CVPR.2019.00533
– ident: ref_19
– ident: ref_13
  doi: 10.1109/ICCV.2015.169
– ident: ref_3
  doi: 10.3390/e23111437
– ident: ref_32
  doi: 10.1109/CVPRW50498.2020.00203
– ident: ref_20
– volume: 97
  start-page: 103910
  year: 2020
  ident: ref_38
  article-title: Recent advances in small object detection based on deep learning: A review
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2020.103910
– ident: ref_2
  doi: 10.1109/WACV45572.2020.9093445
SSID ssj0023338
Score 2.6758275
Snippet In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5817
SubjectTerms Ability tests
Accuracy
Algorithms
Computer vision
object detection
segmentation and categorization
small object
visual tracking
YOLO
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1ViEN7qGhp1QBFBvXQS0SycWK7twW64rBiK1EkOEXxV1lpyaLdLPz9zjjZ7Uaq1Etvlu2DM2N75o0nbwC-DIxSubYuVi6xVMKsiivhEKUYmXHlneY2kLiOxfW1vLtTP7ZKfVFOWEsP3AruzEuvHTcSLZ3kaVpor8lJsdiorMs93b6JUGsw1UGtDJFXyyOUIag_Ww7QsuUyVCX7Y30CSX_Ps-znRW4ZmtEevO08RDZsV_YOXrn6PbzZ4g3ch_JmFN9PxpPn_BsbsjHh65cQ4mQ3j9Vsxiaaoivs0jUh0apmw9mv-WLaPDyyc7RalmFXG03ANjmBq4VjoxUFzhgVR_sAt6PvPy-u4q5SQmzQYDdx6jnaFZualNvMEiVXhqrJTCZQRpmUqdFaWFckvhAuNd5oXiSIJEyVe6HRh_sIO_W8dp-AIWKyBcoYPcmCS60010lqjPSFzCub6Ai-riVYmo5GnKpZzEqEEyTsciPsCE43U59a7oy_TTonNWwmEN116MBNUHaboPzXJojgaK3EsjuDy5Ke1IVQhZIRnGyG8fTQk0hVu_kqzCGMKziPQPSU31tQf6SePgQebqISxBvx4H98wSG8HtCPFZSMwo9gp1ms3GfYNc_NdLk4Dpv7N4dVAqQ
  priority: 102
  providerName: Directory of Open Access Journals
Title SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode
URI https://www.proquest.com/docview/2700779698
https://www.proquest.com/docview/2702184744
https://pubmed.ncbi.nlm.nih.gov/PMC9371183
https://doaj.org/article/f8fbe4c874384116bfb1615d6bfade5f
Volume 22
WOSCitedRecordID wos000839985700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CjQMcxudEYFQGceASrWmc2OGCWmgFUtdWDKTuFMVf26QuHW263fjbec9N20VCXLhYlm3Jjp7t937PL78H8L6jsyxRxoaZbRtKYVaEhbCIUrSMeeas4saTuA7FaCSn02xSO9yWdVjl5k70F7WZa_KRH9MDqRBZmslP179CyhpFr6t1Co37sE9ps2mfi-kOcMWIv9ZsQjFC--NlB_VbIn1usp0O8lT9DfuyGR15R90MHv_vQp_AQW1osu56ZzyFe7Z8Bo_u0A8-h_x0EJ6Nh-Ob5CPrsiHB9FvvKWWnV8VsxsaKnDTsi618vFbJurNznKm6uGI9VH6GYdPaKYF1siVXC8sGK_K_Mcqx9gJ-Dvo_Pn8N64QLoUa9X4WR46ieTKQjbmJDzF4xSjjWsSiMjaWMtFLC2LTtUmEj7bTiaRsBiS4SJxSagoewV85L-xIYAi-TOkURjCmXKlNctSOtpUtlUpi2CuDDRgS5rtnIKSnGLEdUQtLKt9IK4N126PWaguNvg3okx-0AYs32DfPFeV4fwtxJpyzXEq0myaMoVbhAtOgMVvADExfA0UakeX2Ul_lOngG83XbjIaSXlaK085UfQ1BZcB6AaOyexoKaPeXlhafzJkZCvFhf_Xvy1_CwQ39eULQKP4K9arGyb-CBvqkul4uW3_e-lC3Y7_VHk-8t717A8uR3H9sm304mZ38ApaAV2g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFB5KFdSHesfUqqMo-BKayyQzEUS21qWlcVdohe1TzNzawjZb99Lin_I3es4k2W1AfOuDbyEZkpzMl3ObM98h5G2ksiyR2viZCTS2MCv9khuIUpSIWWaNZNqRuOZ8MBCjUfZtjfxu98JgWWWrE52i1hOFOfJtXCDlPEsz8enip49do3B1tW2hUcPiwPy6gpBt9nF_F-b3XRT1vxx93vObrgK-AuM290PLQAfrUIVMxxrpq2IQI1YxL7WJhQiVlFybNLApN6GySrI0AK9blYnlMkTyJVD5t-AeHIM9PloFeDHEezV7URxnwfYsAnuaCNcLbWXzXGuAjj_brca8Zt769_-3D_OAbDSONO3VyH9I1kz1iNy7Rq_4mBSHff94mA8vkw-0R3NMQ1y5TDA9PC_HYzqUmISiu2bu6tEq2hufgGTz03O6A8ZdUzhVJ13gGH3lxdTQ_gLzixR7yD0h329EwqdkvZpU5hmhEFjq1Eqs0EyZkJlkMgiVEjYVSakD6ZH37ZQXqmFbx6Yf4wKiLkRHsUSHR94sh17UFCN_G7SDuFkOQFZwd2IyPSkaJVNYYaVhSoBXKFgYphJeEDxWDQcgYGI9stVCqGhU1axY4ccjr5eXQcngylFZmcnCjcFUAGfMI7yD1s4Lda9UZ6eOrhwZF8FwbP774a_Inb2jr3mR7w8OnpO7Ee4ywcoctkXW59OFeUFuq8v52Wz60v1zlPy4aSz_AR2ubcM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOoTggTuiMMAgkHiJmosTO0gIdZSKaqWtNJC2pxDftkldOtp0E3-NX8c5aZqtEuJtD7xZjqXE8edz8_F3AN6EOk1jZayXWt9QCbPcy4VFL0XLiKfOKm4qEtehGI3kwUE62YLf67swlFa5lomVoDYzTTHyDh2QCpEmqey4Oi1i0ut_PPvpUQUpOmldl9NYQWTP_rpA923xYdDDtX4bhv3P3z598eoKA55GRVd6geMoj02gA24iQ1RWEU4p0pHIjY2kDLRSwtjEd4mwgXZa8cRHC1znsRMqICImFP_baJLzsAXbk8HXyWHj7kXo_a24jKIo9TuLELVrLKvKaJcasCoUsGHdbuZmXlF2_bv_82-6B3dqE5t1V3viPmzZ4gHcvkK8-BCy_b53OB6Oz-P3rMuGFKC4qGLEbP80n07ZWFF4ivVsWWWqFaw7PcKZlcenbBfVvmHYtQrHYJus6OXcsv6SIo-Mqss9gu_XMsPH0CpmhX0CDF1OkzhFuZsJlypVXPmB1tIlMs6Nr9rwbr38ma552KkcyDRDf4yQkjVIacPrZujZinzkb4N2CUPNAOILrzpm86OsFj-Zk05ZriXai5IHQaLwA9GWNdjACcauDTtrOGW1EFtkl1hqw6vmMYofOlPKCztbVmMoSCA4b4PYQO7GB20-KU6OKyJz4mJElfL03y9_CTcRwtlwMNp7BrdCun5CKTt8B1rlfGmfww19Xp4s5i_qDcjgx3WD-Q8lsXgS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SF-YOLOv5%3A+A+Lightweight+Small+Object+Detection+Algorithm+Based+on+Improved+Feature+Fusion+Mode&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Haiying&rft.au=Sun%2C+Fengqian&rft.au=Gu%2C+Jason&rft.au=Deng%2C+Lixia&rft.date=2022-08-04&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft.spage=5817&rft_id=info:doi/10.3390%2Fs22155817&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22155817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon