Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration
Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial informatio...
Saved in:
| Published in: | BioEssays Vol. 42; no. 10; pp. e1900221 - n/a |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.10.2020
|
| Subjects: | |
| ISSN: | 0265-9247, 1521-1878, 1521-1878 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial information. The vast array of methodologies displays fundamental differences in their approach to obtain this information, and thus, demonstrate method‐specific advantages and shortcomings. While the field is moving forward at a rapid pace, there are still multiple challenges presented to be addressed, including sensitivity, labor extensiveness, tissue‐type dependence, and limited capacity to obtain detailed single‐cell information. No single method can currently address all these key parameters. In this review, available spatial transcriptomics methods are described and their applications as well as their strengths and weaknesses are discussed. Future developments are explored and where the field is heading to is deliberated upon.
In this review, current spatial transcriptomics methods are surveyed. These methods detect RNA molecules while retaining information of where the molecules are located in the tissue. The advantages and drawbacks of existing methods are discussed. |
|---|---|
| AbstractList | Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial information. The vast array of methodologies displays fundamental differences in their approach to obtain this information, and thus, demonstrate method-specific advantages and shortcomings. While the field is moving forward at a rapid pace, there are still multiple challenges presented to be addressed, including sensitivity, labor extensiveness, tissue-type dependence, and limited capacity to obtain detailed single-cell information. No single method can currently address all these key parameters. In this review, available spatial transcriptomics methods are described and their applications as well as their strengths and weaknesses are discussed. Future developments are explored and where the field is heading to is deliberated upon.Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial information. The vast array of methodologies displays fundamental differences in their approach to obtain this information, and thus, demonstrate method-specific advantages and shortcomings. While the field is moving forward at a rapid pace, there are still multiple challenges presented to be addressed, including sensitivity, labor extensiveness, tissue-type dependence, and limited capacity to obtain detailed single-cell information. No single method can currently address all these key parameters. In this review, available spatial transcriptomics methods are described and their applications as well as their strengths and weaknesses are discussed. Future developments are explored and where the field is heading to is deliberated upon. Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial information. The vast array of methodologies displays fundamental differences in their approach to obtain this information, and thus, demonstrate method-specific advantages and shortcomings. While the field is moving forward at a rapid pace, there are still multiple challenges presented to be addressed, including sensitivity, labor extensiveness, tissue-type dependence, and limited capacity to obtain detailed single-cell information. No single method can currently address all these key parameters. In this review, available spatial transcriptomics methods are described and their applications as well as their strengths and weaknesses are discussed. Future developments are explored and where the field is heading to is deliberated upon. Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial information. The vast array of methodologies displays fundamental differences in their approach to obtain this information, and thus, demonstrate method‐specific advantages and shortcomings. While the field is moving forward at a rapid pace, there are still multiple challenges presented to be addressed, including sensitivity, labor extensiveness, tissue‐type dependence, and limited capacity to obtain detailed single‐cell information. No single method can currently address all these key parameters. In this review, available spatial transcriptomics methods are described and their applications as well as their strengths and weaknesses are discussed. Future developments are explored and where the field is heading to is deliberated upon. In this review, current spatial transcriptomics methods are surveyed. These methods detect RNA molecules while retaining information of where the molecules are located in the tissue. The advantages and drawbacks of existing methods are discussed. |
| Author | Asp, Michaela Bergenstråhle, Joseph Lundeberg, Joakim |
| Author_xml | – sequence: 1 givenname: Michaela surname: Asp fullname: Asp, Michaela organization: Science for Life Laboratory – sequence: 2 givenname: Joseph surname: Bergenstråhle fullname: Bergenstråhle, Joseph organization: Science for Life Laboratory – sequence: 3 givenname: Joakim orcidid: 0000-0003-4313-1601 surname: Lundeberg fullname: Lundeberg, Joakim email: joakim.lundeberg@scilifelab.se organization: Science for Life Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32363691$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9u1DAQhy1URLeFK0cUiQuXXTx2_O8I1bZUqgDR5Ww5zkRy5Y2DnUD3xkP0CXkSUrYUqRLqybL8fTPj-R2Rgz71SMhLoCuglL1tApYVo2DmC4MnZAGCwRK00gdkQZkUS8NqdUiOSrmilBrJ6mfkkDMuuTSwIJ8vBzcGF-Ou-oIlxe_YVpvs-uJzGMa0xfLr581HvB6rM-wxz2zqq01KsVRdytUmlDJhtb4eYto_PidPOxcLvrg7j8nX0_Xm5MPy4tPZ-cm7i6UXME-ooeVee6qF0045SVXrvZegDDMUdANNi60QqDoE0TmlOu2lrFvDmppr1_Bj8mZfd8jp24RltNtQPMboekxTsUywmjHJGX0c5UaDUGD4jL5-gF6lKffzRyyra8EkGMVm6tUdNTVbbO2Qw9blnf271hlY7QGfUykZu3sEqL3Nzd7mZu9zm4X6geDD-GefY3Yh_l8ze-1HiLh7pIl9f76-_Of-BlSFrPc |
| CitedBy_id | crossref_primary_10_1186_s40364_025_00758_2 crossref_primary_10_1016_j_bioactmat_2022_10_029 crossref_primary_10_1038_s41467_022_34879_1 crossref_primary_10_1016_j_cels_2024_04_006 crossref_primary_10_1016_j_semcdb_2022_05_023 crossref_primary_10_1093_bib_bbae082 crossref_primary_10_3389_fimmu_2023_1233800 crossref_primary_10_1038_s41467_021_26271_2 crossref_primary_10_1093_bioinformatics_btaf403 crossref_primary_10_1360_SSV_2025_0140 crossref_primary_10_3389_fimmu_2025_1589943 crossref_primary_10_1016_j_compbiomed_2023_106634 crossref_primary_10_1038_s41581_021_00463_x crossref_primary_10_1038_s41587_023_02019_9 crossref_primary_10_1371_journal_pone_0281464 crossref_primary_10_1093_nar_gkaf303 crossref_primary_10_1038_s41467_023_41749_x crossref_primary_10_3389_fcell_2022_853188 crossref_primary_10_1136_gutjnl_2024_332901 crossref_primary_10_1016_j_bbrep_2025_102207 crossref_primary_10_2174_0118740707311249240604053619 crossref_primary_10_1186_s13059_022_02783_y crossref_primary_10_1097_HEP_0000000000000387 crossref_primary_10_1016_j_jdsr_2023_10_006 crossref_primary_10_1038_s41592_024_02325_3 crossref_primary_10_3390_molecules28010157 crossref_primary_10_1038_s41467_023_36560_7 crossref_primary_10_1186_s13059_024_03361_0 crossref_primary_10_1186_s12967_023_04600_x crossref_primary_10_1002_path_6383 crossref_primary_10_1038_s41551_022_00905_2 crossref_primary_10_1093_bioinformatics_btae451 crossref_primary_10_1093_ofid_ofab483 crossref_primary_10_1038_s41557_025_01946_1 crossref_primary_10_1186_s13619_022_00152_5 crossref_primary_10_3390_plants13243476 crossref_primary_10_1146_annurev_neuro_100520_082639 crossref_primary_10_1002_biot_202300294 crossref_primary_10_1038_s41551_024_01205_7 crossref_primary_10_1038_s41586_021_03634_9 crossref_primary_10_1016_j_tins_2021_11_001 crossref_primary_10_1146_annurev_genom_102722_092013 crossref_primary_10_1242_dmm_050913 crossref_primary_10_1093_bib_bbae666 crossref_primary_10_1111_raq_12806 crossref_primary_10_3390_biom13010156 crossref_primary_10_1016_j_jpi_2024_100408 crossref_primary_10_1186_s13059_022_02734_7 crossref_primary_10_1016_j_xcrp_2025_102811 crossref_primary_10_3390_cancers15245711 crossref_primary_10_1186_s13059_021_02548_z crossref_primary_10_1186_s13059_024_03303_w crossref_primary_10_3390_biom15010021 crossref_primary_10_1038_s41467_023_36062_6 crossref_primary_10_1038_s41467_022_28634_9 crossref_primary_10_1093_gpbjnl_qzaf002 crossref_primary_10_1016_j_neucom_2024_128283 crossref_primary_10_3389_fnana_2021_757499 crossref_primary_10_1158_1078_0432_CCR_20_2345 crossref_primary_10_1016_j_patcog_2025_112207 crossref_primary_10_1002_smtd_202401303 crossref_primary_10_1038_s41576_023_00580_2 crossref_primary_10_1080_00365521_2022_2124537 crossref_primary_10_1016_j_molmet_2023_101746 crossref_primary_10_1093_nar_gkac1138 crossref_primary_10_1186_s40478_024_01769_0 crossref_primary_10_1016_j_biosystems_2025_105576 crossref_primary_10_1038_s41576_021_00370_8 crossref_primary_10_3389_fmolb_2021_711733 crossref_primary_10_3390_mps6020035 crossref_primary_10_1016_j_jid_2021_12_014 crossref_primary_10_3390_plants10071423 crossref_primary_10_1007_s44007_025_00149_x crossref_primary_10_1093_gigascience_giae089 crossref_primary_10_3390_genes12101629 crossref_primary_10_1007_s11033_023_09097_7 crossref_primary_10_1016_j_ymeth_2023_11_002 crossref_primary_10_3389_fonc_2022_936190 crossref_primary_10_1093_bib_bbae524 crossref_primary_10_1002_advs_202302558 crossref_primary_10_1186_s40364_025_00798_8 crossref_primary_10_1002_ctm2_70115 crossref_primary_10_1016_j_jaci_2025_01_009 crossref_primary_10_1186_s12935_022_02580_4 crossref_primary_10_1186_s13073_022_01075_1 crossref_primary_10_3390_cells12091310 crossref_primary_10_1016_j_jid_2024_07_006 crossref_primary_10_1016_j_molcel_2021_03_016 crossref_primary_10_3389_fgene_2025_1512435 crossref_primary_10_1210_endrev_bnab010 crossref_primary_10_1101_gr_279771_124 crossref_primary_10_59717_j_xinn_life_2024_100097 crossref_primary_10_7554_eLife_88431_3 crossref_primary_10_1681_ASN_2020121742 crossref_primary_10_1093_nar_gkad169 crossref_primary_10_3389_fnmol_2024_1386239 crossref_primary_10_3390_jmp3030014 crossref_primary_10_3389_fmed_2021_721953 crossref_primary_10_1186_s12859_021_04528_3 crossref_primary_10_1038_s41467_024_51728_5 crossref_primary_10_1093_jxb_erac521 crossref_primary_10_1093_nargab_lqaf109 crossref_primary_10_1016_j_bios_2022_114770 crossref_primary_10_1186_s12967_024_05307_3 crossref_primary_10_2147_VHRM_S288090 crossref_primary_10_1089_cmb_2024_0614 crossref_primary_10_1016_j_lmd_2025_100076 crossref_primary_10_1038_s41413_025_00429_w crossref_primary_10_1016_j_csbj_2022_08_043 crossref_primary_10_1038_s41467_022_31739_w crossref_primary_10_1183_13993003_02057_2021 crossref_primary_10_1186_s13059_024_03416_2 crossref_primary_10_1021_acs_analchem_5c01812 crossref_primary_10_1007_s40472_024_00450_8 crossref_primary_10_1161_ATVBAHA_121_315852 crossref_primary_10_1371_journal_pone_0316475 crossref_primary_10_1016_j_cell_2021_05_010 crossref_primary_10_3390_biom13060895 crossref_primary_10_1109_TKDE_2024_3450333 crossref_primary_10_3389_fimmu_2023_1276194 crossref_primary_10_1016_j_mam_2024_101276 crossref_primary_10_3389_fmicb_2022_989464 crossref_primary_10_1038_s41598_022_07685_4 crossref_primary_10_1186_s13059_024_03213_x crossref_primary_10_1016_j_nbd_2023_106062 crossref_primary_10_1093_bioinformatics_btae383 crossref_primary_10_4049_jimmunol_2100408 crossref_primary_10_1093_nar_gkaa792 crossref_primary_10_1186_s13073_025_01442_8 crossref_primary_10_3390_ijms26093949 crossref_primary_10_3389_fendo_2024_1394812 crossref_primary_10_3390_ijms22042071 crossref_primary_10_1002_advs_202412373 crossref_primary_10_1186_s12859_025_06054_y crossref_primary_10_3389_fimmu_2022_996721 crossref_primary_10_1186_s13059_023_03045_1 crossref_primary_10_1016_j_molmed_2021_09_008 crossref_primary_10_1016_j_cell_2023_08_020 crossref_primary_10_1111_raq_12733 crossref_primary_10_1038_s41388_020_1367_4 crossref_primary_10_1038_s41573_023_00847_7 crossref_primary_10_1038_s41467_024_44835_w crossref_primary_10_3389_fmed_2021_822804 crossref_primary_10_1186_s12943_024_01941_z crossref_primary_10_1371_journal_pgen_1011423 crossref_primary_10_1002_smtd_202401194 crossref_primary_10_3390_ijms22179550 crossref_primary_10_1016_j_gpb_2022_10_001 crossref_primary_10_1093_pcmedi_pbac002 crossref_primary_10_1016_j_bbcan_2021_188663 crossref_primary_10_1080_14737159_2021_1900735 crossref_primary_10_1186_s12915_022_01325_z crossref_primary_10_1038_s41467_022_30033_z crossref_primary_10_1016_j_gpb_2022_11_012 crossref_primary_10_3389_fimmu_2025_1546382 crossref_primary_10_1038_s41467_023_39895_3 crossref_primary_10_1186_s40364_021_00336_2 crossref_primary_10_1016_j_tibtech_2023_07_003 crossref_primary_10_1093_bib_bbad278 crossref_primary_10_1002_mef2_70001 crossref_primary_10_1080_14789450_2021_1984886 crossref_primary_10_1038_s41467_022_32284_2 crossref_primary_10_1016_j_crmeth_2022_100325 crossref_primary_10_7554_eLife_88431 crossref_primary_10_1109_TCBB_2023_3282028 crossref_primary_10_1038_s41467_022_29439_6 crossref_primary_10_1093_genetics_iyac095 crossref_primary_10_3389_fmolb_2021_775410 crossref_primary_10_1093_nar_gkad521 crossref_primary_10_1016_j_compbiomed_2023_107440 crossref_primary_10_1038_s41592_020_01033_y crossref_primary_10_1016_j_neuron_2023_01_016 crossref_primary_10_1038_s41587_022_01273_7 crossref_primary_10_1186_s13059_024_03272_0 crossref_primary_10_1002_smtd_202401123 crossref_primary_10_1016_j_biopsych_2025_06_010 crossref_primary_10_1016_j_csbj_2023_01_016 crossref_primary_10_1093_bib_bbad262 crossref_primary_10_1369_00221554221114174 crossref_primary_10_1016_j_brainres_2025_149688 crossref_primary_10_1186_s40779_024_00537_4 crossref_primary_10_1016_j_engappai_2025_111203 crossref_primary_10_1186_s12882_024_03853_y crossref_primary_10_3389_fgene_2022_906158 crossref_primary_10_1002_smtd_202500770 crossref_primary_10_1093_bib_bbaf316 crossref_primary_10_1002_advs_202410081 crossref_primary_10_1111_his_15093 crossref_primary_10_3389_fgene_2022_785877 crossref_primary_10_1097_TP_0000000000004466 crossref_primary_10_1097_TP_0000000000004587 crossref_primary_10_1016_j_compbiomed_2025_110280 crossref_primary_10_1016_j_fmre_2022_01_036 crossref_primary_10_1002_ijc_34711 crossref_primary_10_1134_S1022795424010046 crossref_primary_10_1007_s12016_024_09001_6 crossref_primary_10_1093_bfgp_elae033 crossref_primary_10_1096_fba_2024_00133 crossref_primary_10_1186_s13059_024_03211_z crossref_primary_10_1038_s41592_021_01316_y crossref_primary_10_1681_ASN_2021081150 crossref_primary_10_1093_gigascience_giac075 crossref_primary_10_1016_j_trac_2022_116868 crossref_primary_10_3390_cancers15082362 crossref_primary_10_3389_fams_2024_1403901 crossref_primary_10_1186_s13059_024_03428_y crossref_primary_10_1038_s41467_023_43006_7 crossref_primary_10_1038_s41576_023_00586_w crossref_primary_10_3390_cancers16091615 crossref_primary_10_1038_s41467_023_39424_2 crossref_primary_10_3389_fimmu_2022_885267 crossref_primary_10_1016_j_csbj_2021_06_052 crossref_primary_10_3389_fcell_2023_1126507 crossref_primary_10_1016_j_cell_2024_07_040 crossref_primary_10_1038_s41477_024_01666_3 crossref_primary_10_2174_1574893618666230529145130 crossref_primary_10_1007_s00262_020_02801_7 crossref_primary_10_1186_s12967_023_04129_z crossref_primary_10_1038_s41467_021_25279_y crossref_primary_10_1038_s44222_023_00084_y crossref_primary_10_1109_TCBB_2024_3469164 crossref_primary_10_3390_biom15081067 crossref_primary_10_3390_cancers16173100 crossref_primary_10_3389_fimmu_2021_702636 crossref_primary_10_1038_s41467_023_36796_3 crossref_primary_10_1093_bib_bbae130 crossref_primary_10_3892_ol_2024_14285 crossref_primary_10_1002_advs_202206939 crossref_primary_10_1007_s00432_024_05816_0 crossref_primary_10_1002_bies_202200084 crossref_primary_10_1016_j_microc_2025_113189 crossref_primary_10_1093_plphys_kiab584 crossref_primary_10_1002_smtd_202401272 crossref_primary_10_3390_life12010067 crossref_primary_10_3389_fcell_2025_1633254 crossref_primary_10_1007_s12539_024_00676_1 crossref_primary_10_1016_j_lungcan_2021_06_022 crossref_primary_10_1038_s41592_022_01409_2 crossref_primary_10_1073_pnas_2309227120 crossref_primary_10_1093_bib_bbae685 crossref_primary_10_1038_s42003_020_01341_1 crossref_primary_10_3389_fnagi_2022_1095801 crossref_primary_10_3390_cancers14174080 crossref_primary_10_1016_j_jmb_2025_169202 crossref_primary_10_1186_s12864_024_11072_w crossref_primary_10_1360_SSM_2024_0318 crossref_primary_10_1007_s44194_023_00023_4 crossref_primary_10_1038_s41587_023_01937_y crossref_primary_10_1093_cei_uxae077 crossref_primary_10_3389_fcell_2023_1142923 crossref_primary_10_3390_ijms23063042 crossref_primary_10_1016_j_ymeth_2024_10_002 crossref_primary_10_1002_adhm_202202457 crossref_primary_10_3390_jof7050377 crossref_primary_10_1002_aro2_70016 crossref_primary_10_1016_j_kint_2022_06_011 crossref_primary_10_1080_15548627_2021_2016255 crossref_primary_10_12677_aam_2024_1311470 crossref_primary_10_1038_s41592_022_01604_1 crossref_primary_10_1016_j_jpha_2023_06_002 crossref_primary_10_3389_fnsyn_2020_615059 crossref_primary_10_1016_j_csbj_2025_02_028 crossref_primary_10_1093_bib_bbae670 crossref_primary_10_3389_fimmu_2021_697412 crossref_primary_10_1161_ATVBAHA_120_314776 crossref_primary_10_1038_s41698_023_00444_2 crossref_primary_10_3389_fnmol_2020_583811 crossref_primary_10_1002_rai2_70023 crossref_primary_10_1038_s41592_024_02257_y crossref_primary_10_1093_bib_bbaf085 crossref_primary_10_1093_bib_bbaf086 crossref_primary_10_1002_jmv_29009 crossref_primary_10_1002_mco2_659 crossref_primary_10_1038_s41592_021_01255_8 crossref_primary_10_1111_exd_14827 crossref_primary_10_1038_s42003_023_04761_x crossref_primary_10_1038_s41581_024_00861_x crossref_primary_10_1007_s12539_025_00728_0 crossref_primary_10_3389_fonc_2023_1172314 crossref_primary_10_1038_s41392_022_00960_w crossref_primary_10_1038_s41556_021_00788_6 crossref_primary_10_1186_s12859_021_04302_5 crossref_primary_10_1016_j_brainres_2024_148817 crossref_primary_10_1093_nar_gkaf870 crossref_primary_10_1093_nar_gkad419 crossref_primary_10_3892_mmr_2024_13281 crossref_primary_10_1038_s41467_022_34567_0 crossref_primary_10_1093_bib_bbad490 crossref_primary_10_1002_advs_202506176 crossref_primary_10_3390_cancers12092572 crossref_primary_10_1038_s41467_023_44017_0 crossref_primary_10_3390_biom14121549 crossref_primary_10_1101_gr_277891_123 crossref_primary_10_7717_peerj_17032 crossref_primary_10_3389_fgene_2022_858808 crossref_primary_10_1016_j_jacc_2021_06_049 crossref_primary_10_1038_s42003_024_07037_0 crossref_primary_10_1038_s42003_021_02517_z crossref_primary_10_1016_j_yexcr_2021_112966 crossref_primary_10_1016_j_celbio_2025_100099 crossref_primary_10_32604_or_2023_029494 crossref_primary_10_1371_journal_pgen_1010983 crossref_primary_10_1038_s41587_021_01182_1 crossref_primary_10_1002_mco2_765 crossref_primary_10_1093_nar_gkac333 crossref_primary_10_1158_1078_0432_CCR_24_2469 crossref_primary_10_3390_mi16040426 crossref_primary_10_1002_dvdy_463 crossref_primary_10_1002_dvdy_345 crossref_primary_10_1016_j_cels_2025_101243 crossref_primary_10_1038_s41698_024_00728_1 crossref_primary_10_1093_nar_gkac219 crossref_primary_10_1007_s11427_023_2636_9 crossref_primary_10_3389_fonc_2022_1019111 crossref_primary_10_1016_j_csbj_2024_11_041 crossref_primary_10_1016_j_bios_2025_118018 crossref_primary_10_1038_s41598_022_11534_9 crossref_primary_10_1093_bib_bbae578 crossref_primary_10_1038_s41592_024_02212_x crossref_primary_10_1093_nsr_nwaf030 crossref_primary_10_1101_gr_275224_121 crossref_primary_10_1016_j_kint_2021_09_012 crossref_primary_10_1159_000519233 crossref_primary_10_1145_3641284 crossref_primary_10_1186_s13059_024_03380_x crossref_primary_10_1186_s13059_024_03289_5 crossref_primary_10_15252_msb_20209923 crossref_primary_10_1038_s41467_023_40458_9 crossref_primary_10_1016_j_engappai_2025_110338 |
| Cites_doi | 10.1126/science.aat5691 10.1038/nmeth.2892 10.1038/nrg3832 10.1016/j.cell.2014.09.038 10.1073/pnas.63.2.378 10.1038/s41592-019-0631-4 10.1016/j.cell.2015.10.039 10.1371/journal.pone.0071820 10.1016/j.ydbio.2013.03.003 10.1126/science.aaf2403 10.1126/science.aav9776 10.1126/science.aaa6090 10.1016/j.cell.2015.05.002 10.1016/j.devcel.2011.12.007 10.1038/s41592-019-0548-y 10.1126/science.aao4277 10.1002/cyto.a.23281 10.7554/eLife.27041 10.1016/j.celrep.2012.08.003 10.1038/nmeth.2563 10.1038/s41587-019-0392-8 10.1242/dev.138560 10.18632/oncotarget.15727 10.1038/nmeth.1448 10.1038/s41598-018-22297-7 10.1038/s41586-019-1049-y 10.1038/s41592-018-0009-z 10.1038/nbt.3192 10.1093/nar/gkv772 10.1016/j.iotech.2019.05.001 10.1016/j.cels.2017.12.001 10.1038/nmeth.3899 10.1126/science.aan3235 10.1016/j.cell.2019.11.025 10.1038/nmeth.2804 10.1093/nar/gkx1206 10.1002/wsbm.1369 10.1016/j.cell.2019.11.019 10.1016/j.molcel.2019.07.030 10.1038/nmeth.1253 10.1126/science.274.5289.998 10.1126/science.aaw1219 10.1016/j.neuron.2016.10.001 10.1126/science.aan6827 10.1038/nprot.2017.003 10.1038/s41586-019-1773-3 10.3389/fmed.2018.00085 10.1016/S0168-9525(98)01489-9 10.1038/s41592-018-0175-z 10.1101/788992 10.1126/science.280.5363.585 10.1038/nbt.3209 10.1016/j.cell.2019.05.019 10.1073/pnas.79.23.7331 10.1126/science.1250212 10.1038/s41598-019-40026-6 10.1016/j.cell.2019.05.027 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. published by Wiley Periodicals LLC 2020 The Authors. BioEssays published by Wiley Periodicals LLC. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC – notice: 2020 The Authors. BioEssays published by Wiley Periodicals LLC. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1002/bies.201900221 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA CrossRef Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1521-1878 |
| EndPage | n/a |
| ExternalDocumentID | 32363691 10_1002_bies_201900221 BIES201900221 |
| Genre | article Journal Article |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACKIV ACKOT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 C45 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XV2 Y6R YYQ YZZ ZGI ZUP ZXP ZY4 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c5121-81d3c8c085a8a7a607dccc617929018b1bded55e7fe15fa77f8c664d92b438ab3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 385 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529906200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0265-9247 1521-1878 |
| IngestDate | Fri Jul 11 18:36:13 EDT 2025 Thu Oct 02 11:43:43 EDT 2025 Mon Nov 10 03:00:35 EST 2025 Wed Feb 19 02:30:03 EST 2025 Sat Nov 29 05:24:45 EST 2025 Tue Nov 18 20:55:37 EST 2025 Wed Jan 22 16:59:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | RNA-sequencing tissue heterogeneity RNA spatial transcriptomics single cells spatially resolved transcriptomics spatial omics gene expression |
| Language | English |
| License | Attribution 2020 The Authors. BioEssays published by Wiley Periodicals LLC. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5121-81d3c8c085a8a7a607dccc617929018b1bded55e7fe15fa77f8c664d92b438ab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-4313-1601 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.201900221 |
| PMID | 32363691 |
| PQID | 2445261972 |
| PQPubID | 37030 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2524226320 proquest_miscellaneous_2398157193 proquest_journals_2445261972 pubmed_primary_32363691 crossref_primary_10_1002_bies_201900221 crossref_citationtrail_10_1002_bies_201900221 wiley_primary_10_1002_bies_201900221_BIES201900221 |
| PublicationCentury | 2000 |
| PublicationDate | October 2020 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Cambridge |
| PublicationTitle | BioEssays |
| PublicationTitleAlternate | Bioessays |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 361 2017; 6 1998; 280 2017; 8 2015; 33 2020; 17 2019; 16 2016; 143 2008; 5 2019; 568 2015; 348 2013; 8 2017; 9 2019; 364 2017; 358 2018; 46 2019; 363 2018; 6 2018; 8 2018; 5 2013; 10 2015; 43 2016; 353 2012; 22 2010; 7 2014; 11 1998; 14 1982; 79 2015; 163 2019; 9 2015; 161 2015; 16 2019; 75 2019; 1 2020; 38 2016; 92 2014; 159 2016; 13 2012; 2 2017; 91 2020 1969; 63 2017; 12 2019 2013; 378 2018 2019; 179 2019; 576 2016 1996; 274 2017 2017 2018; 15 2019; 178 2014; 343 e_1_2_11_70_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 Furth D. (e_1_2_11_40_1) 2019 e_1_2_11_60_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 Gyllborg D. (e_1_2_11_34_1) 2020 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_61_1 Andersson A. (e_1_2_11_65_1) 2019 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_69_1 e_1_2_11_25_1 e_1_2_11_63_1 Zheng G. (e_1_2_11_1_1) 2017 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 Bergenstråhle L. (e_1_2_11_67_1) 2020 e_1_2_11_37_1 e_1_2_11_39_1 Merritt C. R. (e_1_2_11_46_1) 2019 |
| References_xml | – volume: 568 start-page: 235 year: 2019 publication-title: Nature – volume: 6 start-page: 25 year: 2018 publication-title: Cell Syst. – volume: 10 start-page: 857 year: 2013 publication-title: Nat. Methods – year: 2020 publication-title: bioRxiv – year: 2019 publication-title: bioRxiv – volume: 92 start-page: 342 year: 2016 publication-title: Neuron – volume: 6 year: 2017 publication-title: Elife – volume: 378 start-page: 170 year: 2013 publication-title: Dev. Biol. – volume: 8 start-page: 4847 year: 2018 publication-title: Sci. Rep. – volume: 63 start-page: 378 year: 1969 publication-title: Proc. Natl. Acad. Sci. USA – volume: 348 year: 2015 publication-title: Science – volume: 358 start-page: 1622 year: 2017 publication-title: Science – volume: 8 year: 2013 publication-title: PLoS One – volume: 15 start-page: 547 year: 2018 publication-title: Nat. Methods – volume: 33 start-page: 503 year: 2015 publication-title: Nat. Biotechnol. – volume: 179 start-page: 1647 year: 2019 publication-title: Cell – volume: 2 start-page: 666 year: 2012 publication-title: Cell Rep. – year: 2018 – volume: 159 start-page: 662 year: 2014 publication-title: Cell – volume: 43 year: 2015 publication-title: Nucleic Acids Res. – volume: 17 start-page: 101 year: 2020 publication-title: Nat. Methods – volume: 1 start-page: 11 year: 2019 publication-title: Immuno‐Oncol. Technol. – volume: 5 start-page: 85 year: 2018 publication-title: Front. Med. – volume: 46 year: 2018 publication-title: Nucleic Acids Res. – volume: 79 start-page: 7331 year: 1982 publication-title: Proc. Natl. Acad. Sci. USA – volume: 38 start-page: 333 year: 2020 publication-title: Nat. Biotechnol. – volume: 353 start-page: 78 year: 2016 publication-title: Science – volume: 363 start-page: 1463 year: 2019 publication-title: Science – volume: 161 start-page: 1202 year: 2015 publication-title: Cell – volume: 343 start-page: 1360 year: 2014 publication-title: Science – volume: 15 start-page: 932 year: 2018 publication-title: Nat. Methods – volume: 358 start-page: 194 year: 2017 publication-title: Science – volume: 576 start-page: 132 year: 2019 publication-title: Nature – year: 2019 – volume: 364 start-page: 89 year: 2019 publication-title: Science – volume: 11 start-page: 190 year: 2014 publication-title: Nat. Methods – volume: 11 start-page: 360 year: 2014 publication-title: Nat. Methods – volume: 143 start-page: 2862 year: 2016 publication-title: Development – volume: 274 start-page: 998 year: 1996 publication-title: Science – volume: 7 start-page: 395 year: 2010 publication-title: Nat. Methods – volume: 5 start-page: 877 year: 2008 publication-title: Nat. Methods – volume: 22 start-page: 544 year: 2012 publication-title: Dev. Cell – volume: 14 start-page: 272 year: 1998 publication-title: Trends Genet. – volume: 179 start-page: 1455 year: 2019 publication-title: Cell – volume: 178 start-page: 473 year: 2019 publication-title: Cell – volume: 75 start-page: 875 year: 2019 publication-title: Mol. Cell – volume: 163 start-page: 799 year: 2015 publication-title: Cell – volume: 9 start-page: 3542 year: 2019 publication-title: Sci. Rep. – year: 2016 – volume: 178 start-page: 229 year: 2019 publication-title: Cell – volume: 12 start-page: 566 year: 2017 publication-title: Nat. Protoc. – volume: 361 year: 2018 publication-title: Science – volume: 13 start-page: 679 year: 2016 publication-title: Nat. Methods – volume: 33 start-page: 495 year: 2015 publication-title: Nat. Biotechnol. – volume: 358 start-page: 64 year: 2017 publication-title: Science – year: 2020 – year: 2017 2017 – volume: 9 year: 2017 publication-title: Wiley Interdiscip. Rev.: Syst. Biol. Med. – volume: 91 start-page: 1200 year: 2017 publication-title: Cytometry, Part A – volume: 280 start-page: 585 year: 1998 publication-title: Science – volume: 16 start-page: 987 year: 2019 publication-title: Nat. Methods – volume: 8 year: 2017 publication-title: Oncotarget – volume: 16 start-page: 57 year: 2015 publication-title: Nat. Rev. Genet. – ident: e_1_2_11_37_1 doi: 10.1126/science.aat5691 – start-page: 559021 year: 2019 ident: e_1_2_11_46_1 publication-title: bioRxiv – ident: e_1_2_11_18_1 doi: 10.1038/nmeth.2892 – ident: e_1_2_11_70_1 doi: 10.1038/nrg3832 – ident: e_1_2_11_9_1 doi: 10.1016/j.cell.2014.09.038 – ident: e_1_2_11_14_1 doi: 10.1073/pnas.63.2.378 – ident: e_1_2_11_31_1 doi: 10.1038/s41592-019-0631-4 – ident: e_1_2_11_56_1 doi: 10.1016/j.cell.2015.10.039 – year: 2020 ident: e_1_2_11_34_1 publication-title: bioRxiv – ident: e_1_2_11_8_1 doi: 10.1371/journal.pone.0071820 – ident: e_1_2_11_39_1 – ident: e_1_2_11_2_1 doi: 10.1016/j.ydbio.2013.03.003 – ident: e_1_2_11_41_1 doi: 10.1126/science.aaf2403 – ident: e_1_2_11_68_1 doi: 10.1126/science.aav9776 – ident: e_1_2_11_21_1 doi: 10.1126/science.aaa6090 – ident: e_1_2_11_62_1 doi: 10.1016/j.cell.2015.05.002 – ident: e_1_2_11_3_1 doi: 10.1016/j.devcel.2011.12.007 – ident: e_1_2_11_32_1 – ident: e_1_2_11_44_1 doi: 10.1038/s41592-019-0548-y – ident: e_1_2_11_12_1 doi: 10.1126/science.aao4277 – ident: e_1_2_11_28_1 doi: 10.1002/cyto.a.23281 – ident: e_1_2_11_63_1 doi: 10.7554/eLife.27041 – ident: e_1_2_11_38_1 – ident: e_1_2_11_10_1 doi: 10.1016/j.celrep.2012.08.003 – ident: e_1_2_11_30_1 doi: 10.1038/nmeth.2563 – ident: e_1_2_11_54_1 doi: 10.1038/s41587-019-0392-8 – ident: e_1_2_11_20_1 doi: 10.1242/dev.138560 – ident: e_1_2_11_57_1 doi: 10.18632/oncotarget.15727 – ident: e_1_2_11_60_1 doi: 10.1038/nmeth.1448 – ident: e_1_2_11_22_1 doi: 10.1038/s41598-018-22297-7 – ident: e_1_2_11_24_1 doi: 10.1038/s41586-019-1049-y – ident: e_1_2_11_13_1 doi: 10.1038/s41592-018-0009-z – ident: e_1_2_11_51_1 doi: 10.1038/nbt.3192 – ident: e_1_2_11_59_1 doi: 10.1093/nar/gkv772 – ident: e_1_2_11_47_1 doi: 10.1016/j.iotech.2019.05.001 – ident: e_1_2_11_27_1 doi: 10.1016/j.cels.2017.12.001 – volume-title: Statistical Shape and Deformation Analysis: Methods, Implementation and Applications year: 2017 ident: e_1_2_11_1_1 – ident: e_1_2_11_23_1 doi: 10.1038/nmeth.3899 – ident: e_1_2_11_53_1 doi: 10.1126/science.aan3235 – ident: e_1_2_11_69_1 doi: 10.1016/j.cell.2019.11.025 – start-page: 722819 year: 2019 ident: e_1_2_11_40_1 publication-title: bioRxiv – year: 2019 ident: e_1_2_11_65_1 publication-title: bioRxiv – ident: e_1_2_11_11_1 doi: 10.1038/nmeth.2804 – ident: e_1_2_11_66_1 – ident: e_1_2_11_35_1 doi: 10.1093/nar/gkx1206 – ident: e_1_2_11_61_1 doi: 10.1002/wsbm.1369 – ident: e_1_2_11_64_1 doi: 10.1016/j.cell.2019.11.019 – ident: e_1_2_11_49_1 doi: 10.1016/j.molcel.2019.07.030 – ident: e_1_2_11_17_1 doi: 10.1038/nmeth.1253 – ident: e_1_2_11_5_1 doi: 10.1126/science.274.5289.998 – ident: e_1_2_11_43_1 doi: 10.1126/science.aaw1219 – ident: e_1_2_11_19_1 doi: 10.1016/j.neuron.2016.10.001 – ident: e_1_2_11_58_1 doi: 10.1126/science.aan6827 – ident: e_1_2_11_42_1 – ident: e_1_2_11_45_1 – ident: e_1_2_11_7_1 doi: 10.1038/nprot.2017.003 – ident: e_1_2_11_55_1 doi: 10.1038/s41586-019-1773-3 – ident: e_1_2_11_4_1 doi: 10.3389/fmed.2018.00085 – ident: e_1_2_11_26_1 – year: 2020 ident: e_1_2_11_67_1 publication-title: bioRxiv – ident: e_1_2_11_6_1 doi: 10.1016/S0168-9525(98)01489-9 – ident: e_1_2_11_25_1 doi: 10.1038/s41592-018-0175-z – ident: e_1_2_11_50_1 doi: 10.1101/788992 – ident: e_1_2_11_16_1 doi: 10.1126/science.280.5363.585 – ident: e_1_2_11_52_1 doi: 10.1038/nbt.3209 – ident: e_1_2_11_29_1 doi: 10.1016/j.cell.2019.05.019 – ident: e_1_2_11_15_1 doi: 10.1073/pnas.79.23.7331 – ident: e_1_2_11_36_1 doi: 10.1126/science.1250212 – ident: e_1_2_11_33_1 doi: 10.1038/s41598-019-40026-6 – ident: e_1_2_11_48_1 doi: 10.1016/j.cell.2019.05.027 |
| SSID | ssj0009624 |
| Score | 2.7075326 |
| SecondaryResourceType | review_article |
| Snippet | Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1900221 |
| SubjectTerms | Gene expression labor New technology RNA RNA‐sequencing single cells Spatial data spatial omics spatial transcriptomics spatially resolved transcriptomics tissue heterogeneity transcriptomics |
| Title | Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.201900221 https://www.ncbi.nlm.nih.gov/pubmed/32363691 https://www.proquest.com/docview/2445261972 https://www.proquest.com/docview/2398157193 https://www.proquest.com/docview/2524226320 |
| Volume | 42 |
| WOSCitedRecordID | wos000529906200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-1878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009624 issn: 0265-9247 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEB-KVuhLtdbq-Y8UhD4FL8lmk33U2qMPchzllHtbskkOCueteCr41g_RT9hP4kz2bu0hbaG-LCyZgSHJZH6TP_MDONLOB9v1mkdROI6rn-KFF4KHOLZOEVdSuiB7eW76fTsaFYPfXvE39SHaDTfyjLRek4O7anb8VDS0okxS0lNoDEOY_6wKoSyRN8hs8FR2N0-0tphoaI6ZhlmUbezK42X95bD0DGsuQ9cUe3rrL7d6A97OcSc7aSbKO3gVp5uw1jBRPryHAVET41ScPDDa0J_cx8BSGEuLSn0VZ79-_OzjQs6aOtU0nGxY15MZQ9TLhmn4WHOhLzVuwUXvy_DzVz4nW-AeY77giFuVtx4RmLPOuLxrgvce8U1BJ622ElWIQetoxlHosTNmbH2eZ6GQVaasq9QHWJnW07gDDEFIroOvEFmpLKsMKtOdthAKEzLU7wBf9HXp55XIiRBjUjY1lGVJvVS2vdSBT638dVOD44-S-4uhK-e-iK0Z0agTvVoHPrbN6EV0NOKmsb5DGVVYoQ2i2b_IaEnPjpXsdmC7mRatOUqqXOUFGiDT6P_DzvIUsX77t_s_SnvwRlLqn-4V7sPK7c1dPIDX_v72--zmMHkBfs3IHsLq2bfexfkjchYJmw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RSxwxEB7EWvSl1Wr1Wq0pCD4Fb5PNJvuopaL0PO7hFN-WbJKDwvW2eCr45o_wF_pLOpPdWzlKLYiPS2YgZGYyX7KTbwD2lHXedJ3iIcktx91P8twlCfdhZKykXkmxQPaip_t9c3mZD5pqQnoLU_NDtBduFBlxv6YApwvpgyfW0JKOkoLeQmMewgPQmxRTDbm6SAdPvLtZ7GuLJw3F8aihZ7yNXXEwrz-fl_4Cm_PYNSaf4_evMO1VeNcgT3ZYu8oaLITJB3hb96K8W4cBNSdGZxzfMbrSH98Gz2Iii9tK9StMH-8f-riVs5qpmgzKhlU1njLEvWwYDcjqkr44uAHnx9-H3054026BO8z6CUfkKp1xiMGssdpmXe2dc4hwcvrXasqk9MErFfQoJGpktR4Zl2Wpz0WZSmNL-REWJ9UkbAFDGJIp70rEVjJNS43KVNXmfa59ivod4LPFLlzDRU4tMcZFzaIsClqlol2lDuy38r9rFo5_Sm7PbFc00YijKTVSpwZrHfjaDmMc0c8ROwnVDcrI3CRKI559RkYJengsRbcDm7VftNORQmYyy3ECIpr_P_MsjhDtt1-fXqK0C8snw7Ne0Tvt__gMK4IuAmKV4TYsXl_dhB1YcrfXP6dXX2JI_AG5aAr- |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fSxwxEB_ktMUXq_3ntVpTKPQpeJtsNtnHtvZQehxHOYtvSzbJQuF6K54Kvvkh_IR-ks5k91aO0hZKH5cky5DJzPySTOYH8E5Z583AKR6S3HL0fpLnLkm4D5WxkriSYoLst5Eej83ZWT5pswnpLUxTH6I7cCPLiP6aDDyc--rwoWpoSVtJQW-hMQ7hBmg9JSaZHqwffR2ejh4q72aR2Rb3GorjZkMvKzcOxOHqH1Yj0y9wcxW9xvAzfPIfBN-GrRZ7sg_NYtmBtTB_Co8aNsqbZzAhemJcjrMbRof6s-vgWQxl0bHUP8Li_vZujM6cNbWqSaVsWtezBUPky6ZRhaxJ6ouNz-F0-Hn66Zi3hAvcYdxPOGJX6YxDFGaN1TYbaO-cQ4yT022rKZPSB69U0FVIVGW1rozLstTnokylsaV8Ab15PQ-7wBCIZMq7EtGVTNNS42DKa_M-1z7F8X3gy8kuXFuNnEgxZkVTR1kUNEtFN0t9eN_1P2_qcPy2595Sd0Vrj9iaEpU6Uaz14W3XjJZE1yN2Huor7CNzkyiNiPYPfZSgp8dSDPrwslkXnThSyExmOQogovr_ImfxEfF-9_XqXwYdwOPJ0bAYnYy_vIZNQScBMc1wD3qXF1dhHzbc9eX3xcWb1iZ-AhkKDBQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+Resolved+Transcriptomes-Next+Generation+Tools+for+Tissue+Exploration&rft.jtitle=BioEssays&rft.au=Asp%2C+Michaela&rft.au=Bergenstr%C3%A5hle%2C+Joseph&rft.au=Lundeberg%2C+Joakim&rft.date=2020-10-01&rft.eissn=1521-1878&rft.spage=e1900221&rft_id=info:doi/10.1002%2Fbies.201900221&rft_id=info%3Apmid%2F32363691&rft.externalDocID=32363691 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon |