Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration

Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial informatio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BioEssays Ročník 42; číslo 10; s. e1900221 - n/a
Hlavní autori: Asp, Michaela, Bergenstråhle, Joseph, Lundeberg, Joakim
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Wiley Subscription Services, Inc 01.10.2020
Predmet:
ISSN:0265-9247, 1521-1878, 1521-1878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial information. The vast array of methodologies displays fundamental differences in their approach to obtain this information, and thus, demonstrate method‐specific advantages and shortcomings. While the field is moving forward at a rapid pace, there are still multiple challenges presented to be addressed, including sensitivity, labor extensiveness, tissue‐type dependence, and limited capacity to obtain detailed single‐cell information. No single method can currently address all these key parameters. In this review, available spatial transcriptomics methods are described and their applications as well as their strengths and weaknesses are discussed. Future developments are explored and where the field is heading to is deliberated upon. In this review, current spatial transcriptomics methods are surveyed. These methods detect RNA molecules while retaining information of where the molecules are located in the tissue. The advantages and drawbacks of existing methods are discussed.
AbstractList Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial information. The vast array of methodologies displays fundamental differences in their approach to obtain this information, and thus, demonstrate method‐specific advantages and shortcomings. While the field is moving forward at a rapid pace, there are still multiple challenges presented to be addressed, including sensitivity, labor extensiveness, tissue‐type dependence, and limited capacity to obtain detailed single‐cell information. No single method can currently address all these key parameters. In this review, available spatial transcriptomics methods are described and their applications as well as their strengths and weaknesses are discussed. Future developments are explored and where the field is heading to is deliberated upon.
Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial information. The vast array of methodologies displays fundamental differences in their approach to obtain this information, and thus, demonstrate method‐specific advantages and shortcomings. While the field is moving forward at a rapid pace, there are still multiple challenges presented to be addressed, including sensitivity, labor extensiveness, tissue‐type dependence, and limited capacity to obtain detailed single‐cell information. No single method can currently address all these key parameters. In this review, available spatial transcriptomics methods are described and their applications as well as their strengths and weaknesses are discussed. Future developments are explored and where the field is heading to is deliberated upon. In this review, current spatial transcriptomics methods are surveyed. These methods detect RNA molecules while retaining information of where the molecules are located in the tissue. The advantages and drawbacks of existing methods are discussed.
Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial information. The vast array of methodologies displays fundamental differences in their approach to obtain this information, and thus, demonstrate method-specific advantages and shortcomings. While the field is moving forward at a rapid pace, there are still multiple challenges presented to be addressed, including sensitivity, labor extensiveness, tissue-type dependence, and limited capacity to obtain detailed single-cell information. No single method can currently address all these key parameters. In this review, available spatial transcriptomics methods are described and their applications as well as their strengths and weaknesses are discussed. Future developments are explored and where the field is heading to is deliberated upon.Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial information. The vast array of methodologies displays fundamental differences in their approach to obtain this information, and thus, demonstrate method-specific advantages and shortcomings. While the field is moving forward at a rapid pace, there are still multiple challenges presented to be addressed, including sensitivity, labor extensiveness, tissue-type dependence, and limited capacity to obtain detailed single-cell information. No single method can currently address all these key parameters. In this review, available spatial transcriptomics methods are described and their applications as well as their strengths and weaknesses are discussed. Future developments are explored and where the field is heading to is deliberated upon.
Author Asp, Michaela
Bergenstråhle, Joseph
Lundeberg, Joakim
Author_xml – sequence: 1
  givenname: Michaela
  surname: Asp
  fullname: Asp, Michaela
  organization: Science for Life Laboratory
– sequence: 2
  givenname: Joseph
  surname: Bergenstråhle
  fullname: Bergenstråhle, Joseph
  organization: Science for Life Laboratory
– sequence: 3
  givenname: Joakim
  orcidid: 0000-0003-4313-1601
  surname: Lundeberg
  fullname: Lundeberg, Joakim
  email: joakim.lundeberg@scilifelab.se
  organization: Science for Life Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32363691$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQhy1URLeFK0cUiQuXXTx2_O8I1bZUqgDR5Ww5zkRy5Y2DnUD3xkP0CXkSUrYUqRLqybL8fTPj-R2Rgz71SMhLoCuglL1tApYVo2DmC4MnZAGCwRK00gdkQZkUS8NqdUiOSrmilBrJ6mfkkDMuuTSwIJ8vBzcGF-Ou-oIlxe_YVpvs-uJzGMa0xfLr581HvB6rM-wxz2zqq01KsVRdytUmlDJhtb4eYto_PidPOxcLvrg7j8nX0_Xm5MPy4tPZ-cm7i6UXME-ooeVee6qF0045SVXrvZegDDMUdANNi60QqDoE0TmlOu2lrFvDmppr1_Bj8mZfd8jp24RltNtQPMboekxTsUywmjHJGX0c5UaDUGD4jL5-gF6lKffzRyyra8EkGMVm6tUdNTVbbO2Qw9blnf271hlY7QGfUykZu3sEqL3Nzd7mZu9zm4X6geDD-GefY3Yh_l8ze-1HiLh7pIl9f76-_Of-BlSFrPc
CitedBy_id crossref_primary_10_1186_s40364_025_00758_2
crossref_primary_10_1016_j_bioactmat_2022_10_029
crossref_primary_10_1038_s41467_022_34879_1
crossref_primary_10_1016_j_cels_2024_04_006
crossref_primary_10_1016_j_semcdb_2022_05_023
crossref_primary_10_1093_bib_bbae082
crossref_primary_10_3389_fimmu_2023_1233800
crossref_primary_10_1038_s41467_021_26271_2
crossref_primary_10_1093_bioinformatics_btaf403
crossref_primary_10_1360_SSV_2025_0140
crossref_primary_10_3389_fimmu_2025_1589943
crossref_primary_10_1016_j_compbiomed_2023_106634
crossref_primary_10_1038_s41581_021_00463_x
crossref_primary_10_1038_s41587_023_02019_9
crossref_primary_10_1371_journal_pone_0281464
crossref_primary_10_1093_nar_gkaf303
crossref_primary_10_1038_s41467_023_41749_x
crossref_primary_10_3389_fcell_2022_853188
crossref_primary_10_1136_gutjnl_2024_332901
crossref_primary_10_1016_j_bbrep_2025_102207
crossref_primary_10_2174_0118740707311249240604053619
crossref_primary_10_1186_s13059_022_02783_y
crossref_primary_10_1097_HEP_0000000000000387
crossref_primary_10_1016_j_jdsr_2023_10_006
crossref_primary_10_1038_s41592_024_02325_3
crossref_primary_10_3390_molecules28010157
crossref_primary_10_1038_s41467_023_36560_7
crossref_primary_10_1186_s13059_024_03361_0
crossref_primary_10_1186_s12967_023_04600_x
crossref_primary_10_1002_path_6383
crossref_primary_10_1038_s41551_022_00905_2
crossref_primary_10_1093_bioinformatics_btae451
crossref_primary_10_1093_ofid_ofab483
crossref_primary_10_1038_s41557_025_01946_1
crossref_primary_10_1186_s13619_022_00152_5
crossref_primary_10_3390_plants13243476
crossref_primary_10_1146_annurev_neuro_100520_082639
crossref_primary_10_1002_biot_202300294
crossref_primary_10_1038_s41551_024_01205_7
crossref_primary_10_1038_s41586_021_03634_9
crossref_primary_10_1016_j_tins_2021_11_001
crossref_primary_10_1146_annurev_genom_102722_092013
crossref_primary_10_1242_dmm_050913
crossref_primary_10_1093_bib_bbae666
crossref_primary_10_1111_raq_12806
crossref_primary_10_3390_biom13010156
crossref_primary_10_1016_j_jpi_2024_100408
crossref_primary_10_1186_s13059_022_02734_7
crossref_primary_10_1016_j_xcrp_2025_102811
crossref_primary_10_3390_cancers15245711
crossref_primary_10_1186_s13059_021_02548_z
crossref_primary_10_1186_s13059_024_03303_w
crossref_primary_10_3390_biom15010021
crossref_primary_10_1038_s41467_023_36062_6
crossref_primary_10_1038_s41467_022_28634_9
crossref_primary_10_1093_gpbjnl_qzaf002
crossref_primary_10_1016_j_neucom_2024_128283
crossref_primary_10_3389_fnana_2021_757499
crossref_primary_10_1158_1078_0432_CCR_20_2345
crossref_primary_10_1016_j_patcog_2025_112207
crossref_primary_10_1002_smtd_202401303
crossref_primary_10_1038_s41576_023_00580_2
crossref_primary_10_1080_00365521_2022_2124537
crossref_primary_10_1016_j_molmet_2023_101746
crossref_primary_10_1093_nar_gkac1138
crossref_primary_10_1186_s40478_024_01769_0
crossref_primary_10_1016_j_biosystems_2025_105576
crossref_primary_10_1038_s41576_021_00370_8
crossref_primary_10_3389_fmolb_2021_711733
crossref_primary_10_3390_mps6020035
crossref_primary_10_1016_j_jid_2021_12_014
crossref_primary_10_3390_plants10071423
crossref_primary_10_1007_s44007_025_00149_x
crossref_primary_10_1093_gigascience_giae089
crossref_primary_10_3390_genes12101629
crossref_primary_10_1007_s11033_023_09097_7
crossref_primary_10_1016_j_ymeth_2023_11_002
crossref_primary_10_3389_fonc_2022_936190
crossref_primary_10_1093_bib_bbae524
crossref_primary_10_1002_advs_202302558
crossref_primary_10_1186_s40364_025_00798_8
crossref_primary_10_1002_ctm2_70115
crossref_primary_10_1016_j_jaci_2025_01_009
crossref_primary_10_1186_s12935_022_02580_4
crossref_primary_10_1186_s13073_022_01075_1
crossref_primary_10_3390_cells12091310
crossref_primary_10_1016_j_jid_2024_07_006
crossref_primary_10_1016_j_molcel_2021_03_016
crossref_primary_10_3389_fgene_2025_1512435
crossref_primary_10_1210_endrev_bnab010
crossref_primary_10_1101_gr_279771_124
crossref_primary_10_59717_j_xinn_life_2024_100097
crossref_primary_10_7554_eLife_88431_3
crossref_primary_10_1681_ASN_2020121742
crossref_primary_10_1093_nar_gkad169
crossref_primary_10_3389_fnmol_2024_1386239
crossref_primary_10_3390_jmp3030014
crossref_primary_10_3389_fmed_2021_721953
crossref_primary_10_1186_s12859_021_04528_3
crossref_primary_10_1038_s41467_024_51728_5
crossref_primary_10_1093_jxb_erac521
crossref_primary_10_1093_nargab_lqaf109
crossref_primary_10_1016_j_bios_2022_114770
crossref_primary_10_1186_s12967_024_05307_3
crossref_primary_10_2147_VHRM_S288090
crossref_primary_10_1089_cmb_2024_0614
crossref_primary_10_1016_j_lmd_2025_100076
crossref_primary_10_1038_s41413_025_00429_w
crossref_primary_10_1016_j_csbj_2022_08_043
crossref_primary_10_1038_s41467_022_31739_w
crossref_primary_10_1183_13993003_02057_2021
crossref_primary_10_1186_s13059_024_03416_2
crossref_primary_10_1021_acs_analchem_5c01812
crossref_primary_10_1007_s40472_024_00450_8
crossref_primary_10_1161_ATVBAHA_121_315852
crossref_primary_10_1371_journal_pone_0316475
crossref_primary_10_1016_j_cell_2021_05_010
crossref_primary_10_3390_biom13060895
crossref_primary_10_1109_TKDE_2024_3450333
crossref_primary_10_3389_fimmu_2023_1276194
crossref_primary_10_1016_j_mam_2024_101276
crossref_primary_10_3389_fmicb_2022_989464
crossref_primary_10_1038_s41598_022_07685_4
crossref_primary_10_1186_s13059_024_03213_x
crossref_primary_10_1016_j_nbd_2023_106062
crossref_primary_10_1093_bioinformatics_btae383
crossref_primary_10_4049_jimmunol_2100408
crossref_primary_10_1093_nar_gkaa792
crossref_primary_10_1186_s13073_025_01442_8
crossref_primary_10_3390_ijms26093949
crossref_primary_10_3389_fendo_2024_1394812
crossref_primary_10_3390_ijms22042071
crossref_primary_10_1002_advs_202412373
crossref_primary_10_1186_s12859_025_06054_y
crossref_primary_10_3389_fimmu_2022_996721
crossref_primary_10_1186_s13059_023_03045_1
crossref_primary_10_1016_j_molmed_2021_09_008
crossref_primary_10_1016_j_cell_2023_08_020
crossref_primary_10_1111_raq_12733
crossref_primary_10_1038_s41388_020_1367_4
crossref_primary_10_1038_s41573_023_00847_7
crossref_primary_10_1038_s41467_024_44835_w
crossref_primary_10_3389_fmed_2021_822804
crossref_primary_10_1186_s12943_024_01941_z
crossref_primary_10_1371_journal_pgen_1011423
crossref_primary_10_1002_smtd_202401194
crossref_primary_10_3390_ijms22179550
crossref_primary_10_1016_j_gpb_2022_10_001
crossref_primary_10_1093_pcmedi_pbac002
crossref_primary_10_1016_j_bbcan_2021_188663
crossref_primary_10_1080_14737159_2021_1900735
crossref_primary_10_1186_s12915_022_01325_z
crossref_primary_10_1038_s41467_022_30033_z
crossref_primary_10_1016_j_gpb_2022_11_012
crossref_primary_10_3389_fimmu_2025_1546382
crossref_primary_10_1038_s41467_023_39895_3
crossref_primary_10_1186_s40364_021_00336_2
crossref_primary_10_1016_j_tibtech_2023_07_003
crossref_primary_10_1093_bib_bbad278
crossref_primary_10_1002_mef2_70001
crossref_primary_10_1080_14789450_2021_1984886
crossref_primary_10_1038_s41467_022_32284_2
crossref_primary_10_1016_j_crmeth_2022_100325
crossref_primary_10_7554_eLife_88431
crossref_primary_10_1109_TCBB_2023_3282028
crossref_primary_10_1038_s41467_022_29439_6
crossref_primary_10_1093_genetics_iyac095
crossref_primary_10_3389_fmolb_2021_775410
crossref_primary_10_1093_nar_gkad521
crossref_primary_10_1016_j_compbiomed_2023_107440
crossref_primary_10_1038_s41592_020_01033_y
crossref_primary_10_1016_j_neuron_2023_01_016
crossref_primary_10_1038_s41587_022_01273_7
crossref_primary_10_1186_s13059_024_03272_0
crossref_primary_10_1002_smtd_202401123
crossref_primary_10_1016_j_biopsych_2025_06_010
crossref_primary_10_1016_j_csbj_2023_01_016
crossref_primary_10_1093_bib_bbad262
crossref_primary_10_1369_00221554221114174
crossref_primary_10_1016_j_brainres_2025_149688
crossref_primary_10_1186_s40779_024_00537_4
crossref_primary_10_1016_j_engappai_2025_111203
crossref_primary_10_1186_s12882_024_03853_y
crossref_primary_10_3389_fgene_2022_906158
crossref_primary_10_1002_smtd_202500770
crossref_primary_10_1093_bib_bbaf316
crossref_primary_10_1002_advs_202410081
crossref_primary_10_1111_his_15093
crossref_primary_10_3389_fgene_2022_785877
crossref_primary_10_1097_TP_0000000000004466
crossref_primary_10_1097_TP_0000000000004587
crossref_primary_10_1016_j_compbiomed_2025_110280
crossref_primary_10_1016_j_fmre_2022_01_036
crossref_primary_10_1002_ijc_34711
crossref_primary_10_1134_S1022795424010046
crossref_primary_10_1007_s12016_024_09001_6
crossref_primary_10_1093_bfgp_elae033
crossref_primary_10_1096_fba_2024_00133
crossref_primary_10_1186_s13059_024_03211_z
crossref_primary_10_1038_s41592_021_01316_y
crossref_primary_10_1681_ASN_2021081150
crossref_primary_10_1093_gigascience_giac075
crossref_primary_10_1016_j_trac_2022_116868
crossref_primary_10_3390_cancers15082362
crossref_primary_10_3389_fams_2024_1403901
crossref_primary_10_1186_s13059_024_03428_y
crossref_primary_10_1038_s41467_023_43006_7
crossref_primary_10_1038_s41576_023_00586_w
crossref_primary_10_3390_cancers16091615
crossref_primary_10_1038_s41467_023_39424_2
crossref_primary_10_3389_fimmu_2022_885267
crossref_primary_10_1016_j_csbj_2021_06_052
crossref_primary_10_3389_fcell_2023_1126507
crossref_primary_10_1016_j_cell_2024_07_040
crossref_primary_10_1038_s41477_024_01666_3
crossref_primary_10_2174_1574893618666230529145130
crossref_primary_10_1007_s00262_020_02801_7
crossref_primary_10_1186_s12967_023_04129_z
crossref_primary_10_1038_s41467_021_25279_y
crossref_primary_10_1038_s44222_023_00084_y
crossref_primary_10_1109_TCBB_2024_3469164
crossref_primary_10_3390_biom15081067
crossref_primary_10_3390_cancers16173100
crossref_primary_10_3389_fimmu_2021_702636
crossref_primary_10_1038_s41467_023_36796_3
crossref_primary_10_1093_bib_bbae130
crossref_primary_10_3892_ol_2024_14285
crossref_primary_10_1002_advs_202206939
crossref_primary_10_1007_s00432_024_05816_0
crossref_primary_10_1002_bies_202200084
crossref_primary_10_1016_j_microc_2025_113189
crossref_primary_10_1093_plphys_kiab584
crossref_primary_10_1002_smtd_202401272
crossref_primary_10_3390_life12010067
crossref_primary_10_3389_fcell_2025_1633254
crossref_primary_10_1007_s12539_024_00676_1
crossref_primary_10_1016_j_lungcan_2021_06_022
crossref_primary_10_1038_s41592_022_01409_2
crossref_primary_10_1073_pnas_2309227120
crossref_primary_10_1093_bib_bbae685
crossref_primary_10_1038_s42003_020_01341_1
crossref_primary_10_3389_fnagi_2022_1095801
crossref_primary_10_3390_cancers14174080
crossref_primary_10_1016_j_jmb_2025_169202
crossref_primary_10_1186_s12864_024_11072_w
crossref_primary_10_1360_SSM_2024_0318
crossref_primary_10_1007_s44194_023_00023_4
crossref_primary_10_1038_s41587_023_01937_y
crossref_primary_10_1093_cei_uxae077
crossref_primary_10_3389_fcell_2023_1142923
crossref_primary_10_3390_ijms23063042
crossref_primary_10_1016_j_ymeth_2024_10_002
crossref_primary_10_1002_adhm_202202457
crossref_primary_10_3390_jof7050377
crossref_primary_10_1002_aro2_70016
crossref_primary_10_1016_j_kint_2022_06_011
crossref_primary_10_1080_15548627_2021_2016255
crossref_primary_10_12677_aam_2024_1311470
crossref_primary_10_1038_s41592_022_01604_1
crossref_primary_10_1016_j_jpha_2023_06_002
crossref_primary_10_3389_fnsyn_2020_615059
crossref_primary_10_1016_j_csbj_2025_02_028
crossref_primary_10_1093_bib_bbae670
crossref_primary_10_3389_fimmu_2021_697412
crossref_primary_10_1161_ATVBAHA_120_314776
crossref_primary_10_1038_s41698_023_00444_2
crossref_primary_10_3389_fnmol_2020_583811
crossref_primary_10_1002_rai2_70023
crossref_primary_10_1038_s41592_024_02257_y
crossref_primary_10_1093_bib_bbaf085
crossref_primary_10_1093_bib_bbaf086
crossref_primary_10_1002_jmv_29009
crossref_primary_10_1002_mco2_659
crossref_primary_10_1038_s41592_021_01255_8
crossref_primary_10_1111_exd_14827
crossref_primary_10_1038_s42003_023_04761_x
crossref_primary_10_1038_s41581_024_00861_x
crossref_primary_10_1007_s12539_025_00728_0
crossref_primary_10_3389_fonc_2023_1172314
crossref_primary_10_1038_s41392_022_00960_w
crossref_primary_10_1038_s41556_021_00788_6
crossref_primary_10_1186_s12859_021_04302_5
crossref_primary_10_1016_j_brainres_2024_148817
crossref_primary_10_1093_nar_gkaf870
crossref_primary_10_1093_nar_gkad419
crossref_primary_10_3892_mmr_2024_13281
crossref_primary_10_1038_s41467_022_34567_0
crossref_primary_10_1093_bib_bbad490
crossref_primary_10_1002_advs_202506176
crossref_primary_10_3390_cancers12092572
crossref_primary_10_1038_s41467_023_44017_0
crossref_primary_10_3390_biom14121549
crossref_primary_10_1101_gr_277891_123
crossref_primary_10_7717_peerj_17032
crossref_primary_10_3389_fgene_2022_858808
crossref_primary_10_1016_j_jacc_2021_06_049
crossref_primary_10_1038_s42003_024_07037_0
crossref_primary_10_1038_s42003_021_02517_z
crossref_primary_10_1016_j_yexcr_2021_112966
crossref_primary_10_1016_j_celbio_2025_100099
crossref_primary_10_32604_or_2023_029494
crossref_primary_10_1371_journal_pgen_1010983
crossref_primary_10_1038_s41587_021_01182_1
crossref_primary_10_1002_mco2_765
crossref_primary_10_1093_nar_gkac333
crossref_primary_10_1158_1078_0432_CCR_24_2469
crossref_primary_10_3390_mi16040426
crossref_primary_10_1002_dvdy_463
crossref_primary_10_1002_dvdy_345
crossref_primary_10_1016_j_cels_2025_101243
crossref_primary_10_1038_s41698_024_00728_1
crossref_primary_10_1093_nar_gkac219
crossref_primary_10_1007_s11427_023_2636_9
crossref_primary_10_3389_fonc_2022_1019111
crossref_primary_10_1016_j_csbj_2024_11_041
crossref_primary_10_1016_j_bios_2025_118018
crossref_primary_10_1038_s41598_022_11534_9
crossref_primary_10_1093_bib_bbae578
crossref_primary_10_1038_s41592_024_02212_x
crossref_primary_10_1093_nsr_nwaf030
crossref_primary_10_1101_gr_275224_121
crossref_primary_10_1016_j_kint_2021_09_012
crossref_primary_10_1159_000519233
crossref_primary_10_1145_3641284
crossref_primary_10_1186_s13059_024_03380_x
crossref_primary_10_1186_s13059_024_03289_5
crossref_primary_10_15252_msb_20209923
crossref_primary_10_1038_s41467_023_40458_9
crossref_primary_10_1016_j_engappai_2025_110338
Cites_doi 10.1126/science.aat5691
10.1038/nmeth.2892
10.1038/nrg3832
10.1016/j.cell.2014.09.038
10.1073/pnas.63.2.378
10.1038/s41592-019-0631-4
10.1016/j.cell.2015.10.039
10.1371/journal.pone.0071820
10.1016/j.ydbio.2013.03.003
10.1126/science.aaf2403
10.1126/science.aav9776
10.1126/science.aaa6090
10.1016/j.cell.2015.05.002
10.1016/j.devcel.2011.12.007
10.1038/s41592-019-0548-y
10.1126/science.aao4277
10.1002/cyto.a.23281
10.7554/eLife.27041
10.1016/j.celrep.2012.08.003
10.1038/nmeth.2563
10.1038/s41587-019-0392-8
10.1242/dev.138560
10.18632/oncotarget.15727
10.1038/nmeth.1448
10.1038/s41598-018-22297-7
10.1038/s41586-019-1049-y
10.1038/s41592-018-0009-z
10.1038/nbt.3192
10.1093/nar/gkv772
10.1016/j.iotech.2019.05.001
10.1016/j.cels.2017.12.001
10.1038/nmeth.3899
10.1126/science.aan3235
10.1016/j.cell.2019.11.025
10.1038/nmeth.2804
10.1093/nar/gkx1206
10.1002/wsbm.1369
10.1016/j.cell.2019.11.019
10.1016/j.molcel.2019.07.030
10.1038/nmeth.1253
10.1126/science.274.5289.998
10.1126/science.aaw1219
10.1016/j.neuron.2016.10.001
10.1126/science.aan6827
10.1038/nprot.2017.003
10.1038/s41586-019-1773-3
10.3389/fmed.2018.00085
10.1016/S0168-9525(98)01489-9
10.1038/s41592-018-0175-z
10.1101/788992
10.1126/science.280.5363.585
10.1038/nbt.3209
10.1016/j.cell.2019.05.019
10.1073/pnas.79.23.7331
10.1126/science.1250212
10.1038/s41598-019-40026-6
10.1016/j.cell.2019.05.027
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC
2020 The Authors. BioEssays published by Wiley Periodicals LLC.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC
– notice: 2020 The Authors. BioEssays published by Wiley Periodicals LLC.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1002/bies.201900221
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Virology and AIDS Abstracts
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-1878
EndPage n/a
ExternalDocumentID 32363691
10_1002_bies_201900221
BIES201900221
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACKIV
ACKOT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KD1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
XG1
XV2
Y6R
YYQ
YZZ
ZGI
ZUP
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5121-81d3c8c085a8a7a607dccc617929018b1bded55e7fe15fa77f8c664d92b438ab3
IEDL.DBID 24P
ISICitedReferencesCount 385
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529906200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0265-9247
1521-1878
IngestDate Fri Jul 11 18:36:13 EDT 2025
Thu Oct 02 11:43:43 EDT 2025
Mon Nov 10 03:00:35 EST 2025
Wed Feb 19 02:30:03 EST 2025
Sat Nov 29 05:24:45 EST 2025
Tue Nov 18 20:55:37 EST 2025
Wed Jan 22 16:59:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords RNA-sequencing
tissue heterogeneity
RNA
spatial transcriptomics
single cells
spatially resolved transcriptomics
spatial omics
gene expression
Language English
License Attribution
2020 The Authors. BioEssays published by Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5121-81d3c8c085a8a7a607dccc617929018b1bded55e7fe15fa77f8c664d92b438ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4313-1601
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.201900221
PMID 32363691
PQID 2445261972
PQPubID 37030
PageCount 16
ParticipantIDs proquest_miscellaneous_2524226320
proquest_miscellaneous_2398157193
proquest_journals_2445261972
pubmed_primary_32363691
crossref_primary_10_1002_bies_201900221
crossref_citationtrail_10_1002_bies_201900221
wiley_primary_10_1002_bies_201900221_BIES201900221
PublicationCentury 2000
PublicationDate October 2020
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle BioEssays
PublicationTitleAlternate Bioessays
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
2017; 6
1998; 280
2017; 8
2015; 33
2020; 17
2019; 16
2016; 143
2008; 5
2019; 568
2015; 348
2013; 8
2017; 9
2019; 364
2017; 358
2018; 46
2019; 363
2018; 6
2018; 8
2018; 5
2013; 10
2015; 43
2016; 353
2012; 22
2010; 7
2014; 11
1998; 14
1982; 79
2015; 163
2019; 9
2015; 161
2015; 16
2019; 75
2019; 1
2020; 38
2016; 92
2014; 159
2016; 13
2012; 2
2017; 91
2020
1969; 63
2017; 12
2019
2013; 378
2018
2019; 179
2019; 576
2016
1996; 274
2017 2017
2018; 15
2019; 178
2014; 343
e_1_2_11_70_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Furth D. (e_1_2_11_40_1) 2019
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
Gyllborg D. (e_1_2_11_34_1) 2020
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
Andersson A. (e_1_2_11_65_1) 2019
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_63_1
Zheng G. (e_1_2_11_1_1) 2017
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
Bergenstråhle L. (e_1_2_11_67_1) 2020
e_1_2_11_37_1
e_1_2_11_39_1
Merritt C. R. (e_1_2_11_46_1) 2019
References_xml – volume: 568
  start-page: 235
  year: 2019
  publication-title: Nature
– volume: 6
  start-page: 25
  year: 2018
  publication-title: Cell Syst.
– volume: 10
  start-page: 857
  year: 2013
  publication-title: Nat. Methods
– year: 2020
  publication-title: bioRxiv
– year: 2019
  publication-title: bioRxiv
– volume: 92
  start-page: 342
  year: 2016
  publication-title: Neuron
– volume: 6
  year: 2017
  publication-title: Elife
– volume: 378
  start-page: 170
  year: 2013
  publication-title: Dev. Biol.
– volume: 8
  start-page: 4847
  year: 2018
  publication-title: Sci. Rep.
– volume: 63
  start-page: 378
  year: 1969
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 348
  year: 2015
  publication-title: Science
– volume: 358
  start-page: 1622
  year: 2017
  publication-title: Science
– volume: 8
  year: 2013
  publication-title: PLoS One
– volume: 15
  start-page: 547
  year: 2018
  publication-title: Nat. Methods
– volume: 33
  start-page: 503
  year: 2015
  publication-title: Nat. Biotechnol.
– volume: 179
  start-page: 1647
  year: 2019
  publication-title: Cell
– volume: 2
  start-page: 666
  year: 2012
  publication-title: Cell Rep.
– year: 2018
– volume: 159
  start-page: 662
  year: 2014
  publication-title: Cell
– volume: 43
  year: 2015
  publication-title: Nucleic Acids Res.
– volume: 17
  start-page: 101
  year: 2020
  publication-title: Nat. Methods
– volume: 1
  start-page: 11
  year: 2019
  publication-title: Immuno‐Oncol. Technol.
– volume: 5
  start-page: 85
  year: 2018
  publication-title: Front. Med.
– volume: 46
  year: 2018
  publication-title: Nucleic Acids Res.
– volume: 79
  start-page: 7331
  year: 1982
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 38
  start-page: 333
  year: 2020
  publication-title: Nat. Biotechnol.
– volume: 353
  start-page: 78
  year: 2016
  publication-title: Science
– volume: 363
  start-page: 1463
  year: 2019
  publication-title: Science
– volume: 161
  start-page: 1202
  year: 2015
  publication-title: Cell
– volume: 343
  start-page: 1360
  year: 2014
  publication-title: Science
– volume: 15
  start-page: 932
  year: 2018
  publication-title: Nat. Methods
– volume: 358
  start-page: 194
  year: 2017
  publication-title: Science
– volume: 576
  start-page: 132
  year: 2019
  publication-title: Nature
– year: 2019
– volume: 364
  start-page: 89
  year: 2019
  publication-title: Science
– volume: 11
  start-page: 190
  year: 2014
  publication-title: Nat. Methods
– volume: 11
  start-page: 360
  year: 2014
  publication-title: Nat. Methods
– volume: 143
  start-page: 2862
  year: 2016
  publication-title: Development
– volume: 274
  start-page: 998
  year: 1996
  publication-title: Science
– volume: 7
  start-page: 395
  year: 2010
  publication-title: Nat. Methods
– volume: 5
  start-page: 877
  year: 2008
  publication-title: Nat. Methods
– volume: 22
  start-page: 544
  year: 2012
  publication-title: Dev. Cell
– volume: 14
  start-page: 272
  year: 1998
  publication-title: Trends Genet.
– volume: 179
  start-page: 1455
  year: 2019
  publication-title: Cell
– volume: 178
  start-page: 473
  year: 2019
  publication-title: Cell
– volume: 75
  start-page: 875
  year: 2019
  publication-title: Mol. Cell
– volume: 163
  start-page: 799
  year: 2015
  publication-title: Cell
– volume: 9
  start-page: 3542
  year: 2019
  publication-title: Sci. Rep.
– year: 2016
– volume: 178
  start-page: 229
  year: 2019
  publication-title: Cell
– volume: 12
  start-page: 566
  year: 2017
  publication-title: Nat. Protoc.
– volume: 361
  year: 2018
  publication-title: Science
– volume: 13
  start-page: 679
  year: 2016
  publication-title: Nat. Methods
– volume: 33
  start-page: 495
  year: 2015
  publication-title: Nat. Biotechnol.
– volume: 358
  start-page: 64
  year: 2017
  publication-title: Science
– year: 2020
– year: 2017 2017
– volume: 9
  year: 2017
  publication-title: Wiley Interdiscip. Rev.: Syst. Biol. Med.
– volume: 91
  start-page: 1200
  year: 2017
  publication-title: Cytometry, Part A
– volume: 280
  start-page: 585
  year: 1998
  publication-title: Science
– volume: 16
  start-page: 987
  year: 2019
  publication-title: Nat. Methods
– volume: 8
  year: 2017
  publication-title: Oncotarget
– volume: 16
  start-page: 57
  year: 2015
  publication-title: Nat. Rev. Genet.
– ident: e_1_2_11_37_1
  doi: 10.1126/science.aat5691
– start-page: 559021
  year: 2019
  ident: e_1_2_11_46_1
  publication-title: bioRxiv
– ident: e_1_2_11_18_1
  doi: 10.1038/nmeth.2892
– ident: e_1_2_11_70_1
  doi: 10.1038/nrg3832
– ident: e_1_2_11_9_1
  doi: 10.1016/j.cell.2014.09.038
– ident: e_1_2_11_14_1
  doi: 10.1073/pnas.63.2.378
– ident: e_1_2_11_31_1
  doi: 10.1038/s41592-019-0631-4
– ident: e_1_2_11_56_1
  doi: 10.1016/j.cell.2015.10.039
– year: 2020
  ident: e_1_2_11_34_1
  publication-title: bioRxiv
– ident: e_1_2_11_8_1
  doi: 10.1371/journal.pone.0071820
– ident: e_1_2_11_39_1
– ident: e_1_2_11_2_1
  doi: 10.1016/j.ydbio.2013.03.003
– ident: e_1_2_11_41_1
  doi: 10.1126/science.aaf2403
– ident: e_1_2_11_68_1
  doi: 10.1126/science.aav9776
– ident: e_1_2_11_21_1
  doi: 10.1126/science.aaa6090
– ident: e_1_2_11_62_1
  doi: 10.1016/j.cell.2015.05.002
– ident: e_1_2_11_3_1
  doi: 10.1016/j.devcel.2011.12.007
– ident: e_1_2_11_32_1
– ident: e_1_2_11_44_1
  doi: 10.1038/s41592-019-0548-y
– ident: e_1_2_11_12_1
  doi: 10.1126/science.aao4277
– ident: e_1_2_11_28_1
  doi: 10.1002/cyto.a.23281
– ident: e_1_2_11_63_1
  doi: 10.7554/eLife.27041
– ident: e_1_2_11_38_1
– ident: e_1_2_11_10_1
  doi: 10.1016/j.celrep.2012.08.003
– ident: e_1_2_11_30_1
  doi: 10.1038/nmeth.2563
– ident: e_1_2_11_54_1
  doi: 10.1038/s41587-019-0392-8
– ident: e_1_2_11_20_1
  doi: 10.1242/dev.138560
– ident: e_1_2_11_57_1
  doi: 10.18632/oncotarget.15727
– ident: e_1_2_11_60_1
  doi: 10.1038/nmeth.1448
– ident: e_1_2_11_22_1
  doi: 10.1038/s41598-018-22297-7
– ident: e_1_2_11_24_1
  doi: 10.1038/s41586-019-1049-y
– ident: e_1_2_11_13_1
  doi: 10.1038/s41592-018-0009-z
– ident: e_1_2_11_51_1
  doi: 10.1038/nbt.3192
– ident: e_1_2_11_59_1
  doi: 10.1093/nar/gkv772
– ident: e_1_2_11_47_1
  doi: 10.1016/j.iotech.2019.05.001
– ident: e_1_2_11_27_1
  doi: 10.1016/j.cels.2017.12.001
– volume-title: Statistical Shape and Deformation Analysis: Methods, Implementation and Applications
  year: 2017
  ident: e_1_2_11_1_1
– ident: e_1_2_11_23_1
  doi: 10.1038/nmeth.3899
– ident: e_1_2_11_53_1
  doi: 10.1126/science.aan3235
– ident: e_1_2_11_69_1
  doi: 10.1016/j.cell.2019.11.025
– start-page: 722819
  year: 2019
  ident: e_1_2_11_40_1
  publication-title: bioRxiv
– year: 2019
  ident: e_1_2_11_65_1
  publication-title: bioRxiv
– ident: e_1_2_11_11_1
  doi: 10.1038/nmeth.2804
– ident: e_1_2_11_66_1
– ident: e_1_2_11_35_1
  doi: 10.1093/nar/gkx1206
– ident: e_1_2_11_61_1
  doi: 10.1002/wsbm.1369
– ident: e_1_2_11_64_1
  doi: 10.1016/j.cell.2019.11.019
– ident: e_1_2_11_49_1
  doi: 10.1016/j.molcel.2019.07.030
– ident: e_1_2_11_17_1
  doi: 10.1038/nmeth.1253
– ident: e_1_2_11_5_1
  doi: 10.1126/science.274.5289.998
– ident: e_1_2_11_43_1
  doi: 10.1126/science.aaw1219
– ident: e_1_2_11_19_1
  doi: 10.1016/j.neuron.2016.10.001
– ident: e_1_2_11_58_1
  doi: 10.1126/science.aan6827
– ident: e_1_2_11_42_1
– ident: e_1_2_11_45_1
– ident: e_1_2_11_7_1
  doi: 10.1038/nprot.2017.003
– ident: e_1_2_11_55_1
  doi: 10.1038/s41586-019-1773-3
– ident: e_1_2_11_4_1
  doi: 10.3389/fmed.2018.00085
– ident: e_1_2_11_26_1
– year: 2020
  ident: e_1_2_11_67_1
  publication-title: bioRxiv
– ident: e_1_2_11_6_1
  doi: 10.1016/S0168-9525(98)01489-9
– ident: e_1_2_11_25_1
  doi: 10.1038/s41592-018-0175-z
– ident: e_1_2_11_50_1
  doi: 10.1101/788992
– ident: e_1_2_11_16_1
  doi: 10.1126/science.280.5363.585
– ident: e_1_2_11_52_1
  doi: 10.1038/nbt.3209
– ident: e_1_2_11_29_1
  doi: 10.1016/j.cell.2019.05.019
– ident: e_1_2_11_15_1
  doi: 10.1073/pnas.79.23.7331
– ident: e_1_2_11_36_1
  doi: 10.1126/science.1250212
– ident: e_1_2_11_33_1
  doi: 10.1038/s41598-019-40026-6
– ident: e_1_2_11_48_1
  doi: 10.1016/j.cell.2019.05.027
SSID ssj0009624
Score 2.7075696
SecondaryResourceType review_article
Snippet Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1900221
SubjectTerms Gene expression
labor
New technology
RNA
RNA‐sequencing
single cells
Spatial data
spatial omics
spatial transcriptomics
spatially resolved transcriptomics
tissue heterogeneity
transcriptomics
Title Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.201900221
https://www.ncbi.nlm.nih.gov/pubmed/32363691
https://www.proquest.com/docview/2445261972
https://www.proquest.com/docview/2398157193
https://www.proquest.com/docview/2524226320
Volume 42
WOSCitedRecordID wos000529906200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-1878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009624
  issn: 0265-9247
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEB-kVfClVav22loiCH1aukl2k8ljWz18kOOQK9zbkmSzIJy30msLfeuH6CfsJ-kke7f1EBX0ZWHJBIZMJvOb_JkfwAftjDI2l5lVymRFI3mGQVPOg9Y0oZCFEjaRTejRCKdTM_7pFX9XH6LfcIuekdbr6ODWLY4fi4a6mEmK-BSawhDlP5ucS4zkDaIYP5bdVYnWlhKNMqNMQ6_KNubieL3_elj6BWuuQ9cUe4bb_6_1C9ha4k520k2Ul_AkzF_Bs46J8mYHxpGamKbi7IbFDf3ZdahZCmNpUWm_h8X97d2IFnLW1amO5mSTtp0tGKFeNknmY92FvtT4Gs6HnyZnn7Ml2ULmKeaThXgtPXpCYBattirXtfee8I2JJ63ouKtDXZZBN4GXjdW6Qa9UURvhConWyTewMW_nYRcYYu1zEYTUDgvCSxhyNLXiaLlDVcoBZKuxrvyyEnkkxJhVXQ1lUcVRqvpRGsBRL_-jq8HxW8mDlemqpS9SaxFp1CO92gDe983kRfFoxM5De0Uy0iAvNaHZP8iUIj47liIfwNtuWvTqSCGVVIYUEMn6f9GzOiWs3__t_UunfXguYuqf7hUewMblxVV4B0_99eW3xcVh8gL66ikewubHr8PzLw_bPAhV
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fSxwxEB-KbWlfWlurPf-0KQg-Le4m2fx51KJYao97uIJvSzabBeG8FU8F3_oh-gn9JM5k91aOUgXxcUkCQ2Ym85vZ5DcA27q0yrpUJE4pm8haZIkJGnMe42wdpJCKu9hsQg-H5uTEjrrbhPQWpuWH6Atu5BnxvCYHp4L07j1raEmpJKe30BiHMAF6KTHUkKlzObrn3VWxry1mGnmCqYae8zamfHdx_WJc-gdsLmLXGHwO3z-D2MvwrkOebK81lQ_wIkw_wuu2F-XNCoyoOTEa4-SGUUl_ch0qFgNZPFaaszC7_fN3iEc5a5mqSaFs3DSTGUPcy8ZRgay90hcHP8Hvw4Px96Oka7eQeIz6qKOsEt54xGDOOO1UqivvPSIcS_9aTZmVVajyPOg6ZHnttK6NV0pWlpdSGFeKVViaNtPwGZgxlU954EKXRiJiMiE1tlKZcVlpVC4GkMw3u_AdFzm1xJgULYsyL2iXin6XBrDTzz9vWTj-O3Nzrrui80YcldRInRqsDeBbP4x-RD9H3DQ0VzhHWJPlGvHsA3NyTg-PBU8HsNbaRS-O4EIJZVEAHtX_iJzFPqL9_mv9KYu-wpuj8a_j4vjH8OcGvOVUCIi3DDdh6fLiKmzBK399eTq7-BJd4g4kfwm4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3batwwEB3Kpil9adr0tknaqlDIk4kt2bo85tKlpWFZygbyZmRJhsB2HbJJIG_9iH5hv6QzstdhCWmg9NFINoNGozkjS-cAfFKVkcamIrFSmiSvRZbooLDm0dbUIRe55DaKTajxWJ-emkl3mpDuwrT8EP2GG0VGXK8pwMO5r_duWUMrKiU53YXGPIQF0FpOSjIDWDv6Pjo5vmXelVHZFmuNIsFiQy2ZG1O-t_qF1cx0B26uoteYfkYb_8Hw5_Csw55sv50sL-BRmG_CeqtGefMSJiRPjNNxdsNoU392HTyLqSwuLM2PsPj989cYF3PWclWTS9m0aWYLhsiXTaMLWXuoLza-gpPR5-nhl6QTXEgc5n30UuaF0w5RmNVWWZkq75xDjGPob6uussoHXxRB1SEraqtUrZ2UuTe8yoW2lXgNg3kzD2-Bae1dygMXqtI5YiYdUm28zLTNKi0LMYRkOdil69jISRRjVrY8yrykUSr7URrCbt__vOXhuLfnztJ3ZReP2JqTlDpJrA3hY9-MkUS_R-w8NFfYRxidFQoR7V_6FJyuHgueDuFNOy96cwQXUkiDBvDo_gfsLA8Q7_dPW__y0gd4Mjkalcdfx9-24SmnnYB4zHAHBpcXV-EdPHbXl2eLi_ddTPwBgiIKzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+Resolved+Transcriptomes-Next+Generation+Tools+for+Tissue+Exploration&rft.jtitle=BioEssays&rft.au=Asp%2C+Michaela&rft.au=Bergenstr%C3%A5hle%2C+Joseph&rft.au=Lundeberg%2C+Joakim&rft.date=2020-10-01&rft.eissn=1521-1878&rft.spage=e1900221&rft_id=info:doi/10.1002%2Fbies.201900221&rft_id=info%3Apmid%2F32363691&rft.externalDocID=32363691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon