Interactive Exploration and Analysis of Large-Scale Simulations Using Topology-Based Data Segmentation
Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting insight from these large simulations involves...
Saved in:
| Published in: | IEEE transactions on visualization and computer graphics Vol. 17; no. 9; pp. 1307 - 1324 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.09.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting insight from these large simulations involves the definition, extraction, and evaluation of features in the space and time coordinates of the solution. However, in many applications, these features involve a range of parameters and decisions that will affect the quality and direction of the analysis. Examples include particular level sets of a specific scalar field, or local inequalities between derived quantities. A critical step in the analysis is to understand how these arbitrary parameters/decisions impact the statistical properties of the features, since such a characterization will help to evaluate the conclusions of the analysis as a whole. We present a new topological framework that in a single-pass extracts and encodes entire families of possible features definitions as well as their statistical properties. For each time step we construct a hierarchical merge tree a highly compact, yet flexible feature representation. While this data structure is more than two orders of magnitude smaller than the raw simulation data it allows us to extract a set of features for any given parameter selection in a postprocessing step. Furthermore, we augment the trees with additional attributes making it possible to gather a large number of useful global, local, as well as conditional statistic that would otherwise be extremely difficult to compile. We also use this representation to create tracking graphs that describe the temporal evolution of the features over time. Our system provides a linked-view interface to explore the time-evolution of the graph interactively alongside the segmentation, thus making it possible to perform extensive data analysis in a very efficient manner. We demonstrate our framework by extracting and analyzing burning cells from a large-scale turbulent combustion simulation. In particular, we show how the statistical analysis enabled by our techniques provides new insight into the combustion process. |
|---|---|
| AbstractList | Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting insight from these large simulations involves the definition, extraction, and evaluation of features in the space and time coordinates of the solution. However, in many applications, these features involve a range of parameters and decisions that will affect the quality and direction of the analysis. Examples include particular level sets of a specific scalar field, or local inequalities between derived quantities. A critical step in the analysis is to understand how these arbitrary parameters/decisions impact the statistical properties of the features, since such a characterization will help to evaluate the conclusions of the analysis as a whole. We present a new topological framework that in a single-pass extracts and encodes entire families of possible features definitions as well as their statistical properties. For each time step we construct a hierarchical merge tree a highly compact, yet flexible feature representation. While this data structure is more than two orders of magnitude smaller than the raw simulation data it allows us to extract a set of features for any given parameter selection in a postprocessing step. Furthermore, we augment the trees with additional attributes making it possible to gather a large number of useful global, local, as well as conditional statistic that would otherwise be extremely difficult to compile. We also use this representation to create tracking graphs that describe the temporal evolution of the features over time. Our system provides a linked-view interface to explore the time-evolution of the graph interactively alongside the segmentation, thus making it possible to perform extensive data analysis in a very efficient manner. We demonstrate our framework by extracting and analyzing burning cells from a large-scale turbulent combustion simulation. In particular, we show how the statistical analysis enabled by our techniques provides new insight into the combustion process. —Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting insight from these large simulations involves the definition, extraction, and evaluation of features in the space and time coordinates of the solution. However, in many applications these features involve a range of parameters and decisions that will affect the quality and direction of the analysis. Examples include particular level sets of a specific scalar field, or local inequalities between derived quantities. A critical step in the analysis is to understand how these arbitrary parameters/decisions impact the statistical properties of the features, since such a characterization will help to evaluate the conclusions of the analysis as a whole. We present a new topological framework that in a single pass extracts and encodes entire families of possible features definitions as well as their statistical properties. For each time step we construct a hierarchical merge tree a highly compact, yet flexible feature representation. While this data structure is more than two orders of magnitude smaller than the raw simulation data it allows us to extract a set of feature for any given parameter selection in a post-processing step. Furthermore, we augment the trees with additional attributes making it possible to gather a large number of useful global, local, as well as conditional statistic that would otherwise be extremely difficult to compile. We also use this representation to create tracking graphs that describe the temporal evolution of the features over time. Our system provides a linked-view interface to explore the time-evolution of the graph interactively alongside the segmentation, thus making it possible to perform extensive data analysis in a very efficient manner. We demonstrate our framework by extracting and analyzing burning cells from a large-scale turbulent combustion simulation. In particular, we show how the statistical analysis enabled by our techniques provides new insight into the combustion process. Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting insight from these large simulations involves the definition, extraction, and evaluation of features in the space and time coordinates of the solution. However, in many applications, these features involve a range of parameters and decisions that will affect the quality and direction of the analysis. Examples include particular level sets of a specific scalar field, or local inequalities between derived quantities. A critical step in the analysis is to understand how these arbitrary parameters/decisions impact the statistical properties of the features, since such a characterization will help to evaluate the conclusions of the analysis as a whole. We present a new topological framework that in a single-pass extracts and encodes entire families of possible features definitions as well as their statistical properties. For each time step we construct a hierarchical merge tree a highly compact, yet flexible feature representation. While this data structure is more than two orders of magnitude smaller than the raw simulation data it allows us to extract a set of features for any given parameter selection in a postprocessing step. Furthermore, we augment the trees with additional attributes making it possible to gather a large number of useful global, local, as well as conditional statistic that would otherwise be extremely difficult to compile. We also use this representation to create tracking graphs that describe the temporal evolution of the features over time. Our system provides a linked-view interface to explore the time-evolution of the graph interactively alongside the segmentation, thus making it possible to perform extensive data analysis in a very efficient manner. We demonstrate our framework by extracting and analyzing burning cells from a large-scale turbulent combustion simulation. In particular, we show how the statistical analysis enabled by our techniques provides new insight into the combustion process.Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting insight from these large simulations involves the definition, extraction, and evaluation of features in the space and time coordinates of the solution. However, in many applications, these features involve a range of parameters and decisions that will affect the quality and direction of the analysis. Examples include particular level sets of a specific scalar field, or local inequalities between derived quantities. A critical step in the analysis is to understand how these arbitrary parameters/decisions impact the statistical properties of the features, since such a characterization will help to evaluate the conclusions of the analysis as a whole. We present a new topological framework that in a single-pass extracts and encodes entire families of possible features definitions as well as their statistical properties. For each time step we construct a hierarchical merge tree a highly compact, yet flexible feature representation. While this data structure is more than two orders of magnitude smaller than the raw simulation data it allows us to extract a set of features for any given parameter selection in a postprocessing step. Furthermore, we augment the trees with additional attributes making it possible to gather a large number of useful global, local, as well as conditional statistic that would otherwise be extremely difficult to compile. We also use this representation to create tracking graphs that describe the temporal evolution of the features over time. Our system provides a linked-view interface to explore the time-evolution of the graph interactively alongside the segmentation, thus making it possible to perform extensive data analysis in a very efficient manner. We demonstrate our framework by extracting and analyzing burning cells from a large-scale turbulent combustion simulation. In particular, we show how the statistical analysis enabled by our techniques provides new insight into the combustion process. |
| Author | Day, M. Weber, G. Bremer, P-T Tierny, J. Pascucci, V. Bell, J. |
| Author_xml | – sequence: 1 givenname: P-T surname: Bremer fullname: Bremer, P-T email: bremer5@llnl.gov organization: Center of Appl. Sci. Comput. (CASC), Lawrence Livermore Nat. Lab., Livermore, CA, USA – sequence: 2 givenname: G. surname: Weber fullname: Weber, G. email: ghweber@lbl.gov organization: Visualization Group, Lawrence Berkeley Nat. Lab., Berkeley, CA, USA – sequence: 3 givenname: J. surname: Tierny fullname: Tierny, J. email: tierny@telecom-paristech.fr organization: French Nat. Center for Sci. Res. (CNRS) &, Telecom ParisTech, Paris, France – sequence: 4 givenname: V. surname: Pascucci fullname: Pascucci, V. email: pascucci@sci.utah.edu organization: Sci. Comput. & Imaging Inst., Univ. of Utah, Salt Lake City, UT, USA – sequence: 5 givenname: M. surname: Day fullname: Day, M. email: MSDay@lbl.gov organization: Center for Comput. Sci. & Eng. (CCSE), Lawrence Berkeley Nat. Lab., Berkeley, CA, USA – sequence: 6 givenname: J. surname: Bell fullname: Bell, J. email: BBell@lbl.gov organization: Center for Comput. Sci. & Eng. (CCSE), Lawrence Berkeley Nat. Lab., Berkeley, CA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21149885$$D View this record in MEDLINE/PubMed https://hal.science/hal-01211172$$DView record in HAL |
| BookMark | eNp90c1vFCEYB2BiauyHHj2ZGOJFPUzlZWYYOK5rbZts4mG3XgkDzErDDCvMNO5_L9tpe2iiCQkfeV7Cy-8UHQ1hsAi9BXIOQMSXzc_l5TkleUvr8gU6AVFBQWrCjvKaNE1BGWXH6DSlW0Kgqrh4hY4pQCU4r09Qdz2MNio9ujuLL_7sfIhqdGHAajB4MSi_Ty7h0OGViltbrLXyFq9dP_l7lvBNcsMWb8Iu-LDdF19VsgZ_U6PCa7vt7TDeu9foZad8sm8e5jN08_1is7wqVj8ur5eLVaFrgLHorDJtZ1mnqCZMEE6hbngn8ii5MaoFyg0pK65VRytjwDDdCtaSGljZtLo8Q5_ne38pL3fR9SruZVBOXi1W8nBGIPcODb2DbD_OdhfD78mmUfYuaeu9GmyYkhQEGCsrUmX56b8SGkYFa4TgmX54Rm_DFPM_JsmzgqaqWUbvH9DU9tY8PfQxlgzKGegYUoq2k9rNHzlG5bwEIg_hy0P48hC-zOHnquJZ1ePF__LvZu-stU-2Zkzkbsq_xXK3pQ |
| CODEN | ITVGEA |
| CitedBy_id | crossref_primary_10_1016_j_cageo_2023_105493 crossref_primary_10_1109_TVCG_2024_3456345 crossref_primary_10_1109_ACCESS_2023_3301177 crossref_primary_10_1111_cgf_13164 crossref_primary_10_1111_cgf_13165 crossref_primary_10_1007_s00454_017_9901_z crossref_primary_10_1109_TVCG_2020_3030441 crossref_primary_10_1007_s12650_020_00654_x crossref_primary_10_1016_j_cag_2017_07_006 crossref_primary_10_1088_2051_672X_ab70e8 crossref_primary_10_1109_TVCG_2024_3390219 crossref_primary_10_1007_s00371_022_02451_z crossref_primary_10_1016_j_cpc_2024_109344 crossref_primary_10_1109_TPDS_2019_2898436 crossref_primary_10_1007_s12650_019_00578_1 crossref_primary_10_1109_TVCG_2024_3456395 crossref_primary_10_1109_TVCG_2021_3060500 crossref_primary_10_1109_TVCG_2023_3334755 crossref_primary_10_1145_2517327_2442526 crossref_primary_10_1111_cgf_12933 crossref_primary_10_1111_cgf_12930 crossref_primary_10_1111_cgf_13336 crossref_primary_10_1111_cgf_14304 crossref_primary_10_1109_TVCG_2017_2692781 crossref_primary_10_3390_a14050154 crossref_primary_10_1109_TVCG_2019_2934312 crossref_primary_10_1109_TVCG_2021_3064385 crossref_primary_10_1109_TVCG_2018_2864901 crossref_primary_10_1109_TVCG_2018_2864432 crossref_primary_10_1111_cgf_15162 crossref_primary_10_1111_cgf_12800 crossref_primary_10_1109_TVCG_2022_3209395 crossref_primary_10_1109_TVCG_2019_2934368 crossref_primary_10_1016_j_cag_2018_02_002 crossref_primary_10_1111_cgf_12120 crossref_primary_10_1109_TPDS_2015_2417531 crossref_primary_10_1109_TVCG_2023_3330262 crossref_primary_10_1109_TVCG_2025_3561300 crossref_primary_10_1016_j_jksuci_2016_12_006 crossref_primary_10_1109_TVCG_2023_3248632 crossref_primary_10_1007_s12650_021_00769_9 crossref_primary_10_1145_3523698 crossref_primary_10_1109_TVCG_2020_3030353 crossref_primary_10_1111_tgis_12816 crossref_primary_10_1109_TVCG_2018_2810068 crossref_primary_10_1109_TVCG_2021_3114872 crossref_primary_10_1109_TVCG_2017_2743938 crossref_primary_10_1109_TVCG_2021_3114839 crossref_primary_10_1109_TVCG_2023_3238008 crossref_primary_10_1111_cgf_12596 crossref_primary_10_1109_TVCG_2019_2934258 crossref_primary_10_1016_j_precisioneng_2016_12_005 crossref_primary_10_1109_TVCG_2019_2934256 crossref_primary_10_1109_TVCG_2019_2934257 crossref_primary_10_1109_TVCG_2014_2346456 crossref_primary_10_1109_TVCG_2022_3163349 crossref_primary_10_1016_j_cag_2013_09_001 crossref_primary_10_1109_TVCG_2022_3215001 crossref_primary_10_1109_TVCG_2025_3525974 |
| Cites_doi | 10.1109/TVCG.2007.47 10.1109/TVCG.2004.3 10.1145/345513.345271 10.1109/TVCG.2006.16 10.1088/1364-7830/4/4/309 10.1016/j.combustflame.2008.10.029 10.1016/j.expthermflusci.2007.11.012 10.1109/TVCG.2009.69 10.1145/37402.37422 10.1016/j.comgeo.2007.11.001 10.1109/TVCG.2007.70603 10.1109/GMAP.2004.1290044 10.1515/9781400881802 10.1109/TVCG.2003.1207437 10.1109/SMI.2005.45 10.1145/1463822.1463869 10.1016/j.proci.2006.08.038 10.1145/1276377.1276449 10.1109/2945.485619 10.1109/CLUSTR.2009.5289161 10.1145/262839.269238 10.1007/s00453-003-1052-3 10.1088/1742-6596/46/1/001 10.1109/TVCG.2007.70552 10.1016/0010-2180(94)00196-Y 10.1016/j.gmod.2003.08.002 10.1016/0010-2180(94)00138-I 10.1109/VISUAL.2000.885739 10.1109/VISUAL.1995.480807 10.1109/VISUAL.1998.745289 10.1109/e-Science.2009.42 10.1007/978-3-540-77704-5_15 10.1007/s00454-003-2926-5 10.1364/AO.46.003928 10.1109/2.299407 10.1109/TVCG.2006.186 10.1016/S0925-7721(02)00093-7 10.1088/1742-6596/78/1/012007 10.1109/VISUAL.2004.96 10.1109/TVCG.2009.119 10.1109/2945.597796 10.1111/j.1467-8659.2003.00723.x 10.1109/TVCG.2007.70519 10.1109/2945.489388 10.1007/978-3-540-88606-8_5 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 1XC VOOES |
| DOI | 10.1109/TVCG.2010.253 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0506 |
| EndPage | 1324 |
| ExternalDocumentID | oai:HAL:hal-01211172v1 2397972051 21149885 10_1109_TVCG_2010_253 5669296 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYXX CITATION NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 1XC VOOES |
| ID | FETCH-LOGICAL-c511t-feadbfe6fa2c0690821578f98f938ddab128d0348caf24dd1d6cb96b051637bc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 96 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000293455600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Tue Oct 14 20:19:29 EDT 2025 Thu Oct 02 07:38:35 EDT 2025 Sat Sep 27 23:15:02 EDT 2025 Mon Jun 30 04:36:24 EDT 2025 Mon Jul 21 06:04:01 EDT 2025 Sat Nov 29 06:05:28 EST 2025 Tue Nov 18 22:08:49 EST 2025 Wed Aug 27 02:47:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Index Terms—Topology Combustion Morse Theory Segmentation Merge Trees Streaming Algorithms |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511t-feadbfe6fa2c0690821578f98f938ddab128d0348caf24dd1d6cb96b051637bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| ORCID | 0000-0003-0056-2831 |
| OpenAccessLink | https://hal.science/hal-01211172 |
| PMID | 21149885 |
| PQID | 876217456 |
| PQPubID | 75741 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_876217456 ieee_primary_5669296 crossref_citationtrail_10_1109_TVCG_2010_253 proquest_miscellaneous_901663404 pubmed_primary_21149885 hal_primary_oai_HAL_hal_01211172v1 proquest_miscellaneous_1762967998 crossref_primary_10_1109_TVCG_2010_253 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-09-01 |
| PublicationDateYYYYMMDD | 2011-09-01 |
| PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2011 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref57 ref13 ref56 ref59 ref58 ref14 carr (ref41) 2003 poinsot (ref54) 2005 ref52 ref55 ref11 pascucci (ref60) 2004 ref16 stockinger (ref10) 2005 williams (ref53) 1994 ref50 weber (ref19) 2010 takahashi (ref34) 2004 ref45 ref48 ref47 ref42 ref44 ref43 edelsbrunner (ref22) 2002 pascucci (ref7) 2007; 26 morse (ref25) 1934; 18 ref49 gyulassy (ref39) 2006 ref8 ref9 ref4 ref3 doleisch (ref51) 2003 ref6 ref5 ref40 ji (ref18) 2004 takahashi (ref29) 1995 ref35 ji (ref17) 2003 ref37 ref36 ref31 ref30 reeb (ref27) 1946; 222 ref33 devore (ref65) 2004 ref32 silver (ref15) 1998 ref2 ref1 szymczak (ref21) 2005 milnor (ref26) 1963 ref24 ref23 mascarenhas (ref12) 2009 ref64 ref20 ref28 mascarenhas (ref46) 2010 koutsofios (ref63) 1991 gyulassy (ref38) 2005 ref62 ref61 |
| References_xml | – ident: ref43 doi: 10.1109/TVCG.2007.47 – ident: ref37 doi: 10.1109/TVCG.2004.3 – ident: ref48 doi: 10.1145/345513.345271 – ident: ref23 doi: 10.1109/TVCG.2006.16 – ident: ref59 doi: 10.1088/1364-7830/4/4/309 – ident: ref64 doi: 10.1016/j.combustflame.2008.10.029 – ident: ref58 doi: 10.1016/j.expthermflusci.2007.11.012 – year: 1991 ident: ref63 article-title: Drawing Graphs with Dot publication-title: Technical Report 910904-59113-08TM AT&T Bell Laboratories Murray Hill – year: 2004 ident: ref65 article-title: Probability and Statistics for Engineering and the Sciences publication-title: Brooks/Cole-Thomson Learning – start-page: 239 year: 2003 ident: ref51 article-title: Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data publication-title: Proc Data Visualization – ident: ref6 doi: 10.1109/TVCG.2009.69 – ident: ref1 doi: 10.1145/37402.37422 – ident: ref20 doi: 10.1016/j.comgeo.2007.11.001 – year: 2005 ident: ref54 publication-title: Theoretical and Numerical Combustion – ident: ref44 doi: 10.1109/TVCG.2007.70603 – start-page: 227 year: 2004 ident: ref34 article-title: Topological Volume Skeletonization Using Adaptive Tetrahedrization publication-title: Proc Geometric Modeling and Processing doi: 10.1109/GMAP.2004.1290044 – year: 1963 ident: ref26 publication-title: Morse Theory doi: 10.1515/9781400881802 – ident: ref2 doi: 10.1109/TVCG.2003.1207437 – start-page: 136 year: 2005 ident: ref21 article-title: Subdomain-Aware Contour Trees and Contour Tree Evolution in Time-Dependent Scalar Fields publication-title: Proc Int'l Conf Shape Modeling and Applications (SMI '05) doi: 10.1109/SMI.2005.45 – ident: ref28 doi: 10.1145/1463822.1463869 – ident: ref57 doi: 10.1016/j.proci.2006.08.038 – volume: 222 start-page: 847 year: 1946 ident: ref27 article-title: Sur Les Points Singuliers D'une Forme de pfaff Completement Intergrable ou D'une Fonction Numerique [on the Singular Points of a Complete Integral pfaff form or of a Numerical Function] publication-title: Comptes Rendus Acad – start-page: 49 year: 2003 ident: ref41 article-title: Path Seeds and Flexible Isosurfaces Using Topology for Exploratory Visualization publication-title: Proc Symp Data Visualisation (VisSym '03) – volume: 26 start-page: 58.1 year: 2007 ident: ref7 article-title: Robust Online Computation of Reeb Graphs: Simplicity and Speed publication-title: ACM Trans Graphics doi: 10.1145/1276377.1276449 – ident: ref30 doi: 10.1109/2945.485619 – ident: ref62 doi: 10.1109/CLUSTR.2009.5289161 – ident: ref31 doi: 10.1145/262839.269238 – start-page: 283 year: 2004 ident: ref18 article-title: Efficient Isosurface Tracking Using Precomputed Correspondence Table publication-title: Proc IEEE/EuroGraphics Symp Visualization – ident: ref33 doi: 10.1007/s00453-003-1052-3 – volume: 18 year: 1934 ident: ref25 publication-title: Calculus of Variations in the Large – ident: ref55 doi: 10.1088/1742-6596/46/1/001 – ident: ref40 doi: 10.1109/TVCG.2007.70552 – year: 2009 ident: ref12 publication-title: Isocontour Based Visualization of Time-Varying Scalar Fields – ident: ref5 doi: 10.1016/0010-2180(94)00196-Y – ident: ref35 doi: 10.1016/j.gmod.2003.08.002 – ident: ref4 doi: 10.1016/0010-2180(94)00138-I – start-page: 37 year: 2002 ident: ref22 article-title: Jacobi Sets of Multiple Morse Functions publication-title: Foundations of Computational Mathematics Minneapolis 2002 – ident: ref50 doi: 10.1109/VISUAL.2000.885739 – ident: ref9 doi: 10.1109/VISUAL.1995.480807 – ident: ref49 doi: 10.1109/VISUAL.1998.745289 – ident: ref47 doi: 10.1109/e-Science.2009.42 – ident: ref52 doi: 10.1007/978-3-540-77704-5_15 – ident: ref36 doi: 10.1007/s00454-003-2926-5 – year: 1994 ident: ref53 publication-title: Combustion Theory – ident: ref56 doi: 10.1364/AO.46.003928 – year: 2006 ident: ref39 article-title: Topology-Based Simplification for Feature Extraction from 3D Scalar Fields publication-title: Proc IEEE Conf Visualization – start-page: 167 year: 2005 ident: ref10 article-title: Query-Driven Visualization of Large Data Sets publication-title: Proc IEEE Conf Visualization – ident: ref13 doi: 10.1109/2.299407 – ident: ref16 doi: 10.1109/TVCG.2006.186 – ident: ref32 doi: 10.1016/S0925-7721(02)00093-7 – ident: ref24 doi: 10.1088/1742-6596/78/1/012007 – start-page: 535 year: 2005 ident: ref38 article-title: Topology-Based Simplification for Feature Extraction from 3D Scalar Fields publication-title: Proc IEEE Visualization – start-page: -181c year: 1995 ident: ref29 article-title: Algorithms for Extracting Correct Critical Points and Constructing Topological Graphs from Discrete Geographical Elevation Data publication-title: Proc Eurographics – start-page: 79 year: 1998 ident: ref15 article-title: Tracking Scalar Features in Unstructured Datasets publication-title: Proc IEEE Conf Visualization – ident: ref42 doi: 10.1109/VISUAL.2004.96 – ident: ref45 doi: 10.1109/TVCG.2009.119 – ident: ref14 doi: 10.1109/2945.597796 – ident: ref8 doi: 10.1111/j.1467-8659.2003.00723.x – ident: ref11 doi: 10.1109/TVCG.2007.70519 – ident: ref3 doi: 10.1109/2945.489388 – ident: ref61 doi: 10.1007/978-3-540-88606-8_5 – year: 2004 ident: ref60 article-title: Multi-Resolution Computation and Presentation of Contour Trees publication-title: Technical Report UCRL-PROC-208680 LLNL – start-page: 209 year: 2003 ident: ref17 article-title: Volume Tracking Using Higher Dimensional Isocontouring publication-title: Proc IEEE Conf Visualization – year: 2010 ident: ref19 article-title: Feature Tracking Using Reeb Graphs publication-title: Topological Methods in Data Analysis and Visualization – year: 2010 ident: ref46 article-title: Topological Feature Extraction for Comparison of Terascale Combustion Simulation Data publication-title: Topological Methods in Data Analysis and Visualization |
| SSID | ssj0014489 |
| Score | 2.4198496 |
| Snippet | Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data... —Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data... |
| SourceID | hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1307 |
| SubjectTerms | Combustion Computational modeling Computer Science Computer simulation Data models Data structures Data visualization Decisions Feature extraction Fuels Mathematical models merge trees Morse theory Representations Segmentation streaming algorithms Studies Topology Trees Visualization |
| Title | Interactive Exploration and Analysis of Large-Scale Simulations Using Topology-Based Data Segmentation |
| URI | https://ieeexplore.ieee.org/document/5669296 https://www.ncbi.nlm.nih.gov/pubmed/21149885 https://www.proquest.com/docview/876217456 https://www.proquest.com/docview/1762967998 https://www.proquest.com/docview/901663404 https://hal.science/hal-01211172 |
| Volume | 17 |
| WOSCitedRecordID | wos000293455600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB51Kw5wKJRCG_qQQYhTze4mWds5ltLSw6pC2gXtzfKzrdRm0b4k_n3Hdjb00D0g5RDFIznK58l8tsffAHxGxt8vPPfU2tzQcqByqqzStPRKK82dVwnpIb--FpNJ9XMLTtuzMM65mHzmvobbuJdvp2YZlsq6SD0wmrMOdDhn6axWu2OAnVYpv5DTHFn6Pz3N7vj3-Y-UxJUPiqj-i9MCEaonPwlFnduQCBkrrGwmmzHoXL7-v9d9AzsNuSRnaTTswpar38KrJ5KDe-DjEqCKfzmSEvAiNkTVlqwVSsjUk2FIEacjhNCR0d1DU-VrTmKOARmn2gp_6TeMgpZ8VwtFRu7moTnJVL-DX5cX4_Mr2tRaoAYp14J6HFHaO-ZVboJ4sUAqwIWv8CqERfQwjtleUQqjfF5a27fM6Ipp9GlWcG2K97BdT2t3AAQ5ROW0MUZUrsytVn5QWiccy3sK-SjL4HT92aVphMhDPYx7GSckvUoGwGQATCJgGXxpzf8kBY5Nhp8Qw9Ym6GZfnQ1leBaF7JCqrfoZ7AWgWqsGowwO15DLxonnMgQKnLANsPVj24reF7ZUVO2my7nso0nFOM5ZMyAbbJBxIa0re2UG-2kwtb2vR-KH59_qEF6mJeyQ0nYE24vZ0h3DC7Na3M1nJ-gFE3ESveARzR8D1Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61BQk4AKUFQnm4qOqpplnHeR1LoSxqWFXabdWb5SdUolnU3a3Ev2dsZ0MP7AEphygeyVG-ceazPf4GYA8Z_yBzpaPGME15LhmVRirKnVRSldbJiHRTjkbV5WV9tgYH_VkYa21IPrMf_G3YyzdTvfBLZYdIPTCaF-twL-ecpfG0Vr9ngN3WMcOwpAx5-l9FzcPJxfGXmMbF8izo_-LEoPL1k-8Eo_UfPhUy1FhZTTdD2Dl58n8v_BQed_SSHEV_2IQ12z6DR3dEB7fAhUVAGf5zJKbgBXSIbA1ZapSQqSONTxKnYwTRkvHVdVfna0ZClgGZxOoKv-lHjIOGfJJzScb2-3V3lqndhvOTz5PjIe2qLVCNpGtOHfqUcrZwkmkvX1whGSgrV-OVVQbxw0hm0oxXWjrGjRmYQqu6UDiqi6xUOnsOG-20tS-BIIuordJaV7XlzCjpcm5sZQuWSmSkRQIHy88udCdF7iti_BRhSpLWwgMmPGACAUtgvzf_FTU4Vhm-Rwx7G6-cPTxqhH8WpOyQrN0OEtjyQPVWHUYJ7CwhF90wngkfKnDKlmPrbt-K489vqsjWThczMUCTuihx1poAWWGDnAuJHU95Ai-iM_W9Lz3x1b_f6h08GE6-NaL5OjrdgYdxQdsnuL2GjfnNwr6B-_p2fjW7eRvGwh9QfgY0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactive+Exploration+and+Analysis+of+Large+Scale+Simulations+Using+Topology-based+Data+Segmentation&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Bremer%2C+Peer-Timo&rft.au=Weber%2C+Gunther&rft.au=Tierny%2C+Julien&rft.au=Pascucci%2C+Valerio&rft.date=2011-09-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1077-2626&rft_id=info:doi/10.1109%2FTVCG.2010.253&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01211172v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |