Two-agent scheduling to minimize the total cost

► We consider a two-agent single-machine scheduling problem to minimize the total costs of the agents. ► The cost of the first agent is the maximum weighted completion time of his jobs and the cost of the second agent is the total weighted completion time of his jobs. ► We provide a 2-approximation...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of operational research Ročník 215; číslo 1; s. 39 - 44
Hlavní autori: Nong, Q.Q., Cheng, T.C.E., Ng, C.T.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 16.11.2011
Elsevier
Elsevier Sequoia S.A
Edícia:European Journal of Operational Research
Predmet:
ISSN:0377-2217, 1872-6860
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ► We consider a two-agent single-machine scheduling problem to minimize the total costs of the agents. ► The cost of the first agent is the maximum weighted completion time of his jobs and the cost of the second agent is the total weighted completion time of his jobs. ► We provide a 2-approximation algorithm for the problem. ► We show that the case where the number of jobs of the first agent is fixed is NP-hard. ► We devise a polynomial time approximation scheme for this case. Two agents, each having his own set of jobs, compete to perform their own jobs on a common processing resource. Each job of the agents has a weight that specifies its importance. The cost of the first agent is the maximum weighted completion time of his jobs while the cost of the second agent is the total weighted completion time of his jobs. We consider the scheduling problem of determining the sequence of the jobs such that the total cost of the two agents is minimized. We provide a 2-approximation algorithm for the problem, show that the case where the number of jobs of the first agent is fixed is NP-hard, and devise a polynomial time approximation scheme for this case.
AbstractList Two agents, each having his own set of jobs, compete to perform their own jobs on a common processing resource. Each job of the agents has a weight that specifies its importance. The cost of the first agent is the maximum weighted completion time of his jobs while the cost of the second agent is the total weighted completion time of his jobs. We consider the scheduling problem of determining the sequence of the jobs such that the total cost of the two agents is minimized. We provide a 2-approximation algorithm for the problem, show that the case where the number of jobs of the first agent is fixed is NP-hard, and devise a polynomial time approximation scheme for this case.
Two agents, each having his own set of jobs, compete to perform their own jobs on a common processing resource. Each job of the agents has a weight that specifies its importance. The cost of the first agent is the maximum weighted completion time of his jobs while the cost of the second agent is the total weighted completion time of his jobs. We consider the scheduling problem of determining the sequence of the jobs such that the total cost of the two agents is minimized. We provide a 2-approximation algorithm for the problem, show that the case where the number of jobs of the first agent is fixed is NP-hard, and devise a polynomial time approximation scheme for this case. [PUBLICATION ABSTRACT]
► We consider a two-agent single-machine scheduling problem to minimize the total costs of the agents. ► The cost of the first agent is the maximum weighted completion time of his jobs and the cost of the second agent is the total weighted completion time of his jobs. ► We provide a 2-approximation algorithm for the problem. ► We show that the case where the number of jobs of the first agent is fixed is NP-hard. ► We devise a polynomial time approximation scheme for this case. Two agents, each having his own set of jobs, compete to perform their own jobs on a common processing resource. Each job of the agents has a weight that specifies its importance. The cost of the first agent is the maximum weighted completion time of his jobs while the cost of the second agent is the total weighted completion time of his jobs. We consider the scheduling problem of determining the sequence of the jobs such that the total cost of the two agents is minimized. We provide a 2-approximation algorithm for the problem, show that the case where the number of jobs of the first agent is fixed is NP-hard, and devise a polynomial time approximation scheme for this case.
Author Nong, Q.Q.
Ng, C.T.
Cheng, T.C.E.
Author_xml – sequence: 1
  givenname: Q.Q.
  surname: Nong
  fullname: Nong, Q.Q.
  organization: College of Mathematical Science, Ocean University of China, Qingdao, Shandong 266100, People’s Republic of China
– sequence: 2
  givenname: T.C.E.
  surname: Cheng
  fullname: Cheng, T.C.E.
  email: lgtcheng@inet.polyu.edu.hk
  organization: Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
– sequence: 3
  givenname: C.T.
  surname: Ng
  fullname: Ng, C.T.
  organization: Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
BackLink http://www.econis.eu/PPNSET?PPN=669831956$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24427773$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeejores/v_3a215_3ay_3a2011_3ai_3a1_3ap_3a39-44.htm$$DView record in RePEc
BookMark eNp9UU1r3DAQFSWFbNL-gVxqCoVc7Eiyvgy9lJA2gUAvexdaeZyVsaWtpE1Jf33l7LaEHCIYjQTvvXkzc4ZOfPCA0AXBDcFEXI0NjCE2FBPSYN5gRt6hFVGS1kIJfIJWuJWyppTIU3SW0ogxJpzwFbpa_w61eQCfq2S30O8n5x-qHKrZeTe7P1DlbYmQzVTZkPIH9H4wU4KPx3yO1t9v1te39f3PH3fX3-5rywnJNYBquSC9YQCGDL3sOjVYsxnwxm4MZ5L2fKBSENt2GywpM61SSpjyYz3u23N0eZDdxfBrDynr2SUL02Q8hH3SpelOdIQJWqCfX0HHsI--mNNKkaWUbAvo7gCKsAOrd9HNJj5pKKfMDZJ-1K2hhJf7aXmVOZbkSix5V6LtNGN6m-ei9eVY0CRrpiEab136r0kZo1I-1_x0wIEN_gVAiE61pOOiINQBYWNIKcKgrcsmu-BzNG4qXS6NCj3qxaV-doW5LtstVPqK-k_-TdLXo6OyuUcHUSfrwFvoXQSbdR_cW_S_JSS8-Q
CODEN EJORDT
CitedBy_id crossref_primary_10_1007_s10951_012_0274_0
crossref_primary_10_1007_s11590_022_01967_6
crossref_primary_10_1016_j_asoc_2012_10_003
crossref_primary_10_1155_2015_681854
crossref_primary_10_1155_2014_596306
crossref_primary_10_1016_j_cie_2014_10_025
crossref_primary_10_1080_02522667_2020_1715574
crossref_primary_10_1016_j_amc_2021_126286
crossref_primary_10_1007_s12652_018_0741_3
crossref_primary_10_1016_j_tcs_2017_09_004
crossref_primary_10_1177_1063293X14559750
crossref_primary_10_1142_S0217595914500432
crossref_primary_10_1080_0305215X_2017_1332762
crossref_primary_10_1016_j_cor_2019_06_004
crossref_primary_10_1016_j_knosys_2016_05_012
crossref_primary_10_1142_S021759591550030X
crossref_primary_10_1007_s00500_015_1817_z
crossref_primary_10_1016_j_cie_2015_01_002
crossref_primary_10_1016_j_ejor_2016_01_009
crossref_primary_10_1142_S0217595918500483
crossref_primary_10_1016_j_ejco_2022_100032
crossref_primary_10_1007_s10845_014_0992_6
crossref_primary_10_1142_S0217595917500178
crossref_primary_10_1016_j_ipl_2019_105886
crossref_primary_10_1016_j_asoc_2012_06_015
crossref_primary_10_1016_j_ejor_2014_09_063
crossref_primary_10_1080_00207543_2015_1056317
crossref_primary_10_1007_s11590_019_01494_x
crossref_primary_10_1016_j_amc_2013_03_040
crossref_primary_10_1007_s10479_023_05780_x
crossref_primary_10_1007_s40305_017_0179_x
crossref_primary_10_1016_j_apm_2014_10_044
crossref_primary_10_1080_0305215X_2016_1227615
crossref_primary_10_1016_j_asoc_2016_12_041
crossref_primary_10_1016_j_ejor_2013_09_017
crossref_primary_10_1016_j_cie_2015_05_032
Cites_doi 10.1016/j.ejor.2007.04.040
10.1287/opre.1030.0092
10.1016/j.tcs.2006.07.011
10.1109/SFFCS.1999.814574
10.1023/A:1022231419049
10.1287/opre.1090.0744
10.1007/s10878-006-9001-0
10.1007/BF01581271
10.1016/0377-2217(89)90427-X
10.1016/0025-5610(94)00058-2
10.1007/s10479-006-0164-y
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. Nov 16, 2011
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Nov 16, 2011
DBID AAYXX
CITATION
OQ6
IQODW
DKI
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
DOI 10.1016/j.ejor.2011.05.041
DatabaseName CrossRef
ECONIS
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Materials Business File
Materials Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Materials Research Database
Materials Business File
DatabaseTitleList Materials Research Database
Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1872-6860
EndPage 44
ExternalDocumentID 2419606431
eeeejores_v_3a215_3ay_3a2011_3ai_3a1_3ap_3a39_44_htm
24427773
669831956
10_1016_j_ejor_2011_05_041
S0377221711004899
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
OQ6
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
08R
0R
1
41
6XO
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
ID FETCH-LOGICAL-c511t-ee83561da4eea1fd7998fcabf0bcba5472d5f2761c39b0724a38886a39b4d0d3
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000294394700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sun Nov 09 10:17:23 EST 2025
Sun Nov 09 07:22:18 EST 2025
Wed Aug 18 03:49:07 EDT 2021
Mon Jul 21 09:16:17 EDT 2025
Sat Mar 08 16:11:05 EST 2025
Tue Nov 18 20:59:33 EST 2025
Sat Nov 29 08:07:31 EST 2025
Fri Feb 23 02:32:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multi-agent
Polynomial time approximation scheme
Scheduling
Approximation algorithm
Costs
Polynomial approximation
Makespan
Polynomial time
Multiagent system
NP hard problem
Artificial intelligence
Completion time
Execution time
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-ee83561da4eea1fd7998fcabf0bcba5472d5f2761c39b0724a38886a39b4d0d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 881547273
PQPubID 45678
PageCount 6
ParticipantIDs proquest_miscellaneous_1019691462
proquest_journals_881547273
repec_primary_eeeejores_v_3a215_3ay_3a2011_3ai_3a1_3ap_3a39_44_htm
pascalfrancis_primary_24427773
econis_primary_669831956
crossref_citationtrail_10_1016_j_ejor_2011_05_041
crossref_primary_10_1016_j_ejor_2011_05_041
elsevier_sciencedirect_doi_10_1016_j_ejor_2011_05_041
PublicationCentury 2000
PublicationDate 2011-11-16
PublicationDateYYYYMMDD 2011-11-16
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-16
  day: 16
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle European Journal of Operational Research
PublicationTitle European journal of operational research
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Agnetis, Pacciarelli, Pacifici (b0015) 2007; 150
Afrati, F., Chekuri, E.C., Karger, D., Kenyon, C., Khanna, S., Milis, I., Queyranne, M., Skutella, M., Stein, C., Sviridenko, M., 1999. Approximation schemes for minimizing average weighted completion time with release dates. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, New York, October, 32–43.
Cheng, Ng, Yuan (b0030) 2008; 188
Leung, Pinedo, Wan (b0050) 2010; 58:2
Feng, Yuan (b0040) 2007; 11:4
Agnetis, Mirchandani, Pacciarelli, Pacifici (b0010) 2004; 52
Baker, Smith (b0020) 2003; 6
Curiel, Pederzoli, Tijs (b0035) 1989; 40
Hamers, Borm, Tijs (b0045) 1995; 70
Ng, Cheng, Yuan (b0055) 2006; 12
Cheng, Ng, Yuan (b0025) 2007; 362
Queyranne (b0060) 1993; 58
10.1016/j.ejor.2011.05.041_b0005
Cheng (10.1016/j.ejor.2011.05.041_b0025) 2007; 362
Feng (10.1016/j.ejor.2011.05.041_b0040) 2007; 11:4
Agnetis (10.1016/j.ejor.2011.05.041_b0015) 2007; 150
Curiel (10.1016/j.ejor.2011.05.041_b0035) 1989; 40
Hamers (10.1016/j.ejor.2011.05.041_b0045) 1995; 70
Leung (10.1016/j.ejor.2011.05.041_b0050) 2010; 58:2
Baker (10.1016/j.ejor.2011.05.041_b0020) 2003; 6
Cheng (10.1016/j.ejor.2011.05.041_b0030) 2008; 188
Queyranne (10.1016/j.ejor.2011.05.041_b0060) 1993; 58
Agnetis (10.1016/j.ejor.2011.05.041_b0010) 2004; 52
Ng (10.1016/j.ejor.2011.05.041_b0055) 2006; 12
References_xml – volume: 6
  start-page: 7
  year: 2003
  end-page: 16
  ident: b0020
  article-title: A multiple-criterion model for machine scheduling
  publication-title: Journal of Scheduling
– volume: 150
  start-page: 3
  year: 2007
  end-page: 15
  ident: b0015
  article-title: Multi-agent single machine scheduling
  publication-title: Annals of Operations Research
– volume: 70
  start-page: 1
  year: 1995
  end-page: 13
  ident: b0045
  article-title: On games corresponding to sequencing situations with ready times
  publication-title: Mathematical Programming
– volume: 40
  start-page: 344
  year: 1989
  end-page: 351
  ident: b0035
  article-title: Sequencing games
  publication-title: European Journal of Operational Research
– volume: 188
  start-page: 603
  year: 2008
  end-page: 609
  ident: b0030
  article-title: Multi-agent scheduling on a single machine with max-form criteria
  publication-title: European Journal of Operational Research
– volume: 52
  start-page: 229
  year: 2004
  end-page: 242
  ident: b0010
  article-title: Scheduling problems with two competing agents
  publication-title: Operations Research
– volume: 362
  start-page: 273
  year: 2007
  end-page: 281
  ident: b0025
  article-title: Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs
  publication-title: Theoretical Computer Science
– volume: 58:2
  start-page: 458
  year: 2010
  end-page: 469
  ident: b0050
  article-title: Competitive two-agent scheduling and its applications
  publication-title: Operations Research
– volume: 12
  start-page: 387
  year: 2006
  end-page: 394
  ident: b0055
  article-title: A note on the complexity of the problem of two-agent scheduling on a single machine
  publication-title: Journal of Combinatorial Optimization
– volume: 11:4
  start-page: 121
  year: 2007
  end-page: 126
  ident: b0040
  article-title: NP-hardness of a multicriteria scheduling on two families of jobs
  publication-title: OR Transactions
– volume: 58
  start-page: 263
  year: 1993
  end-page: 285
  ident: b0060
  article-title: Structure of a simple scheduling polyhedron
  publication-title: Mathematical Programming
– reference: Afrati, F., Chekuri, E.C., Karger, D., Kenyon, C., Khanna, S., Milis, I., Queyranne, M., Skutella, M., Stein, C., Sviridenko, M., 1999. Approximation schemes for minimizing average weighted completion time with release dates. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, New York, October, 32–43.
– volume: 188
  start-page: 603
  year: 2008
  ident: 10.1016/j.ejor.2011.05.041_b0030
  article-title: Multi-agent scheduling on a single machine with max-form criteria
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.04.040
– volume: 52
  start-page: 229
  year: 2004
  ident: 10.1016/j.ejor.2011.05.041_b0010
  article-title: Scheduling problems with two competing agents
  publication-title: Operations Research
  doi: 10.1287/opre.1030.0092
– volume: 362
  start-page: 273
  year: 2007
  ident: 10.1016/j.ejor.2011.05.041_b0025
  article-title: Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2006.07.011
– ident: 10.1016/j.ejor.2011.05.041_b0005
  doi: 10.1109/SFFCS.1999.814574
– volume: 6
  start-page: 7
  year: 2003
  ident: 10.1016/j.ejor.2011.05.041_b0020
  article-title: A multiple-criterion model for machine scheduling
  publication-title: Journal of Scheduling
  doi: 10.1023/A:1022231419049
– volume: 58:2
  start-page: 458
  year: 2010
  ident: 10.1016/j.ejor.2011.05.041_b0050
  article-title: Competitive two-agent scheduling and its applications
  publication-title: Operations Research
  doi: 10.1287/opre.1090.0744
– volume: 12
  start-page: 387
  year: 2006
  ident: 10.1016/j.ejor.2011.05.041_b0055
  article-title: A note on the complexity of the problem of two-agent scheduling on a single machine
  publication-title: Journal of Combinatorial Optimization
  doi: 10.1007/s10878-006-9001-0
– volume: 58
  start-page: 263
  year: 1993
  ident: 10.1016/j.ejor.2011.05.041_b0060
  article-title: Structure of a simple scheduling polyhedron
  publication-title: Mathematical Programming
  doi: 10.1007/BF01581271
– volume: 40
  start-page: 344
  year: 1989
  ident: 10.1016/j.ejor.2011.05.041_b0035
  article-title: Sequencing games
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(89)90427-X
– volume: 11:4
  start-page: 121
  year: 2007
  ident: 10.1016/j.ejor.2011.05.041_b0040
  article-title: NP-hardness of a multicriteria scheduling on two families of jobs
  publication-title: OR Transactions
– volume: 70
  start-page: 1
  year: 1995
  ident: 10.1016/j.ejor.2011.05.041_b0045
  article-title: On games corresponding to sequencing situations with ready times
  publication-title: Mathematical Programming
  doi: 10.1016/0025-5610(94)00058-2
– volume: 150
  start-page: 3
  year: 2007
  ident: 10.1016/j.ejor.2011.05.041_b0015
  article-title: Multi-agent single machine scheduling
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-006-0164-y
SSID ssj0001515
Score 2.2288454
Snippet ► We consider a two-agent single-machine scheduling problem to minimize the total costs of the agents. ► The cost of the first agent is the maximum weighted...
Two agents, each having his own set of jobs, compete to perform their own jobs on a common processing resource. Each job of the agents has a weight that...
SourceID proquest
repec
pascalfrancis
econis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 39
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Approximation
Approximation algorithm
Artificial intelligence
Completion time
Computer science; control theory; systems
Cost engineering
Exact sciences and technology
Inventory control, production control. Distribution
Mathematical analysis
Multi-agent
Operational research
Operational research and scientific management
Operational research. Management science
Operations research
Polynomial time approximation scheme
Production scheduling
Resource scheduling
Scheduling
Scheduling algorithms
Scheduling Multi-agent Approximation algorithm Polynomial time approximation scheme
Scheduling, sequencing
Studies
Theoretical computing
Title Two-agent scheduling to minimize the total cost
URI https://dx.doi.org/10.1016/j.ejor.2011.05.041
http://www.econis.eu/PPNSET?PPN=669831956
http://econpapers.repec.org/article/eeeejores/v_3a215_3ay_3a2011_3ai_3a1_3ap_3a39-44.htm
https://www.proquest.com/docview/881547273
https://www.proquest.com/docview/1019691462
Volume 215
WOSCitedRecordID wos000294394700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZgnRAIcRmglcEUJN6qlFyc2HkcU9FAaDCpD32zHF9EK5ZUTTYGv57j2E7bIQY8ECmX2qlj5Ts-Pj7x-YzQa11SLSTFYYqFDDEvaUhxloWS5FLrRHBRdiSuH8npKZ3Nis-OUKHplhMgVUWvrorlf4Ua0gBsEzr7D3D3hUICXAPocATY4fh3wH-rQ24CpkYwcIWOpIs3BwvTkIicz3-oztRs67YjBml-75p3ZiokrLzD0DEDrT3In2zE09l4dNZ_zDiZ2MTpeHQ8Xgc62ERImW46GsxMN7uEtPd-ua56Q0GlhIRJYmMvvTZNbHTmlthY3WhJi1wva0kff9Hf1pWwGKtFvXL8qtk4stRY22TZ1zqxfmohmCsJISS9jQYJyQrQ1YOj95PZh757NhZc92nJVd5FUtlJf9efu2Wt7BoXxbzZMlvuL3kDjUnbVVC2himDlVoqsWGtTB-hB26YERxZ8XiMbqlqDz10Q47AKfRmD93xgQ-Q6xf48Nl76N4GW-UT9KaXrGAtWUFbB16yApCsoJOswEjWUzR9N5ken4RuvY1QgNndhkqBOZ7HkmOleKwlgaG4FrzUUSlKnmGSyEwnJI9FWpQRSTBPKaU5h19YRjJ9hnaqulL7KJCwQRccSaw5TrUu80joKFZYCCXjuBii2L9WJhwXvVkS5Svzkw4XzEDBDBQsyhhAMUSj_j9Ly8Ry4937Fq3-3jwvaGqiY4co8_gxZ2Za85GBFN5Y5OEW2H3JXuSG6MCjz1w7bRilsXlzJvdVnwsq3HyX45WqLxrzvCIv4H0lQ_S2E5q-aAUbVEM17JKlHNoWHL-bK1OtlM9hN-cl7GnBMGZf2vPnf6rnAbq7bt8v0E67ulAv0a64bOfN6tC1l58NRc9i
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-agent+scheduling+to+minimize+the+total+cost&rft.jtitle=European+journal+of+operational+research&rft.au=NONG%2C+Q.+Q&rft.au=CHENG%2C+T.+C.+E&rft.au=NG%2C+C.+T&rft.date=2011-11-16&rft.pub=Elsevier&rft.issn=0377-2217&rft.volume=215&rft.issue=1&rft.spage=39&rft.epage=44&rft_id=info:doi/10.1016%2Fj.ejor.2011.05.041&rft.externalDBID=n%2Fa&rft.externalDocID=24427773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon