Optimal stochastic power flow using enhanced multi-objective mayfly algorithm

For the classical multi-objective optimal power flow (MOOPF) problem, only traditional thermal power generators are used in power systems. However, there is an increasing interest in renewable energy sources and the MOOPF problem using wind and solar energy has been raised to replace part of the the...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon Vol. 10; no. 5; p. e26427
Main Authors: Zhu, Jianjun, Zhou, Yongquan, Wei, Yuanfei, Luo, Qifang, Huang, Huajuan
Format: Journal Article
Language:English
Published: England Elsevier Ltd 15.03.2024
Elsevier
Subjects:
ISSN:2405-8440, 2405-8440
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For the classical multi-objective optimal power flow (MOOPF) problem, only traditional thermal power generators are used in power systems. However, there is an increasing interest in renewable energy sources and the MOOPF problem using wind and solar energy has been raised to replace part of the thermal generators in the system with wind turbines and solar photovoltaics (PV) generators. The optimization objectives of MOOPF with renewable energy sources vary with the study case. They are mainly a combination of 2–4 objectives from fuel cost, emissions, power loss and voltage deviation (VD). In addition, reasonable prediction of renewable power is a major difficulty due to the discontinuous, disordered and unstable nature of renewable energy. In this paper, the Weibull probability distribution function (PDF) and lognormal PDF are applied to evaluate the available wind and available solar power, respectively. In this paper, an enhanced multi-objective mayfly algorithm (NSMA-SF) based on non-dominated sorting and the superiority of feasible solutions is implemented to tackle the MOOPF problem with wind and solar energy. The algorithm NSMA-SF is applied to the modified IEEE-30 and standard IEEE-57 bus test systems. The simulation results are analyzed and compared with the recently reported MOOPF results.
AbstractList For the classical multi-objective optimal power flow (MOOPF) problem, only traditional thermal power generators are used in power systems. However, there is an increasing interest in renewable energy sources and the MOOPF problem using wind and solar energy has been raised to replace part of the thermal generators in the system with wind turbines and solar photovoltaics (PV) generators. The optimization objectives of MOOPF with renewable energy sources vary with the study case. They are mainly a combination of 2–4 objectives from fuel cost, emissions, power loss and voltage deviation (VD). In addition, reasonable prediction of renewable power is a major difficulty due to the discontinuous, disordered and unstable nature of renewable energy. In this paper, the Weibull probability distribution function (PDF) and lognormal PDF are applied to evaluate the available wind and available solar power, respectively. In this paper, an enhanced multi-objective mayfly algorithm (NSMA-SF) based on non-dominated sorting and the superiority of feasible solutions is implemented to tackle the MOOPF problem with wind and solar energy. The algorithm NSMA-SF is applied to the modified IEEE-30 and standard IEEE-57 bus test systems. The simulation results are analyzed and compared with the recently reported MOOPF results.
For the classical multi-objective optimal power flow (MOOPF) problem, only traditional thermal power generators are used in power systems. However, there is an increasing interest in renewable energy sources and the MOOPF problem using wind and solar energy has been raised to replace part of the thermal generators in the system with wind turbines and solar photovoltaics (PV) generators. The optimization objectives of MOOPF with renewable energy sources vary with the study case. They are mainly a combination of 2-4 objectives from fuel cost, emissions, power loss and voltage deviation (VD). In addition, reasonable prediction of renewable power is a major difficulty due to the discontinuous, disordered and unstable nature of renewable energy. In this paper, the Weibull probability distribution function (PDF) and lognormal PDF are applied to evaluate the available wind and available solar power, respectively. In this paper, an enhanced multi-objective mayfly algorithm (NSMA-SF) based on non-dominated sorting and the superiority of feasible solutions is implemented to tackle the MOOPF problem with wind and solar energy. The algorithm NSMA-SF is applied to the modified IEEE-30 and standard IEEE-57 bus test systems. The simulation results are analyzed and compared with the recently reported MOOPF results.For the classical multi-objective optimal power flow (MOOPF) problem, only traditional thermal power generators are used in power systems. However, there is an increasing interest in renewable energy sources and the MOOPF problem using wind and solar energy has been raised to replace part of the thermal generators in the system with wind turbines and solar photovoltaics (PV) generators. The optimization objectives of MOOPF with renewable energy sources vary with the study case. They are mainly a combination of 2-4 objectives from fuel cost, emissions, power loss and voltage deviation (VD). In addition, reasonable prediction of renewable power is a major difficulty due to the discontinuous, disordered and unstable nature of renewable energy. In this paper, the Weibull probability distribution function (PDF) and lognormal PDF are applied to evaluate the available wind and available solar power, respectively. In this paper, an enhanced multi-objective mayfly algorithm (NSMA-SF) based on non-dominated sorting and the superiority of feasible solutions is implemented to tackle the MOOPF problem with wind and solar energy. The algorithm NSMA-SF is applied to the modified IEEE-30 and standard IEEE-57 bus test systems. The simulation results are analyzed and compared with the recently reported MOOPF results.
ArticleNumber e26427
Author Luo, Qifang
Zhu, Jianjun
Zhou, Yongquan
Huang, Huajuan
Wei, Yuanfei
Author_xml – sequence: 1
  givenname: Jianjun
  surname: Zhu
  fullname: Zhu, Jianjun
  organization: College of Artificial Intelligence, Guangxi University for Nationalities, Nanning, 530006, China
– sequence: 2
  givenname: Yongquan
  orcidid: 0000-0003-4404-952X
  surname: Zhou
  fullname: Zhou, Yongquan
  email: zhouyongquan@gxun.edu.cn
  organization: College of Artificial Intelligence, Guangxi University for Nationalities, Nanning, 530006, China
– sequence: 3
  givenname: Yuanfei
  surname: Wei
  fullname: Wei, Yuanfei
  email: rayweiyuanfei@163.com
  organization: Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
– sequence: 4
  givenname: Qifang
  surname: Luo
  fullname: Luo, Qifang
  organization: College of Artificial Intelligence, Guangxi University for Nationalities, Nanning, 530006, China
– sequence: 5
  givenname: Huajuan
  surname: Huang
  fullname: Huang, Huajuan
  organization: College of Artificial Intelligence, Guangxi University for Nationalities, Nanning, 530006, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38434358$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URMvQnwDKkk0GPxNHLBCqeFQq6gL2luNczzhy4sH2tJp_Xw-ZIsRmVr6yzjn38b1GF3OYAaG3BK8JJs2Hcb0F7w5hXlNM-Rpow2n7Al1RjkUtOccX_9SX6DqlEWNMhGy6lr1Cl0xyxpmQV-jH_S67Sfsq5WC2OmVnql14hFhZHx6rfXLzpoJ5q2cDQzXtfXZ16Ecw2T1ANemD9YdK-02ILm-nN-il1T7B9eldoZ9fv_y6-V7f3X-7vfl8VxtBSK6HsoPgXAymNY2w1HatNcx2g7SYYqMFDH0vLLfYDrJhLSYWN9b2WuNB9myFbpfUIehR7WKZPx5U0E79-Qhxo3Qsi3hQmDYatAQpoeOsx5oIToEDb6kRjOiS9X7J2sXwew8pq8klA97rGcI-KUYEk6yhLT0rpR1rGeua4lihdyfpvp9g-Dvj892L4OMiMDGkFMEq47LOLsw5aucVweoIWo3qBFodQasFdHGL_9zPDc75Pi0-KGweHESVjIMjWRcL0XI-dybhCRdTxio
CitedBy_id crossref_primary_10_1088_2631_8695_ade368
crossref_primary_10_1016_j_heliyon_2024_e34326
Cites_doi 10.1109/TPAS.1984.318568
10.1016/j.advengsoft.2013.12.007
10.1002/etep.474
10.1016/j.asoc.2017.01.030
10.1016/j.epsr.2014.03.032
10.1049/iet-gtd.2016.1135
10.1016/j.asoc.2016.06.022
10.1111/coin.12312
10.1177/0309524X221124000
10.1162/evco.1996.4.1.1
10.1109/4235.996017
10.1016/j.ijepes.2015.12.021
10.1109/JSYST.2023.3248658
10.1007/s13762-022-04284-8
10.1016/j.energy.2019.04.159
10.1016/j.asoc.2020.106321
10.1007/s12652-020-02692-7
10.1016/S0045-7825(99)00389-8
10.1016/j.energy.2014.10.007
10.1007/s00500-019-04077-1
10.1016/j.energy.2017.01.071
10.1016/j.future.2019.02.028
10.1016/S0142-0615(01)00067-9
10.1109/TPWRS.2015.2412684
10.1016/j.ijepes.2016.02.004
10.1016/j.ins.2014.05.040
10.1109/TPAS.1974.293972
10.1016/j.ijepes.2014.10.027
10.1016/j.ins.2014.09.051
10.1049/iet-gtd.2016.1379
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOA
DOI 10.1016/j.heliyon.2024.e26427
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_026aea8e88e943b0a1542e4e472c531a
38434358
10_1016_j_heliyon_2024_e26427
S2405844024024587
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
O9-
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
IPNFZ
RIG
AACTN
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c511t-d0165445dc7c65f2f97fc3f9d8f020ca5edbb5f4f0fd863701f06ffbaa0d8b3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001195836500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-8440
IngestDate Fri Oct 03 12:41:30 EDT 2025
Fri Aug 22 20:23:22 EDT 2025
Thu Oct 02 11:17:05 EDT 2025
Thu Apr 03 07:02:14 EDT 2025
Thu Nov 20 00:30:50 EST 2025
Tue Nov 18 21:52:56 EST 2025
Sat Nov 29 17:02:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Multi-objective mayfly algorithm
Stochastic power flow
Metaheuristic
Renewable energy
Language English
License This is an open access article under the CC BY license.
2024 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-d0165445dc7c65f2f97fc3f9d8f020ca5edbb5f4f0fd863701f06ffbaa0d8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4404-952X
OpenAccessLink https://doaj.org/article/026aea8e88e943b0a1542e4e472c531a
PMID 38434358
PQID 2937339615
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_026aea8e88e943b0a1542e4e472c531a
proquest_miscellaneous_3153836272
proquest_miscellaneous_2937339615
pubmed_primary_38434358
crossref_citationtrail_10_1016_j_heliyon_2024_e26427
crossref_primary_10_1016_j_heliyon_2024_e26427
elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e26427
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ghasemi, Ghavidel, Ghanbarian, Massrur, Gharibzadeh (bib34) 2014; 281
Shankar, Vijayakumar, Babu (bib22) 2021; 43
Yuan, Zhang, Wang, Liang (bib37) 2017; 122
Biswas, Suganthan, Amaratunga (bib23) 2017; 148
Bakır, Guvenc, Duman, Kahraman (bib12) 2023; 17
Li, Gong, Wang, Gu (bib30) 2022; 114
Khare Vineet, Yao Xin, Deb Kalyanmoy, Performance scaling of multi-objective evolutionary algorithms, Int. Conf. Evolutionary Multi-criterion Optimizatio (2003).(LNCS 2632), Faro, 8-11 April 2003, pp. 376390.
Deb, Pratap, Agarwal, Meyarivan (bib25) 2002; 6
Alsac, Stott (bib29) 1974; 93
Ghasemi, Ghavidel, Ghanbarian, Gharibzadeh, Azizi Vahed (bib42) 2014; 78
Maheshwari, Sood, Jaiswal (bib18) 2022; 47
Deb (bib26) 2000; 186
Chaib, Bouchekara, Mehasni, Abido (bib33) 2016; 81
Ghasemi, Ghavidel, Gitizadeh, Akbari (bib44) 2015; 65
El-Sehiemy, Farrag, Shaheen (bib38) 2017; 11
Pulluri, Naresh, Sharma (bib10) 2017; 54
Burchett, Happ, Vierath (bib1) 1984; 103
Biswas, Suganthan, Mallipeddi, Amaratunga (bib5) 2018; 68
Zervoudakis, Tsafarakis (bib24) 2020; 145
Chen, Qian, Zhang, Li (bib4) 2020; 92
Fang, Zou, Djokic (bib17) 2018
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (bib36) 2019; 97
Abido (bib43) 2002; 24
Mirjalili, Mohammad Mirjalili, Lewis, Optimizer (bib35) 2014; 69
Elattar, ElSayed (bib40) 2019; 178
Shilaja, Arunprasath (bib15) 2019; 98
Abaci, Yamacli (bib6) 2016; 79
Zhang, Tang, Li, Deng (bib8) 2016; 47
Vig, Ravindra, Mor (bib3) 2023; 20
Chandrasekaran (bib9) 2020; 36
Bouchekara, Abido, Boucherma (bib45) 2014; 114
Biswas, Suganthan, Mallipeddi, Amaratunga (bib41) 2019; 24
Woolson (bib31) 2007
Duman, Kahraman, Kati (bib14) 2023; 117
Zhou, Peng, Sun (bib16) 2011; 21
Dommel, Tinney (bib2) 1968; 87
Huang, Mao (bib11) 2011
Li, Wu (bib13) 2015; 31
Michalewicz, Schoenauer (bib27) 1996; 4
Ghasemi, Ghavidel, Ghanbarian, Gitizadeh (bib39) 2015; 294
Bentouati, Khelifi, Shaheen, El-Sehiemy (bib7) 2021; 12
Barocio, Regalado, Cuevas, Uribe, Zuñiga, Ramírez Torrealba (bib32) 2016; 11
Bentouati (10.1016/j.heliyon.2024.e26427_bib7) 2021; 12
Deb (10.1016/j.heliyon.2024.e26427_bib25) 2002; 6
Abaci (10.1016/j.heliyon.2024.e26427_bib6) 2016; 79
Biswas (10.1016/j.heliyon.2024.e26427_bib23) 2017; 148
Vig (10.1016/j.heliyon.2024.e26427_bib3) 2023; 20
Elattar (10.1016/j.heliyon.2024.e26427_bib40) 2019; 178
Chaib (10.1016/j.heliyon.2024.e26427_bib33) 2016; 81
Abido (10.1016/j.heliyon.2024.e26427_bib43) 2002; 24
Shankar (10.1016/j.heliyon.2024.e26427_bib22) 2021; 43
10.1016/j.heliyon.2024.e26427_bib47
Mirjalili (10.1016/j.heliyon.2024.e26427_bib35) 2014; 69
El-Sehiemy (10.1016/j.heliyon.2024.e26427_bib38) 2017; 11
Alsac (10.1016/j.heliyon.2024.e26427_bib29) 1974; 93
Bouchekara (10.1016/j.heliyon.2024.e26427_bib45) 2014; 114
Yuan (10.1016/j.heliyon.2024.e26427_bib37) 2017; 122
Shilaja (10.1016/j.heliyon.2024.e26427_bib15) 2019; 98
Biswas (10.1016/j.heliyon.2024.e26427_bib41) 2019; 24
Zhang (10.1016/j.heliyon.2024.e26427_bib8) 2016; 47
Chandrasekaran (10.1016/j.heliyon.2024.e26427_bib9) 2020; 36
Huang (10.1016/j.heliyon.2024.e26427_bib11) 2011
Zhou (10.1016/j.heliyon.2024.e26427_bib16) 2011; 21
Heidari (10.1016/j.heliyon.2024.e26427_bib36) 2019; 97
Biswas (10.1016/j.heliyon.2024.e26427_bib5) 2018; 68
Chen (10.1016/j.heliyon.2024.e26427_bib4) 2020; 92
Bakır (10.1016/j.heliyon.2024.e26427_bib12) 2023; 17
Woolson (10.1016/j.heliyon.2024.e26427_bib31) 2007
Ghasemi (10.1016/j.heliyon.2024.e26427_bib39) 2015; 294
Pulluri (10.1016/j.heliyon.2024.e26427_bib10) 2017; 54
Duman (10.1016/j.heliyon.2024.e26427_bib14) 2023; 117
Deb (10.1016/j.heliyon.2024.e26427_bib26) 2000; 186
Li (10.1016/j.heliyon.2024.e26427_bib13) 2015; 31
Ghasemi (10.1016/j.heliyon.2024.e26427_bib44) 2015; 65
Li (10.1016/j.heliyon.2024.e26427_bib30) 2022; 114
Zervoudakis (10.1016/j.heliyon.2024.e26427_bib24) 2020; 145
Maheshwari (10.1016/j.heliyon.2024.e26427_bib18) 2022; 47
Ghasemi (10.1016/j.heliyon.2024.e26427_bib34) 2014; 281
Dommel (10.1016/j.heliyon.2024.e26427_bib2) 1968; 87
Barocio (10.1016/j.heliyon.2024.e26427_bib32) 2016; 11
Ghasemi (10.1016/j.heliyon.2024.e26427_bib42) 2014; 78
Burchett (10.1016/j.heliyon.2024.e26427_bib1) 1984; 103
Fang (10.1016/j.heliyon.2024.e26427_bib17) 2018
Michalewicz (10.1016/j.heliyon.2024.e26427_bib27) 1996; 4
References_xml – volume: 79
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib6
  article-title: Differential search algorithm for solving multi-objective optimal power flow problem
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 92
  year: 2020
  ident: bib4
  article-title: Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem
  publication-title: Appl. Soft Comput.
– year: 2011
  ident: bib11
  article-title: The Study of Control Strategy for VSC-HVDC Applied in Offshore Wind Farm and Grid Connection, 2011 Asia-Pacific Power and Energy Engineering Conference
– start-page: 1
  year: 2007
  end-page: 3
  ident: bib31
  article-title: Wilcoxon Signed‐rank Test
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: bib26
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 12
  start-page: 9499
  year: 2021
  end-page: 9519
  ident: bib7
  article-title: An enhanced moth-swarm algorithm for efficient energy management based multi dimensions OPF problem
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 93
  start-page: 745
  year: 1974
  end-page: 751
  ident: bib29
  article-title: Optimal load flow with steady-state security
  publication-title: IEEE Transac. Power Apparatus and Systems, PAS-
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib35
  publication-title: Adv. Eng. Software
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: bib36
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Generat. Comput. Syst.
– volume: 178
  start-page: 598
  year: 2019
  end-page: 609
  ident: bib40
  article-title: Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement
  publication-title: Energy
– reference: Khare Vineet, Yao Xin, Deb Kalyanmoy, Performance scaling of multi-objective evolutionary algorithms, Int. Conf. Evolutionary Multi-criterion Optimizatio (2003).(LNCS 2632), Faro, 8-11 April 2003, pp. 376390.
– volume: 122
  start-page: 70
  year: 2017
  end-page: 82
  ident: bib37
  article-title: Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm
  publication-title: Energy
– volume: 114
  start-page: 49
  year: 2014
  end-page: 59
  ident: bib45
  article-title: Optimal power flow using Teaching-Learning-Based Optimization technique
  publication-title: Elec. Power Syst. Res.
– volume: 54
  start-page: 229
  year: 2017
  end-page: 245
  ident: bib10
  article-title: An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 740
  year: 2011
  end-page: 756
  ident: bib16
  article-title: Optimal wind–thermal coordination dispatch based on risk reserve constraints
  publication-title: Eur. Trans. Electr. Power
– volume: 4
  start-page: 1
  year: 1996
  end-page: 32
  ident: bib27
  article-title: Evolutionary algorithms for constrained parameter optimization problems
  publication-title: Evol. Comput.
– volume: 98
  start-page: 708
  year: 2019
  end-page: 715
  ident: bib15
  article-title: Optimal power flow using moth swarm algorithm with gravitational search algorithm considering wind power
  publication-title: Future Generat. Comput. Syst.
– volume: 78
  start-page: 276
  year: 2014
  end-page: 289
  ident: bib42
  article-title: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm
  publication-title: Energy
– volume: 43
  year: 2021
  ident: bib22
  article-title: Energy saving potential through artificial lighting system in PV integrated smart buildings
  publication-title: J. Build. Eng.
– volume: 103
  start-page: 3267
  year: 1984
  end-page: 3275
  ident: bib1
  article-title: Quadratically convergent optimal power flow
  publication-title: IEEE Transac. Power Apparatus and Systems, PAS-
– volume: 36
  start-page: 1078
  year: 2020
  end-page: 1096
  ident: bib9
  article-title: Multiobjective optimal power flow using interior search algorithm: a case study on a real-time electrical network
  publication-title: Comput. Intell.
– volume: 117
  year: 2023
  ident: bib14
  article-title: Economical operation of modern power grids incorporating uncertainties of renewable energy sources and load demand using the adaptive fitness-distance balance-based stochastic fractal search algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 81
  start-page: 64
  year: 2016
  end-page: 77
  ident: bib33
  article-title: Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 294
  start-page: 286
  year: 2015
  end-page: 304
  ident: bib39
  article-title: Multi-objective optimal electric power planning in the power system using Gaussian bare-bones imperialist competitive algorithm
  publication-title: Inf. Sci.
– year: 2018
  ident: bib17
  article-title: Probabilistic OPF incorporating uncertainties in wind power outputs and line thermal ratings
  publication-title: 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems
– volume: 47
  start-page: 494
  year: 2016
  end-page: 514
  ident: bib8
  article-title: A modified MOEA/D approach to the solution of multi-objective optimal power flow problem
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 570
  year: 2017
  end-page: 581
  ident: bib38
  article-title: MOPF solution methodology
  publication-title: IET Gener., Transm. Distrib.
– volume: 24
  start-page: 563
  year: 2002
  end-page: 571
  ident: bib43
  article-title: Optimal power flow using particle swarm optimization
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 68
  start-page: 81
  year: 2018
  end-page: 100
  ident: bib5
  publication-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
– volume: 11
  start-page: 1012
  year: 2016
  end-page: 1022
  ident: bib32
  article-title: Modified bio-inspired optimization algorithm with a centroid decision making approach for solving a multi-objective optimal power flow problem, IET Generation
  publication-title: Transm. Distrib.
– volume: 24
  start-page: 2999
  year: 2019
  end-page: 3023
  ident: bib41
  article-title: Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms
  publication-title: Soft Comput.
– volume: 145
  year: 2020
  ident: bib24
  article-title: A mayfly optimization algorithm
  publication-title: Comput. Ind. Eng.
– volume: 65
  start-page: 375
  year: 2015
  end-page: 384
  ident: bib44
  article-title: An improved teaching–learning-based optimization algorithm using Lévy mutation strategy for non-smooth optimal power flow
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 31
  start-page: 1649
  year: 2015
  end-page: 1650
  ident: bib13
  article-title: Downside risk constrained probabilistic optimal power flow with wind power integrated
  publication-title: IEEE Trans. Power Syst.
– volume: 17
  start-page: 3938
  year: 2023
  end-page: 3949
  ident: bib12
  article-title: Optimal power flow for hybrid AC/DC electrical networks configured with VSC-mtdc transmission lines and renewable energy sources
  publication-title: IEEE Syst. J.
– volume: 87
  start-page: 1866
  year: 1968
  end-page: 1876
  ident: bib2
  article-title: Optimal power flow solutions
  publication-title: PAS-
– volume: 114
  year: 2022
  ident: bib30
  article-title: Multi-objective optimal power flow with stochastic wind and solar power
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 6259
  year: 2023
  end-page: 6274
  ident: bib3
  article-title: Heavy metal pollution assessment of groundwater and associated health risks around coal thermal power plant
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 47
  start-page: 464
  year: 2022
  end-page: 490
  ident: bib18
  article-title: Investigation of optimal power flow solution techniques considering stochastic renewable energy sources: review and analysis
  publication-title: Wind Eng.
– volume: 281
  start-page: 225
  year: 2014
  end-page: 247
  ident: bib34
  article-title: Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: a comparative study
  publication-title: Inf. Sci.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib25
  article-title: A fast and elitist multiobjective genetic algorithm: nsga-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 148
  start-page: 1194
  year: 2017
  end-page: 1207
  ident: bib23
  publication-title: Optimal power flow solutions incorporating stochastic wind and solar power
– volume: 103
  start-page: 3267
  issue: 11
  year: 1984
  ident: 10.1016/j.heliyon.2024.e26427_bib1
  article-title: Quadratically convergent optimal power flow
  publication-title: IEEE Transac. Power Apparatus and Systems, PAS-
  doi: 10.1109/TPAS.1984.318568
– volume: 69
  start-page: 46
  issue: 1
  year: 2014
  ident: 10.1016/j.heliyon.2024.e26427_bib35
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 10.1016/j.heliyon.2024.e26427_bib47
– volume: 43
  issue: 1
  year: 2021
  ident: 10.1016/j.heliyon.2024.e26427_bib22
  article-title: Energy saving potential through artificial lighting system in PV integrated smart buildings
  publication-title: J. Build. Eng.
– volume: 21
  start-page: 740
  issue: 1
  year: 2011
  ident: 10.1016/j.heliyon.2024.e26427_bib16
  article-title: Optimal wind–thermal coordination dispatch based on risk reserve constraints
  publication-title: Eur. Trans. Electr. Power
  doi: 10.1002/etep.474
– volume: 98
  start-page: 708
  issue: 1
  year: 2019
  ident: 10.1016/j.heliyon.2024.e26427_bib15
  article-title: Optimal power flow using moth swarm algorithm with gravitational search algorithm considering wind power
  publication-title: Future Generat. Comput. Syst.
– volume: 54
  start-page: 229
  issue: 1
  year: 2017
  ident: 10.1016/j.heliyon.2024.e26427_bib10
  article-title: An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.030
– volume: 114
  start-page: 49
  issue: 1
  year: 2014
  ident: 10.1016/j.heliyon.2024.e26427_bib45
  article-title: Optimal power flow using Teaching-Learning-Based Optimization technique
  publication-title: Elec. Power Syst. Res.
  doi: 10.1016/j.epsr.2014.03.032
– volume: 87
  start-page: 1866
  issue: 10
  year: 1968
  ident: 10.1016/j.heliyon.2024.e26427_bib2
  article-title: Optimal power flow solutions
  publication-title: PAS-
– volume: 11
  start-page: 1012
  issue: 4
  year: 2016
  ident: 10.1016/j.heliyon.2024.e26427_bib32
  article-title: Modified bio-inspired optimization algorithm with a centroid decision making approach for solving a multi-objective optimal power flow problem, IET Generation
  publication-title: Transm. Distrib.
  doi: 10.1049/iet-gtd.2016.1135
– volume: 47
  start-page: 494
  issue: 1
  year: 2016
  ident: 10.1016/j.heliyon.2024.e26427_bib8
  article-title: A modified MOEA/D approach to the solution of multi-objective optimal power flow problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.06.022
– volume: 117
  issue: 1
  year: 2023
  ident: 10.1016/j.heliyon.2024.e26427_bib14
  article-title: Economical operation of modern power grids incorporating uncertainties of renewable energy sources and load demand using the adaptive fitness-distance balance-based stochastic fractal search algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 36
  start-page: 1078
  issue: 3
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26427_bib9
  article-title: Multiobjective optimal power flow using interior search algorithm: a case study on a real-time electrical network
  publication-title: Comput. Intell.
  doi: 10.1111/coin.12312
– volume: 148
  start-page: 1194
  issue: 1
  year: 2017
  ident: 10.1016/j.heliyon.2024.e26427_bib23
  publication-title: Optimal power flow solutions incorporating stochastic wind and solar power
– volume: 47
  start-page: 464
  issue: 2
  year: 2022
  ident: 10.1016/j.heliyon.2024.e26427_bib18
  article-title: Investigation of optimal power flow solution techniques considering stochastic renewable energy sources: review and analysis
  publication-title: Wind Eng.
  doi: 10.1177/0309524X221124000
– volume: 4
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.heliyon.2024.e26427_bib27
  article-title: Evolutionary algorithms for constrained parameter optimization problems
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1996.4.1.1
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.heliyon.2024.e26427_bib25
  article-title: A fast and elitist multiobjective genetic algorithm: nsga-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 79
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.heliyon.2024.e26427_bib6
  article-title: Differential search algorithm for solving multi-objective optimal power flow problem
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.12.021
– volume: 17
  start-page: 3938
  issue: 3
  year: 2023
  ident: 10.1016/j.heliyon.2024.e26427_bib12
  article-title: Optimal power flow for hybrid AC/DC electrical networks configured with VSC-mtdc transmission lines and renewable energy sources
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2023.3248658
– year: 2011
  ident: 10.1016/j.heliyon.2024.e26427_bib11
– volume: 20
  start-page: 6259
  issue: 6
  year: 2023
  ident: 10.1016/j.heliyon.2024.e26427_bib3
  article-title: Heavy metal pollution assessment of groundwater and associated health risks around coal thermal power plant
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-022-04284-8
– volume: 178
  start-page: 598
  issue: 1
  year: 2019
  ident: 10.1016/j.heliyon.2024.e26427_bib40
  article-title: Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.159
– volume: 92
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26427_bib4
  article-title: Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106321
– volume: 12
  start-page: 9499
  issue: 10
  year: 2021
  ident: 10.1016/j.heliyon.2024.e26427_bib7
  article-title: An enhanced moth-swarm algorithm for efficient energy management based multi dimensions OPF problem
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-020-02692-7
– volume: 186
  start-page: 311
  issue: 2
  year: 2000
  ident: 10.1016/j.heliyon.2024.e26427_bib26
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 78
  start-page: 276
  issue: 1
  year: 2014
  ident: 10.1016/j.heliyon.2024.e26427_bib42
  article-title: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2014.10.007
– volume: 24
  start-page: 2999
  issue: 4
  year: 2019
  ident: 10.1016/j.heliyon.2024.e26427_bib41
  article-title: Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04077-1
– volume: 122
  start-page: 70
  issue: 1
  year: 2017
  ident: 10.1016/j.heliyon.2024.e26427_bib37
  article-title: Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.071
– volume: 97
  start-page: 849
  issue: 1
  year: 2019
  ident: 10.1016/j.heliyon.2024.e26427_bib36
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 24
  start-page: 563
  issue: 7
  year: 2002
  ident: 10.1016/j.heliyon.2024.e26427_bib43
  article-title: Optimal power flow using particle swarm optimization
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/S0142-0615(01)00067-9
– volume: 145
  issue: 1
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26427_bib24
  article-title: A mayfly optimization algorithm
  publication-title: Comput. Ind. Eng.
– year: 2018
  ident: 10.1016/j.heliyon.2024.e26427_bib17
  article-title: Probabilistic OPF incorporating uncertainties in wind power outputs and line thermal ratings
– volume: 31
  start-page: 1649
  issue: 2
  year: 2015
  ident: 10.1016/j.heliyon.2024.e26427_bib13
  article-title: Downside risk constrained probabilistic optimal power flow with wind power integrated
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2412684
– volume: 114
  issue: 1
  year: 2022
  ident: 10.1016/j.heliyon.2024.e26427_bib30
  article-title: Multi-objective optimal power flow with stochastic wind and solar power
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2007
  ident: 10.1016/j.heliyon.2024.e26427_bib31
– volume: 68
  start-page: 81
  issue: 1
  year: 2018
  ident: 10.1016/j.heliyon.2024.e26427_bib5
  publication-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
– volume: 81
  start-page: 64
  issue: 1
  year: 2016
  ident: 10.1016/j.heliyon.2024.e26427_bib33
  article-title: Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2016.02.004
– volume: 281
  start-page: 225
  issue: 1
  year: 2014
  ident: 10.1016/j.heliyon.2024.e26427_bib34
  article-title: Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: a comparative study
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.05.040
– volume: 93
  start-page: 745
  issue: 3
  year: 1974
  ident: 10.1016/j.heliyon.2024.e26427_bib29
  article-title: Optimal load flow with steady-state security
  publication-title: IEEE Transac. Power Apparatus and Systems, PAS-
  doi: 10.1109/TPAS.1974.293972
– volume: 65
  start-page: 375
  issue: 1
  year: 2015
  ident: 10.1016/j.heliyon.2024.e26427_bib44
  article-title: An improved teaching–learning-based optimization algorithm using Lévy mutation strategy for non-smooth optimal power flow
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.10.027
– volume: 294
  start-page: 286
  issue: 1
  year: 2015
  ident: 10.1016/j.heliyon.2024.e26427_bib39
  article-title: Multi-objective optimal electric power planning in the power system using Gaussian bare-bones imperialist competitive algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.09.051
– volume: 11
  start-page: 570
  issue: 2
  year: 2017
  ident: 10.1016/j.heliyon.2024.e26427_bib38
  article-title: MOPF solution methodology
  publication-title: IET Gener., Transm. Distrib.
  doi: 10.1049/iet-gtd.2016.1379
SSID ssj0001586973
Score 2.271002
Snippet For the classical multi-objective optimal power flow (MOOPF) problem, only traditional thermal power generators are used in power systems. However, there is an...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e26427
SubjectTerms algorithms
electric potential difference
energy costs
Ephemeroptera
Metaheuristic
Multi-objective mayfly algorithm
prediction
Renewable energy
solar energy
Stochastic power flow
Weibull statistics
wind
Title Optimal stochastic power flow using enhanced multi-objective mayfly algorithm
URI https://dx.doi.org/10.1016/j.heliyon.2024.e26427
https://www.ncbi.nlm.nih.gov/pubmed/38434358
https://www.proquest.com/docview/2937339615
https://www.proquest.com/docview/3153836272
https://doaj.org/article/026aea8e88e943b0a1542e4e472c531a
Volume 10
WOSCitedRecordID wos001195836500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Nb9MwFMAtmBDigvimAyYjcU2XxE5sHwFt4kAHEhx6s2zneW2VJlPXgXrZ386znZZymHrhkkNkJ_bzs9_P8vN7hHxQ1uSNKYusERwyjutkZi1ApvIaZO2bwruYteSruLiQ06n6vpfqK_iEpfDASXCnuEcwYCRICYozmxu0-SVw4KJ0qD8RjZB69jZT6X6wrJVgf6_snC7GM2jnmz7EPC35GBAEQiaZPWMUY_b_Y5PuYs5oe86fkMcDNNKPqbFPyT3onpGHk-FY_DmZfMOJv8QSSHJuZkLoZXoV0p9R3_a_afBtv6TQzeJpP40-hFlvF2mto0uz8e2GmvayX83Xs-UL8uP87OfnL9mQJyFziEvrrIlXknjVOOHqypdeCe-YV430CIPOVNBYW3nuc9_Imom88HntvTU4TNKyl-So6zt4TSjSBpdeOpsjFKockGUKUzdSgLNgvR8RvhWXdkMI8ZDJotVbX7GFHqSsg5R1kvKIjHfVrlIMjUMVPoWx2BUOIbDjC1QMPSiGPqQYIyK3I6kHmkiUgJ-aH_r_--3Ia5xt4QjFdNDfXGuEI8GYQgy8uwwLRgS5QJQj8iqpza4nTIabvJU8_h89fEMehUYHj7iiekuO1qsbeEceuF_r-fXqhNwXU3kSpwU-J7dnfwARvRRj
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+stochastic+power+flow+using+enhanced+multi-objective+mayfly+algorithm&rft.jtitle=Heliyon&rft.au=Jianjun+Zhu&rft.au=Yongquan+Zhou&rft.au=Yuanfei+Wei&rft.au=Qifang+Luo&rft.date=2024-03-15&rft.pub=Elsevier&rft.eissn=2405-8440&rft.volume=10&rft.issue=5&rft.spage=e26427&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e26427&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_026aea8e88e943b0a1542e4e472c531a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon