Art design integrating visual relation and affective semantics based on Convolutional Block Attention Mechanism-generative adversarial network model

Scene-based image semantic extraction and its precise sentiment expression significantly enhance artistic design. To address the incongruity between image features and sentiment features caused by non-bilinear pooling, this study introduces a generative adversarial network (GAN) model that integrate...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ. Computer science Vol. 10; p. e2274
Main Authors: Shen, Jiadong, Wang, Jian
Format: Journal Article
Language:English
Published: United States PeerJ. Ltd 30.08.2024
PeerJ Inc
Subjects:
ISSN:2376-5992, 2376-5992
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Scene-based image semantic extraction and its precise sentiment expression significantly enhance artistic design. To address the incongruity between image features and sentiment features caused by non-bilinear pooling, this study introduces a generative adversarial network (GAN) model that integrates visual relationships with sentiment semantics. The GAN-based regularizer is utilized during training to incorporate target information derived from the contextual information into the process. This regularization mechanism imposes stronger penalties for inaccuracies in subject-object type predictions and integrates a sentiment corpus to generate more human-like descriptive statements. The capsule network is employed to reconstruct sentences and predict probabilities in the discriminator. To preserve crucial focal points in feature extraction, the Convolutional Block Attention Mechanism (CBAM) is introduced. Furthermore, two bidirectional long short-term memory (LSTM) modules are used to model both target and relational contexts, thereby refining target labels and inter-target relationships. Experimental results highlight the model’s superiority over comparative models in terms of accuracy, BiLingual Evaluation Understudy (BLEU) score, and text preservation rate. The proposed model achieves an accuracy of 95.40% and the highest BLEU score of 16.79, effectively capturing both the label content and the emotional nuances within the image.
AbstractList Scene-based image semantic extraction and its precise sentiment expression significantly enhance artistic design. To address the incongruity between image features and sentiment features caused by non-bilinear pooling, this study introduces a generative adversarial network (GAN) model that integrates visual relationships with sentiment semantics. The GAN-based regularizer is utilized during training to incorporate target information derived from the contextual information into the process. This regularization mechanism imposes stronger penalties for inaccuracies in subject-object type predictions and integrates a sentiment corpus to generate more human-like descriptive statements. The capsule network is employed to reconstruct sentences and predict probabilities in the discriminator. To preserve crucial focal points in feature extraction, the Convolutional Block Attention Mechanism (CBAM) is introduced. Furthermore, two bidirectional long short-term memory (LSTM) modules are used to model both target and relational contexts, thereby refining target labels and inter-target relationships. Experimental results highlight the model’s superiority over comparative models in terms of accuracy, BiLingual Evaluation Understudy (BLEU) score, and text preservation rate. The proposed model achieves an accuracy of 95.40% and the highest BLEU score of 16.79, effectively capturing both the label content and the emotional nuances within the image.
Scene-based image semantic extraction and its precise sentiment expression significantly enhance artistic design. To address the incongruity between image features and sentiment features caused by non-bilinear pooling, this study introduces a generative adversarial network (GAN) model that integrates visual relationships with sentiment semantics. The GAN-based regularizer is utilized during training to incorporate target information derived from the contextual information into the process. This regularization mechanism imposes stronger penalties for inaccuracies in subject-object type predictions and integrates a sentiment corpus to generate more human-like descriptive statements. The capsule network is employed to reconstruct sentences and predict probabilities in the discriminator. To preserve crucial focal points in feature extraction, the Convolutional Block Attention Mechanism (CBAM) is introduced. Furthermore, two bidirectional long short-term memory (LSTM) modules are used to model both target and relational contexts, thereby refining target labels and inter-target relationships. Experimental results highlight the model's superiority over comparative models in terms of accuracy, BiLingual Evaluation Understudy (BLEU) score, and text preservation rate. The proposed model achieves an accuracy of 95.40% and the highest BLEU score of 16.79, effectively capturing both the label content and the emotional nuances within the image.Scene-based image semantic extraction and its precise sentiment expression significantly enhance artistic design. To address the incongruity between image features and sentiment features caused by non-bilinear pooling, this study introduces a generative adversarial network (GAN) model that integrates visual relationships with sentiment semantics. The GAN-based regularizer is utilized during training to incorporate target information derived from the contextual information into the process. This regularization mechanism imposes stronger penalties for inaccuracies in subject-object type predictions and integrates a sentiment corpus to generate more human-like descriptive statements. The capsule network is employed to reconstruct sentences and predict probabilities in the discriminator. To preserve crucial focal points in feature extraction, the Convolutional Block Attention Mechanism (CBAM) is introduced. Furthermore, two bidirectional long short-term memory (LSTM) modules are used to model both target and relational contexts, thereby refining target labels and inter-target relationships. Experimental results highlight the model's superiority over comparative models in terms of accuracy, BiLingual Evaluation Understudy (BLEU) score, and text preservation rate. The proposed model achieves an accuracy of 95.40% and the highest BLEU score of 16.79, effectively capturing both the label content and the emotional nuances within the image.
ArticleNumber e2274
Audience Academic
Author Shen, Jiadong
Wang, Jian
Author_xml – sequence: 1
  givenname: Jiadong
  surname: Shen
  fullname: Shen, Jiadong
  organization: School of Design and Art, Changsha University of Science and Technology, Changsha, Hunan, China
– sequence: 2
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: School of Design and Art, Changsha University of Science and Technology, Changsha, Hunan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39314726$$D View this record in MEDLINE/PubMed
BookMark eNptks1u1DAUhSNUREvpki2KxAYWGew4iZMVmlb8jFSEBN1bN_Z16mliD7YzwHvwwHhmStWRSBaxne8c3yOd59mJdRaz7CUlC84pf7dB9OtChkVZ8upJdlYy3hR115Unj9an2UUIa0IIrWl6umfZKesYrXjZnGV_lj7mCoMZbG5sxMFDNHbItybMMOYex7R3NgerctAaZTRbzANOYKORIe8hoMoTcOXs1o3zDk66y9HJu3wZI9q9_AvKW7AmTMWAFnd3JBdQW_QBvEkCi_Gn83f55BSOL7KnGsaAF_ff8-zm44ebq8_F9ddPq6vldSFTklggU7QDhpT2vCaqbBSBVjcVx0piTesOaEO05EwrUmnSta2sAWnTyJ5WirLzbHWwVQ7WYuPNBP63cGDE_sD5QYBPKUcUTHesoZT0VVlXPUfguuVUlkT2pNG9TF7vD16buZ9QyZTbw3hkevzHmlsxuK2gtKJdU5bJ4c29g3c_ZgxRTCZIHEew6OYgGCUtb-qStQl9fUAHSLMZq12ylDtcLFvKOKnTrIla_IdKr8LJyFQkbdL5keDtkSAxEX_FAeYQxOr7t2P21eO8D0H_NSsBxQGQ3oXgUT8glIhdecW-vEIGsSsv-wtmv-Tk
Cites_doi 10.3390/app12010527
10.3390/ijgi11040245
10.1016/j.matpr.2020.10.148
10.1016/j.addma.2020.101538
10.3390/math7100883
10.1021/acs.molpharmaceut.9b00500
10.1109/TCYB.2021.3052522
10.1007/s11263-019-01265-2
10.1109/TPAMI.2020.2992222
10.1007/s00521-023-08584-z
10.1109/ACCESS.2020.2988550
10.1609/aaai.v30i1.10475
10.1109/TPAMI.2021.3137605
10.13140/RG.2.2.11161.57446
10.1007/s10844-021-00660-x
ContentType Journal Article
Copyright 2024 Shen and Wang.
COPYRIGHT 2024 PeerJ. Ltd.
2024 Shen and Wang 2024 Shen and Wang
Copyright_xml – notice: 2024 Shen and Wang.
– notice: COPYRIGHT 2024 PeerJ. Ltd.
– notice: 2024 Shen and Wang 2024 Shen and Wang
DBID AAYXX
CITATION
NPM
ISR
7X8
5PM
DOA
DOI 10.7717/peerj-cs.2274
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_3f936110b4254b7ea7f871c20cb06fbc
PMC11419622
A813705611
39314726
10_7717_peerj_cs_2274
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
3V.
H13
M0N
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c511t-e3d19a3e11b750d26d0a8f647e4ce5159a160fc73fd04f0988c5ae166cb14d13
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305547800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Mon Nov 10 04:24:58 EST 2025
Tue Nov 04 02:04:56 EST 2025
Thu Sep 04 18:16:27 EDT 2025
Tue Nov 11 10:54:12 EST 2025
Tue Nov 04 18:18:33 EST 2025
Thu Nov 13 16:11:40 EST 2025
Thu Jan 02 22:37:03 EST 2025
Sat Nov 29 06:22:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Art design
LSTM
Visual communication
GAN
CBEAM
Language English
License https://creativecommons.org/licenses/by/4.0
2024 Shen and Wang.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-e3d19a3e11b750d26d0a8f647e4ce5159a160fc73fd04f0988c5ae166cb14d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/3f936110b4254b7ea7f871c20cb06fbc
PMID 39314726
PQID 3108765238
PQPubID 23479
PageCount e2274
ParticipantIDs doaj_primary_oai_doaj_org_article_3f936110b4254b7ea7f871c20cb06fbc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11419622
proquest_miscellaneous_3108765238
gale_infotracmisc_A813705611
gale_infotracacademiconefile_A813705611
gale_incontextgauss_ISR_A813705611
pubmed_primary_39314726
crossref_primary_10_7717_peerj_cs_2274
PublicationCentury 2000
PublicationDate 2024-08-30
PublicationDateYYYYMMDD 2024-08-30
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2024
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Raju (10.7717/peerj-cs.2274/ref-22) 2019; 18
Tan (10.7717/peerj-cs.2274/ref-23) 2022
Kim (10.7717/peerj-cs.2274/ref-11) 2022; 11
Guo (10.7717/peerj-cs.2274/ref-5) 2021; 52
Qi (10.7717/peerj-cs.2274/ref-21) 2020; 128
Dennis (10.7717/peerj-cs.2274/ref-3) 2019; 30
Hung (10.7717/peerj-cs.2274/ref-8) 2020; 43
Xu (10.7717/peerj-cs.2274/ref-30) 2020; 1
Bian (10.7717/peerj-cs.2274/ref-1) 2019; 16
Manessi (10.7717/peerj-cs.2274/ref-17) 2018
Gulrajani (10.7717/peerj-cs.2274/ref-4) 2017; 30
Hudson (10.7717/peerj-cs.2274/ref-7) 2019
Wu (10.7717/peerj-cs.2274/ref-28) 2021
Xu (10.7717/peerj-cs.2274/ref-29) 2017
Manieniyan (10.7717/peerj-cs.2274/ref-18) 2021; 37
Wang (10.7717/peerj-cs.2274/ref-26) 2020; 36
Zhao (10.7717/peerj-cs.2274/ref-32) 2023; 35
Hameed (10.7717/peerj-cs.2274/ref-6) 2020; 8
Jin (10.7717/peerj-cs.2274/ref-10) 2020
Yang (10.7717/peerj-cs.2274/ref-31) 2020
Jin (10.7717/peerj-cs.2274/ref-9) 2023
Wei (10.7717/peerj-cs.2274/ref-27) 2022
Li (10.7717/peerj-cs.2274/ref-13) 2019; 7
Liu (10.7717/peerj-cs.2274/ref-15) 2021
Mathews (10.7717/peerj-cs.2274/ref-19) 2016
Tang (10.7717/peerj-cs.2274/ref-25) 2019
Chang (10.7717/peerj-cs.2274/ref-2) 2021; 45
Liang (10.7717/peerj-cs.2274/ref-14) 2017
Ma (10.7717/peerj-cs.2274/ref-16) 2022; 12
Tang (10.7717/peerj-cs.2274/ref-24) 2020
Powell (10.7717/peerj-cs.2274/ref-20) 2021; 57
Kolesnyk (10.7717/peerj-cs.2274/ref-12) 2022; 31
References_xml – start-page: 6619
  year: 2019
  ident: 10.7717/peerj-cs.2274/ref-25
  article-title: Learning to compose dynamic tree structures for visual contexts
– start-page: 11546
  year: 2021
  ident: 10.7717/peerj-cs.2274/ref-15
  article-title: Fully convolutional scene graph generation
– start-page: 5410
  year: 2017
  ident: 10.7717/peerj-cs.2274/ref-29
  article-title: Scene graph generation by iterative message passing
– volume: 12
  start-page: 527
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.2274/ref-16
  article-title: Data augmentation for audio-visual emotion recognition with an efficient multimodal conditional GAN
  publication-title: Applied Sciences
  doi: 10.3390/app12010527
– start-page: 1
  year: 2022
  ident: 10.7717/peerj-cs.2274/ref-27
  article-title: Visual descriptor extraction from patent figure captions: a case study of data efficiency between BiLSTM and transformer
– volume: 11
  start-page: 245
  issue: 4
  year: 2022
  ident: 10.7717/peerj-cs.2274/ref-11
  article-title: Automatic classification of photos by tourist attractions using deep learning model and image feature vector clustering
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi11040245
– start-page: 2305
  year: 2020
  ident: 10.7717/peerj-cs.2274/ref-10
  article-title: Image restoration method based on GAN and multi-scale feature fusion
– start-page: 106
  year: 2023
  ident: 10.7717/peerj-cs.2274/ref-9
  article-title: Independent relationship detection for real-time scene graph generation
– start-page: 61
  year: 2018
  ident: 10.7717/peerj-cs.2274/ref-17
  article-title: Learning combinations of activation functions
– volume: 30
  start-page: 593
  year: 2019
  ident: 10.7717/peerj-cs.2274/ref-3
  article-title: AI-Generated fashion designs: who or what owns the goods
  publication-title: Fordham Intellectual Property, Media & Entertainment Law Journal
– volume: 37
  start-page: 3665
  year: 2021
  ident: 10.7717/peerj-cs.2274/ref-18
  article-title: Study on diesel engine characteristics using multi-walled carbon nanotubes blended thermal cracked vegetable oil refining waste
  publication-title: Materials Today. Proceedings
  doi: 10.1016/j.matpr.2020.10.148
– volume: 36
  start-page: 101538
  year: 2020
  ident: 10.7717/peerj-cs.2274/ref-26
  article-title: Machine learning in additive manufacturing: State-of-the-art and perspectives
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2020.101538
– volume: 30
  year: 2017
  ident: 10.7717/peerj-cs.2274/ref-4
  article-title: Improved training of Wasserstein gans
  publication-title: Advances in Neural Information Processing Systems
– volume: 7
  start-page: 883
  issue: 10
  year: 2019
  ident: 10.7717/peerj-cs.2274/ref-13
  article-title: Automatic melody composition using enhanced GAN
  publication-title: Mathematics
  doi: 10.3390/math7100883
– start-page: 168
  year: 2021
  ident: 10.7717/peerj-cs.2274/ref-28
  article-title: On GANs art in context of artificial intelligence art
– volume: 16
  start-page: 4451
  issue: 11
  year: 2019
  ident: 10.7717/peerj-cs.2274/ref-1
  article-title: Deep convolutional generative adversarial network (dcGAN) models for screening and design of small molecules targeting cannabinoid receptors
  publication-title: Molecular Pharmaceutics
  doi: 10.1021/acs.molpharmaceut.9b00500
– volume: 52
  start-page: 5961
  issue: 7
  year: 2021
  ident: 10.7717/peerj-cs.2274/ref-5
  article-title: Relation regularized scene graph generation
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2021.3052522
– volume: 18
  start-page: 1229
  year: 2019
  ident: 10.7717/peerj-cs.2274/ref-22
  article-title: Experimental investigation of alumina oxide nanoparticles effects on the performance and emission characteristics of tamarind seed biodiesel fuelled diesel engine
  publication-title: Materials Today: Proceedings
– volume: 128
  start-page: 1118
  issue: 5
  year: 2020
  ident: 10.7717/peerj-cs.2274/ref-21
  article-title: Loss-sensitive generative adversarial networks on lipschitz densities
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-019-01265-2
– volume: 43
  start-page: 3820
  issue: 11
  year: 2020
  ident: 10.7717/peerj-cs.2274/ref-8
  article-title: Contextual translation embedding for visual relationship detection and scene graph generation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.2992222
– volume: 35
  start-page: 24565
  year: 2023
  ident: 10.7717/peerj-cs.2274/ref-32
  article-title: Computer-aided digital media art creation based on artificial intelligence
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-023-08584-z
– start-page: 244
  year: 2020
  ident: 10.7717/peerj-cs.2274/ref-31
  article-title: Triple-GAN with variable fractional order gradient descent method and mish activation function
– volume: 8
  start-page: 73992
  year: 2020
  ident: 10.7717/peerj-cs.2274/ref-6
  article-title: Sentiment classification using a single-layered BiLSTM model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988550
– volume: 31
  start-page: 128
  issue: 12
  year: 2022
  ident: 10.7717/peerj-cs.2274/ref-12
  article-title: Digital art in designing an artistic image
  publication-title: Ad Alta
– start-page: 3716
  year: 2020
  ident: 10.7717/peerj-cs.2274/ref-24
  article-title: Unbiased scene graph generation from biased training
– year: 2016
  ident: 10.7717/peerj-cs.2274/ref-19
  article-title: Senticap: generating image descriptions with sentiments
  doi: 10.1609/aaai.v30i1.10475
– volume: 45
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.2274/ref-2
  article-title: A comprehensive survey of scene graphs: generation and application
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2021.3137605
– year: 2022
  ident: 10.7717/peerj-cs.2274/ref-23
  article-title: DR-GAN: distribution regularization for text-to-image generation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 3362
  year: 2017
  ident: 10.7717/peerj-cs.2274/ref-14
  article-title: Recurrent topic-transition gan for visual paragraph generation
– start-page: 6700
  year: 2019
  ident: 10.7717/peerj-cs.2274/ref-7
  article-title: Gqa: a new dataset for real-world visual reasoning and compositional question answering
– volume: 1
  year: 2020
  ident: 10.7717/peerj-cs.2274/ref-30
  article-title: A survey of scene graph: generation and application
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.13140/RG.2.2.11161.57446
– volume: 57
  start-page: 583
  issue: 3
  year: 2021
  ident: 10.7717/peerj-cs.2274/ref-20
  article-title: How to raise artwork prices using action rules, personalization and artwork visual features
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1007/s10844-021-00660-x
SSID ssj0001511119
Score 2.26621
Snippet Scene-based image semantic extraction and its precise sentiment expression significantly enhance artistic design. To address the incongruity between image...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e2274
SubjectTerms Adaptive and Self-Organizing Systems
Algorithms and Analysis of Algorithms
Art design
Artificial Intelligence
CBEAM
GAN
Liquors
LSTM
Neural Networks
Semantics
Social Computing
Visual communication
Title Art design integrating visual relation and affective semantics based on Convolutional Block Attention Mechanism-generative adversarial network model
URI https://www.ncbi.nlm.nih.gov/pubmed/39314726
https://www.proquest.com/docview/3108765238
https://pubmed.ncbi.nlm.nih.gov/PMC11419622
https://doaj.org/article/3f936110b4254b7ea7f871c20cb06fbc
Volume 10
WOSCitedRecordID wos001305547800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4cCFN0tgqQxCcArrxG6cHNtVV6ygVbTsoXCxHD-WgDZd1WmP_Ap-MGMnXTXiwIWLD_W4qj2f51GNv0HorX-MmRfExJIyFTPKSVxJuHgZtRkjOSzTgV3_M18s8uWyKPdaffmasI4euDu4Y2oLmoGPqgBcrOJGcgsxvkqJqkhmK-WtL0Q9e8lU9z7Ym4KiI9XkkLIcXxuz_hEr9yFNORs4ocDV_7dF3nNJw3LJPf9z-hDd7wNHPOl-8CN0yzSP0YNdUwbc39En6DdIYB3qMvCOCwLcE97WbgPr133xG5aNxjIUc4C9w85cwRHXymHv1jQGgZNVs-1xCeum4PR-4knbduWReG78k-HaXcWXgbg6fIv03Z2d9JjGTVdfjkOrnafo4nR2cfIx7lsvxApOro0N1UkhqUmSCkIKnWaayBy0xw1TxodAMsmIVZxaTZglRZ6rsTRJlqkqYTqhz9BBs2rMc4QtZCwGogbIXCjTYB9YKsGqVBISU221jtC7nSrEdUewISAx8ToTQWdCOeF1FqGpV9SNkOfFDh8AWkSPFvEvtETojVez8MwXjS-tuZQb58TZl3MxyRNAKoSTSYTe90J2BQpXsn-pABvyZFkDyaOBJFxNNZh-vUOT8FO-nq0xq40TEFSDGxpDvBShww5dNxujBU0YT7MI5QPcDXY-nGnq74EZHJJbsKhp-uJ_nNVLdC-FCC78gU6O0EG73phX6K7atrVbj9BtvsxH6M50tijPR-H2wfiJxzDOf81gLMffYL48m5df_wBzfDwH
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Art+design+integrating+visual+relation+and+affective+semantics+based+on+Convolutional+Block+Attention+Mechanism-generative+adversarial+network+model&rft.jtitle=PeerJ.+Computer+science&rft.au=Shen%2C+Jiadong&rft.au=Wang%2C+Jian&rft.date=2024-08-30&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2274&rft_id=info:doi/10.7717%2Fpeerj-cs.2274&rft.externalDocID=A813705611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon