Optimization of Process Control Parameters for Fully Mechanized Mining Face Based on ANN and GA

In the traditional optimization mathod, the process control parameters for fully mechanized mining face are determined by experts or technicians based on their own experience, which is lack of scientific basis, and need long production adjustment cycle. It is cause large loss, and not conducive to i...

Full description

Saved in:
Bibliographic Details
Published in:Computational intelligence and neuroscience Vol. 2021; no. 1; p. 5557831
Main Authors: Zhao, Hongze, Xu, Zhihai, Li, Qi, Pan, Tao
Format: Journal Article
Language:English
Published: New York Hindawi 2021
John Wiley & Sons, Inc
Subjects:
ISSN:1687-5265, 1687-5273, 1687-5273
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the traditional optimization mathod, the process control parameters for fully mechanized mining face are determined by experts or technicians based on their own experience, which is lack of scientific basis, and need long production adjustment cycle. It is cause large loss, and not conducive to improving mine production efficiency. In order to solve this problem, the study proposes a process control parameter optimization method based on a mixed strategy of artificial neural network and genetic algorithm and uses a cross-entropy cost function to optimize an artificial neural network, which improves the learning speed and fitting accuracy of the neural network. Using the historical production data of a fully mechanized coal mining face, taking the pulling speed of the shearer, hydraulic support moving speed, chain speed of scraper conveyor, chain speed of stage loader, emulsion pump outlet pressure, and spray pump outlet pressure as the optimization objects and taking the value range of each process control parameter as a constraint condition to establish a mixed strategy optimization model of process control parameters for a fully mechanized mining face, each process control parameter is optimized with the output of coal per minute as the optimization goal. The results show that the method has high accuracy and short optimization process time and can effectively improve the production efficiency of the working face.
AbstractList In the traditional optimization mathod, the process control parameters for fully mechanized mining face are determined by experts or technicians based on their own experience, which is lack of scientific basis, and need long production adjustment cycle. It is cause large loss, and not conducive to improving mine production efficiency. In order to solve this problem, the study proposes a process control parameter optimization method based on a mixed strategy of artificial neural network and genetic algorithm and uses a cross-entropy cost function to optimize an artificial neural network, which improves the learning speed and fitting accuracy of the neural network. Using the historical production data of a fully mechanized coal mining face, taking the pulling speed of the shearer, hydraulic support moving speed, chain speed of scraper conveyor, chain speed of stage loader, emulsion pump outlet pressure, and spray pump outlet pressure as the optimization objects and taking the value range of each process control parameter as a constraint condition to establish a mixed strategy optimization model of process control parameters for a fully mechanized mining face, each process control parameter is optimized with the output of coal per minute as the optimization goal. The results show that the method has high accuracy and short optimization process time and can effectively improve the production efficiency of the working face.
In the traditional optimization mathod, the process control parameters for fully mechanized mining face are determined by experts or technicians based on their own experience, which is lack of scientific basis, and need long production adjustment cycle. It is cause large loss, and not conducive to improving mine production efficiency. In order to solve this problem, the study proposes a process control parameter optimization method based on a mixed strategy of artificial neural network and genetic algorithm and uses a cross-entropy cost function to optimize an artificial neural network, which improves the learning speed and fitting accuracy of the neural network. Using the historical production data of a fully mechanized coal mining face, taking the pulling speed of the shearer, hydraulic support moving speed, chain speed of scraper conveyor, chain speed of stage loader, emulsion pump outlet pressure, and spray pump outlet pressure as the optimization objects and taking the value range of each process control parameter as a constraint condition to establish a mixed strategy optimization model of process control parameters for a fully mechanized mining face, each process control parameter is optimized with the output of coal per minute as the optimization goal. The results show that the method has high accuracy and short optimization process time and can effectively improve the production efficiency of the working face.In the traditional optimization mathod, the process control parameters for fully mechanized mining face are determined by experts or technicians based on their own experience, which is lack of scientific basis, and need long production adjustment cycle. It is cause large loss, and not conducive to improving mine production efficiency. In order to solve this problem, the study proposes a process control parameter optimization method based on a mixed strategy of artificial neural network and genetic algorithm and uses a cross-entropy cost function to optimize an artificial neural network, which improves the learning speed and fitting accuracy of the neural network. Using the historical production data of a fully mechanized coal mining face, taking the pulling speed of the shearer, hydraulic support moving speed, chain speed of scraper conveyor, chain speed of stage loader, emulsion pump outlet pressure, and spray pump outlet pressure as the optimization objects and taking the value range of each process control parameter as a constraint condition to establish a mixed strategy optimization model of process control parameters for a fully mechanized mining face, each process control parameter is optimized with the output of coal per minute as the optimization goal. The results show that the method has high accuracy and short optimization process time and can effectively improve the production efficiency of the working face.
Audience Academic
Author Xu, Zhihai
Pan, Tao
Li, Qi
Zhao, Hongze
AuthorAffiliation 1 School of Energy and Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
3 CHN Energy Information Technology Co., Ltd., Beijing 100011, China
2 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
AuthorAffiliation_xml – name: 2 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
– name: 1 School of Energy and Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
– name: 3 CHN Energy Information Technology Co., Ltd., Beijing 100011, China
Author_xml – sequence: 1
  givenname: Hongze
  orcidid: 0000-0003-2565-9648
  surname: Zhao
  fullname: Zhao, Hongze
  organization: School of Energy and MiningChina University of Mining and Technology (Beijing)Beijing 100083Chinacumtb.edu.cn
– sequence: 2
  givenname: Zhihai
  orcidid: 0000-0002-1900-4656
  surname: Xu
  fullname: Xu, Zhihai
  organization: School of Energy and MiningChina University of Mining and Technology (Beijing)Beijing 100083Chinacumtb.edu.cn
– sequence: 3
  givenname: Qi
  orcidid: 0000-0002-4991-3869
  surname: Li
  fullname: Li, Qi
  organization: School of Energy and MiningChina University of Mining and Technology (Beijing)Beijing 100083Chinacumtb.edu.cn
– sequence: 4
  givenname: Tao
  orcidid: 0000-0002-6447-8893
  surname: Pan
  fullname: Pan, Tao
  organization: CHN Energy Information Technology Co., Ltd.Beijing 100011China
BookMark eNp9kV1vFCEUhompsR965w8g8cbErgUGBubGZLtxq0m_LvSaMMyZXRoGVpjRtL--rLupsYmGBE4Oz3nPgfcYHYQYAKG3lHykVIgzRhg9E0JIVdEX6IjWSs4Ek9XBU1yLQ3Sc8x0hQgrCXqHDilPGRMWOkL7ZjG5wD2Z0MeDY49sULeSMFzGMKXp8a5IZYISUcR8TXk7e3-MrsGsT3AN0-MoFF1Z4aSzgc5NLpujMr6-xCR2-mL9GL3vjM7zZnyfo-_Lzt8WX2eXNxdfF_HJmBaXjrJNVyxVnIEjVS94wrnplStwRKkG2lspWctm1HbdMgCibJaYjlpBWtUZWJ-jTTncztQN0Fsr0xutNcoNJ9zoap_--CW6tV_GnVrRumGBF4P1eIMUfE-RRDy5b8N4EiFPWTHAiy6c1dUHfPUPv4pRCeV6hKlkWVc0famU8aBf6WPraraie102tmlpyXqjTHWVTzDlB_zQyJXrrr976q_f-Fpw9w60bf3tXxJ3_V9GHXdHahc78cv9v8Qj26bM3
CitedBy_id crossref_primary_10_3390_pr10122747
Cites_doi 10.1177/1687814019850720
10.1109/TII.2019.2908989
10.1016/j.fuel.2020.118338
10.1016/j.jastp.2020.105328
10.1049/iet-smt.2016.0425
10.1016/j.ijheatmasstransfer.2020.12014
10.1016/j.ejor.2020.02.047
10.1061/(ASCE)HE.1943-5584.0001954
10.1016/j.chemosphere.2020.127081
10.1016/j.apacoust.2020.107490
10.1016/j.applthermaleng.2020.115794
10.1016/j.catena.2020.105114
10.13272/j.issn.1671-251x.2015.07.002
10.21278/TOF.451018520
10.1016/j.jhydrol.2020.125343
10.1016/j.measurement.2019.05.019
10.1016/j.foodchem.2020.127862
10.19769/j.zdhy.2019.09.032
10.1016/J.ASOC.2021.107318
10.1016/j.jclepro.2020.122189
10.3390/sym12040622
ContentType Journal Article
Copyright Copyright © 2021 Hongze Zhao et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Hongze Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Hongze Zhao et al. 2021
Copyright_xml – notice: Copyright © 2021 Hongze Zhao et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Hongze Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2021 Hongze Zhao et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
DOI 10.1155/2021/5557831
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Köker, Raşit
Editor_xml – sequence: 1
  givenname: Raşit
  surname: Köker
  fullname: Köker, Raşit
ExternalDocumentID PMC8169252
A696896744
10_1155_2021_5557831
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Key Research and Development Program
  grantid: 2018YFC0808301; 2017YFC0804307
– fundername: State Key Laboratory for GeoMechanics and Deep Underground Engineering
  grantid: SKLGDUEK1923
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
2UF
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
ALUQN
C1A
CITATION
EJD
H13
IHR
IL9
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
UZ4
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c511t-d73b4842e503f749248f8a03fd017e7bc17b747dbd4c25e5c25c0ad0c00b8ba73
IEDL.DBID RHX
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000669016600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-5265
1687-5273
IngestDate Tue Nov 04 01:57:52 EST 2025
Sun Nov 09 11:16:37 EST 2025
Sat Nov 29 14:27:00 EST 2025
Tue Nov 11 10:56:26 EST 2025
Sat Nov 29 02:55:43 EST 2025
Tue Nov 18 20:55:52 EST 2025
Sun Jun 02 18:51:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-d73b4842e503f749248f8a03fd017e7bc17b747dbd4c25e5c25c0ad0c00b8ba73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Raşit Köker
ORCID 0000-0002-4991-3869
0000-0002-6447-8893
0000-0003-2565-9648
0000-0002-1900-4656
OpenAccessLink https://dx.doi.org/10.1155/2021/5557831
PMID 34122532
PQID 2537373189
PQPubID 237303
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8169252
proquest_miscellaneous_2540722596
proquest_journals_2537373189
gale_infotracmisc_A696896744
crossref_primary_10_1155_2021_5557831
crossref_citationtrail_10_1155_2021_5557831
hindawi_primary_10_1155_2021_5557831
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_9_10_2
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_12_2
e_1_2_9_11_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_1_2
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_16_2
e_1_2_9_15_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_19_2
References_xml – ident: e_1_2_9_3_2
  doi: 10.1177/1687814019850720
– ident: e_1_2_9_9_2
  doi: 10.1109/TII.2019.2908989
– ident: e_1_2_9_11_2
  doi: 10.1016/j.fuel.2020.118338
– ident: e_1_2_9_13_2
  doi: 10.1016/j.jastp.2020.105328
– ident: e_1_2_9_4_2
  doi: 10.1049/iet-smt.2016.0425
– ident: e_1_2_9_15_2
  doi: 10.1016/j.ijheatmasstransfer.2020.12014
– ident: e_1_2_9_16_2
  doi: 10.1016/j.ejor.2020.02.047
– ident: e_1_2_9_18_2
  doi: 10.1061/(ASCE)HE.1943-5584.0001954
– ident: e_1_2_9_12_2
  doi: 10.1016/j.chemosphere.2020.127081
– ident: e_1_2_9_19_2
  doi: 10.1016/j.apacoust.2020.107490
– ident: e_1_2_9_20_2
  doi: 10.1016/j.applthermaleng.2020.115794
– ident: e_1_2_9_21_2
  doi: 10.1016/j.catena.2020.105114
– ident: e_1_2_9_1_2
  doi: 10.13272/j.issn.1671-251x.2015.07.002
– ident: e_1_2_9_8_2
  doi: 10.21278/TOF.451018520
– ident: e_1_2_9_14_2
  doi: 10.1016/j.jhydrol.2020.125343
– ident: e_1_2_9_2_2
  doi: 10.1016/j.measurement.2019.05.019
– ident: e_1_2_9_10_2
  doi: 10.1016/j.foodchem.2020.127862
– ident: e_1_2_9_5_2
  doi: 10.19769/j.zdhy.2019.09.032
– ident: e_1_2_9_6_2
  doi: 10.1016/J.ASOC.2021.107318
– ident: e_1_2_9_17_2
  doi: 10.1016/j.jclepro.2020.122189
– ident: e_1_2_9_7_2
  doi: 10.3390/sym12040622
SSID ssj0057502
Score 2.2183428
Snippet In the traditional optimization mathod, the process control parameters for fully mechanized mining face are determined by experts or technicians based on their...
SourceID pubmedcentral
proquest
gale
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5557831
SubjectTerms Algorithms
Analysis
Artificial neural networks
Automation
Chain conveyors
Chains
Coal mines
Coal mining
Conveying machinery
Cooperation
Cost function
Efficiency
Entropy (Information theory)
Expected values
Friction stir welding
Genetic algorithms
Hydraulics
Industrial production
Learning theory
Mean square errors
Mineral industry
Mining industry
Neural networks
Optimization
Process controls
Process parameters
Production capacity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBYkLr4IIFGSkwgVFTRw7dk4orbpwaVghkHqzHD_UlWi27W6Lyq9nJnEWcgAOKFIUxY6daB6emYy_IWRPGhtUFlRqGDMpZ6FMTV6GNAQEW-GqLJzti03IplEnJ9U8BtxWMa1y1Im9onZLizHyfSYKCUeuqvfnFylWjcK_q7GExm2yjUhlwOfbB0fN_POoi8EWGbIOSxAlBIIfU9-FQK8_3xcCOLbIJ4tSVM13T9Ep_r6YmJ7TxMnfVqLZg__9hofkfrRBaT0wzSNyy3ePyU7dgf99dkPf0j4rtA-37xD9CXTKWdysSZeBxp0F9HDIcadzg-ldiNFJwf6l6NLe0GOPG4oXP7yjx30FCjoz1tMDWDIdhXHqpqGmc_RD_YR8nR19OfyYxqIMqQXbbJ06WbRcceZFVgTJwX1TQRm4diDbXrY2ly24KK513DLhBZxsZlxms6xVrZHFU7LVLTv_jFAfqgweYz4XkntlKytUptoAvXIOdxLybqSKthGxHAtnfNO95yKERhrqSMOEvNn0Ph-QOv7QbxcJrFGAYTQL4mR1jRhBVSk5T8heJPy_RhlJrKPUr_Qv-ibk9aYZJ8BMts4vr7APQtKB01kmRE64aTMfIn5PW7rFaY_8rfKyYoI9__vkL8g9fNUhULRLttaXV_4luWOv14vV5asoIj8BHLcXbw
  priority: 102
  providerName: ProQuest
Title Optimization of Process Control Parameters for Fully Mechanized Mining Face Based on ANN and GA
URI https://dx.doi.org/10.1155/2021/5557831
https://www.proquest.com/docview/2537373189
https://www.proquest.com/docview/2540722596
https://pubmed.ncbi.nlm.nih.gov/PMC8169252
Volume 2021
WOSCitedRecordID wos000669016600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: M7P
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB-8U8EXUU-56rlEOH2RYj-SJn3sHbeeyNZyKqy-lDRNuAWvK7d7yvnXO9NmF6uIUghN81U6mWQm_eUXgEOpjVORU6FOEh3yxGWhjjMXOkdkK1xlaWv6wyZkWar5PK88SdLqz1_4ONuRex6_EgK7Fu2X3lGCkFtnp_PNgIsGxwAtzFBfiO19g2__rexo5vHj7-1z8ny_L0b25Rgd-ct0M70Hd72dyIpBsPfhhu0ewF7RoY98cc1esB652S-J70H9DvX-wm-oZEvHPPqfHQ84dFZpgmARjyZDG5WR23nNZpY2_S5-2JbN-lMi2FQby45wWmsZ1lOUJdNdy14XD-Hj9OTD8WnoD04IDdpP67CVacMVT6yIUic5uljKKY33LeqflY2JZYNuRNu03CTCCgxMpNvIRFGjGi3TR7DbLTu7D8y6PMJiiY2F5FaZ3AgVqcZhrpjjkwBebj5qbTyrOB1u8aXuvQshahJB7UUQwPNt7q8Dm8Zf8h2QfGpSMqzNYJc3dUE8PnkmOQ_g0MvtX7VshFp7zVzViUglXrHKA3i2TaYGCG3W2eUV5SHaOHQMswDkqDNs2yNW7nFKtzjv2blVnOWJSB7_3zs-gTsUHRZ1DmB3fXlln8It8229WF1OYEfOZR-qCdw8OimrM4y9leGEMKpVH77HsBKfMb16M6s-TXrd-AkEoP4G
linkProvider Hindawi Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aHQgu_BpohQFG2nZB0RInjp0Dh9LRddpadhhit8xxbK0SS7e1Yyp_FH8j76VOoQfgtAOKFEWJayfp5-f3nM_fA9iU2jgVOhVoznWQcJcGOkpd4ByJrSQqjUtTJ5uQw6E6OcmOVuBHsxaGaJWNTawNdTk2NEe-w0UscYtU5hmUB3Z2g_HZ5P3-Lv6ZW5z3Ph53-4FPIRAY9CSmQSnjIlEJtyKMnUww2FBOaTwuEYlWFiaSBTrUZVEmhgsrcGdCXYYmDAtVaBljvdsXlwFlqaKvuT5lxx1YVSkO5C1Y7X7Z3es3th99nznLMcWuS8LzDdVeCJpliHaEwB4SR0uDoB8K7p1REH4zWnJ1l4mav418vUf_2zt7DA-9j806807xBFZs9RTWOpWejs9nbJvVrNf6c8Ia5J_QZp77xahs7JhfOcG6cw4_O9JEXyMNUob-PaOQfcYGlhZMj77bkg3qDBusp41lH9AlKBnW0xkOma5Kttd5Bp9v5emfQ6saV3YdmHVZiD_jNhIyscpkRqhQFQ5LRQmeacO7BgW58YrslBjka15HZkLkhJncY6YNW4vSF3Mlkj-U2yBA5WSgsDaD5sLkHdJAylKZJG3Y9ED7Vy0NpHJv1Sb5Lzy14e3iMjVATL3Kjq-pDEnuYVCdtkEuoXfRHimaL1-pRme1srmK0owL_uLvjb-B-_3jwWF-uD88eAkP6Lbnk2Ib0JpeXdtXcNd8m44mV69992RwetuA_wmKE3RT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAXXgURKGCklguKNnHs2DkgtLQsVKXLHkCquATHsdWVaFK6W6rlp_HrmMljYQ_AqQcUKYoSr51kP49nnM_fAGwpY72OvA4N5yYU3KehiVMfek9iK0KnSWmbZBNqPNaHh9lkDX70a2GIVtnbxMZQl7WlOfIBl4nCLdbZwHe0iMnu6OXJ15AySNGX1j6dRguRfbc4x_Bt9mJvF__rbc5Hrz_svA27DAOhRUdjHpYqKYQW3Mko8UpgLKK9NnhcIlCdKmysCvS3y6IUlksncWcjU0Y2igpdGJVgvZfgshKpJjrZRH7qRwH0glq-Y4qdmCToe9K9lDTfEA-kxL6SxCvDYTcoXD2icPx8uuL0rlI2fxsDRzf_57d3C250njcbtl3lNqy56g5sDCszr48X7BlruLDNR4YNyN-jJT3ulqiy2rNuPQXbaZn9bGKI1EbKpAy9fkaB_IIdOFpGPf3uSnbQ5N1gI2Mde4WOQsmwnuF4zExVsjfDu_DxQh71HqxXdeXuA3M-i_Bn3MVSCadtZqWOdOGxVCzwTADPe0TkttNpp3QhX_ImXpMyJ_zkHX4C2F6WPmn1Sf5QbpPAlZPZwtosGhGbD0kZKUuVEAFsdaD7Vy09vPLO1s3yX9gK4OnyMjVA_L3K1WdUhoT4MNROA1ArSF62Rzrnq1eq6VGjd67jNOOSP_h740_gGkI6f7c33n8I1-mu25myTVifn565R3DFfptPZ6ePm37K4PNFQ_snM-h77g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Process+Control+Parameters+for+Fully+Mechanized+Mining+Face+Based+on+ANN+and+GA&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Zhao%2C+Hongze&rft.au=Xu%2C+Zhihai&rft.au=Li%2C+Qi&rft.au=Pan%2C+Tao&rft.date=2021&rft.pub=Hindawi&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F5557831&rft_id=info%3Apmid%2F34122532&rft.externalDocID=PMC8169252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon