Expectation and surprise determine neural population responses in the ventral visual stream
Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, "predictive coding" models propose that each stage of the visual hierarchy harbors two computationally distinct classe...
Saved in:
| Published in: | The Journal of neuroscience Vol. 30; no. 49; p. 16601 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
08.12.2010
|
| Subjects: | |
| ISSN: | 1529-2401, 1529-2401 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, "predictive coding" models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction ("face expectation") and prediction error ("face surprise"), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects' perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se. |
|---|---|
| AbstractList | Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, "predictive coding" models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction ("face expectation") and prediction error ("face surprise"), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects' perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se.Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, "predictive coding" models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction ("face expectation") and prediction error ("face surprise"), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects' perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se. Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, "predictive coding" models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction ("face expectation") and prediction error ("face surprise"), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects' perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se. |
| Author | Summerfield, Christopher Monti, Jim M Egner, Tobias |
| Author_xml | – sequence: 1 givenname: Tobias surname: Egner fullname: Egner, Tobias email: tobias.egner@duke.edu organization: Department of Psychology and Neuroscience, and Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708, USA. tobias.egner@duke.edu – sequence: 2 givenname: Jim M surname: Monti fullname: Monti, Jim M – sequence: 3 givenname: Christopher surname: Summerfield fullname: Summerfield, Christopher |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21147999$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkF1LwzAUhoNM3If-hZE7rzqT9CPJpZSpk-FA3ZUXJU1PsdKmNR9D_72VTfDqeTnvw4Fz5mhiegMILSlZ0ZTFN49P6_3z7iXfrBjnJBrHjFByhmZjKyOWEDr5l6do7twHIYQTyi_QlFGacCnlDL2tvwbQXvmmN1iZCrtgB9s4wBV4sF1jABsIVrV46IfQHkULbuiNA4cbg_074AMY_-scGhdGOG9BdZfovFatg6sTF2h_t37NH6Lt7n6T324jnVLqI11LHVdpJbRUNZck5awuVQaJykpZ61KVQlNJM0EqQQBKHtdMJ7wUmaCxgJot0PVx72D7zwDOF13jNLStMtAHVwhGE5ERLkdzeTJD2UFVjJd2yn4Xf_9gP-fcaGw |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2011_09_007 crossref_primary_10_1162_neco_a_01458 crossref_primary_10_1016_j_neucom_2013_02_044 crossref_primary_10_1162_jocn_a_01281 crossref_primary_10_1016_j_neuropsychologia_2016_02_003 crossref_primary_10_1016_j_neuroimage_2023_120347 crossref_primary_10_1111_cogs_12477 crossref_primary_10_1016_j_cub_2012_02_015 crossref_primary_10_1038_s41467_024_47749_9 crossref_primary_10_3389_fpsyg_2014_01052 crossref_primary_10_1016_j_neuroimage_2019_06_033 crossref_primary_10_1016_j_tics_2024_02_001 crossref_primary_10_1080_09540091_2016_1243655 crossref_primary_10_1002_hbm_22393 crossref_primary_10_1016_j_cortex_2020_10_006 crossref_primary_10_1016_j_cub_2011_01_040 crossref_primary_10_1177_0956797614553945 crossref_primary_10_1016_j_neuroimage_2012_12_033 crossref_primary_10_1038_s41467_025_58002_2 crossref_primary_10_1007_s11229_016_1040_1 crossref_primary_10_1523_JNEUROSCI_1092_16_2016 crossref_primary_10_1523_JNEUROSCI_1311_21_2021 crossref_primary_10_1016_j_plrev_2017_06_013 crossref_primary_10_1038_nn_2932 crossref_primary_10_1038_s41598_018_31678_x crossref_primary_10_1016_j_neuropsychologia_2016_02_019 crossref_primary_10_3389_fnhum_2017_00596 crossref_primary_10_1080_17588928_2012_689960 crossref_primary_10_1016_j_neuroimage_2018_08_027 crossref_primary_10_1007_s10339_016_0765_6 crossref_primary_10_1016_j_neuron_2015_09_019 crossref_primary_10_1016_j_cortex_2014_12_020 crossref_primary_10_1016_j_neuroimage_2011_05_004 crossref_primary_10_1162_jocn_a_02111 crossref_primary_10_1162_jocn_a_00291 crossref_primary_10_1016_j_neubiorev_2020_04_014 crossref_primary_10_1111_bjop_12427 crossref_primary_10_3389_fnins_2023_1150168 crossref_primary_10_3758_s13423_018_1433_x crossref_primary_10_1111_cogs_12814 crossref_primary_10_7554_eLife_91135_3 crossref_primary_10_1016_j_neuroimage_2020_117565 crossref_primary_10_1016_j_neuropsychologia_2017_08_010 crossref_primary_10_1186_s41235_018_0119_2 crossref_primary_10_1186_s12993_022_00203_6 crossref_primary_10_1038_nrn3838 crossref_primary_10_1038_s41467_020_16856_8 crossref_primary_10_1093_cercor_bhs211 crossref_primary_10_1371_journal_pone_0234695 crossref_primary_10_1016_j_dcn_2019_100680 crossref_primary_10_1016_j_biopsycho_2018_09_002 crossref_primary_10_1016_j_cortex_2015_11_027 crossref_primary_10_1016_j_conb_2018_05_003 crossref_primary_10_1016_j_neuropsychologia_2012_02_034 crossref_primary_10_1016_j_neuroimage_2021_118028 crossref_primary_10_1016_j_biopsych_2019_07_017 crossref_primary_10_1162_jocn_a_01958 crossref_primary_10_3390_biology13080576 crossref_primary_10_1027_2151_2604_a000403 crossref_primary_10_1111_psyp_70076 crossref_primary_10_1177_1946756719885661 crossref_primary_10_1038_s42003_022_04049_6 crossref_primary_10_1038_s41467_025_63381_7 crossref_primary_10_7554_eLife_91135 crossref_primary_10_1016_j_neuroimage_2014_08_006 crossref_primary_10_1371_journal_pone_0293781 crossref_primary_10_1007_s00429_014_0942_2 crossref_primary_10_1016_j_cortex_2024_06_003 crossref_primary_10_1016_j_neuroimage_2025_121379 crossref_primary_10_1007_s00221_015_4362_1 crossref_primary_10_2466_24_PMS_118k13w4 crossref_primary_10_1523_JNEUROSCI_2227_12_2012 crossref_primary_10_1523_JNEUROSCI_2800_16_2017 crossref_primary_10_1371_journal_pbio_3000474 crossref_primary_10_22172_cogbio_2017_29_2_003 crossref_primary_10_1016_j_neuroimage_2022_119708 crossref_primary_10_1016_j_cortex_2023_05_021 crossref_primary_10_1016_j_neunet_2011_10_002 crossref_primary_10_1016_j_neuroimage_2012_06_004 crossref_primary_10_3389_fnhum_2014_00152 crossref_primary_10_1017_S0140525X15002770 crossref_primary_10_1093_cercor_bhad115 crossref_primary_10_3758_s13415_016_0424_5 crossref_primary_10_1038_s41598_018_21407_9 crossref_primary_10_3389_fnins_2019_01292 crossref_primary_10_1016_j_neuroimage_2012_02_038 crossref_primary_10_1111_tops_12402 crossref_primary_10_1371_journal_pone_0035932 crossref_primary_10_3389_fpsyg_2014_00932 crossref_primary_10_1016_j_biopsycho_2021_108199 crossref_primary_10_1136_bmj_m1668 crossref_primary_10_1016_j_neuroimage_2020_116549 crossref_primary_10_1523_JNEUROSCI_1764_23_2024 crossref_primary_10_1016_j_cub_2022_03_064 crossref_primary_10_1073_pnas_2116616119 crossref_primary_10_1177_00222429231153582 crossref_primary_10_1093_nc_niw004 crossref_primary_10_1523_JNEUROSCI_3308_13_2013 crossref_primary_10_1007_s12124_022_09748_7 crossref_primary_10_1016_j_physbeh_2019_04_009 crossref_primary_10_3389_fncom_2015_00119 crossref_primary_10_1038_s41598_024_59284_0 crossref_primary_10_3389_fnhum_2015_00273 crossref_primary_10_1371_journal_pone_0162177 crossref_primary_10_1371_journal_pone_0077661 crossref_primary_10_1371_journal_pbio_1002577 crossref_primary_10_1016_j_cognition_2022_105325 crossref_primary_10_1016_j_brainres_2015_05_029 crossref_primary_10_1016_j_cortex_2017_09_017 crossref_primary_10_1108_IJWIS_10_2024_0314 crossref_primary_10_1162_jocn_a_00822 crossref_primary_10_1016_j_cortex_2016_03_017 crossref_primary_10_1371_journal_pcbi_1011839 crossref_primary_10_1016_j_neubiorev_2023_105404 crossref_primary_10_1371_journal_pone_0076467 crossref_primary_10_1016_j_biopsycho_2018_11_009 crossref_primary_10_3389_fpsyg_2016_01505 crossref_primary_10_1111_ejn_13735 crossref_primary_10_1111_sjp_12120 crossref_primary_10_1111_nyas_14321 crossref_primary_10_1016_j_actpsy_2018_11_011 crossref_primary_10_1111_ejn_13972 crossref_primary_10_1152_jn_00733_2017 crossref_primary_10_1002_cne_23108 crossref_primary_10_1002_hbm_26482 crossref_primary_10_1016_j_brainres_2019_146313 crossref_primary_10_1017_S0140525X12002440 crossref_primary_10_1016_j_tics_2018_06_002 crossref_primary_10_1038_s41598_018_28696_0 crossref_primary_10_1002_acp_3616 crossref_primary_10_1016_j_neuroimage_2019_04_020 crossref_primary_10_1016_j_neuropsychologia_2014_12_017 crossref_primary_10_1016_j_neuroimage_2017_12_029 crossref_primary_10_1016_j_neuroimage_2014_03_050 crossref_primary_10_1152_jn_00277_2013 crossref_primary_10_3389_fnhum_2014_00225 crossref_primary_10_1016_j_cortex_2015_01_025 crossref_primary_10_1080_17588928_2013_877880 crossref_primary_10_1073_pnas_1906595116 crossref_primary_10_1016_j_cub_2016_07_007 crossref_primary_10_1016_j_neuropsychologia_2019_107299 crossref_primary_10_1002_jcpy_1419 crossref_primary_10_1038_s44159_024_00385_y crossref_primary_10_1016_j_cortex_2016_02_004 crossref_primary_10_1080_09515089_2022_2070063 crossref_primary_10_1016_j_concog_2015_04_015 crossref_primary_10_1163_15736121_12341320 crossref_primary_10_1093_cercor_bhab014 crossref_primary_10_1016_j_neuroimage_2014_10_006 crossref_primary_10_1093_scan_nsy105 crossref_primary_10_1152_jn_00667_2016 crossref_primary_10_1521_soco_2013_31_6_712 crossref_primary_10_3389_fnins_2019_01379 crossref_primary_10_1093_cercor_bhv333 crossref_primary_10_3389_fpsyg_2022_805386 crossref_primary_10_1068_i0466aap crossref_primary_10_1038_srep22944 crossref_primary_10_1038_s42003_023_04508_8 crossref_primary_10_1016_j_neuron_2012_02_031 crossref_primary_10_1016_j_concog_2016_06_007 crossref_primary_10_1093_cercor_bhaf078 crossref_primary_10_1007_s10879_024_09637_7 crossref_primary_10_1371_journal_pone_0200976 crossref_primary_10_1002_hbm_23540 crossref_primary_10_1007_s11482_020_09854_x crossref_primary_10_1038_srep40626 crossref_primary_10_1523_JNEUROSCI_0144_15_2015 crossref_primary_10_1162_jocn_a_01792 crossref_primary_10_3758_s13415_015_0373_4 crossref_primary_10_1073_pnas_1120118109 crossref_primary_10_1111_tops_12307 crossref_primary_10_3389_fnhum_2019_00030 crossref_primary_10_7554_eLife_75839 crossref_primary_10_1152_jn_00672_2010 crossref_primary_10_1371_journal_pbio_3002829 crossref_primary_10_1016_j_neuroimage_2023_119960 crossref_primary_10_7554_eLife_24770 crossref_primary_10_7554_eLife_62809 crossref_primary_10_1146_annurev_vision_102016_061214 crossref_primary_10_1007_s13164_019_00438_9 crossref_primary_10_1523_JNEUROSCI_2204_15_2015 crossref_primary_10_1523_JNEUROSCI_1232_23_2024 crossref_primary_10_1016_j_concog_2022_103374 crossref_primary_10_1016_j_jneumeth_2021_109080 crossref_primary_10_1016_j_bbr_2022_113969 crossref_primary_10_3389_fncir_2016_00007 crossref_primary_10_1038_s41598_017_00243_3 crossref_primary_10_1016_j_neuron_2013_08_020 crossref_primary_10_1002_hbm_22631 crossref_primary_10_1111_nyas_14919 crossref_primary_10_1016_j_neubiorev_2021_09_009 crossref_primary_10_1093_cercor_bhaa352 crossref_primary_10_1523_JNEUROSCI_5114_14_2015 crossref_primary_10_1016_j_neubiorev_2023_105473 crossref_primary_10_1162_imag_a_00459 crossref_primary_10_1016_j_neuron_2013_09_009 crossref_primary_10_1017_S0140525X12000477 crossref_primary_10_1038_ncomms3698 crossref_primary_10_1016_j_neuroimage_2018_02_068 crossref_primary_10_1177_17456916231221976 crossref_primary_10_1016_j_neuron_2018_10_004 crossref_primary_10_1016_j_neuron_2018_10_003 crossref_primary_10_1093_cercor_bhv250 crossref_primary_10_1162_neco_a_01476 crossref_primary_10_1016_j_cortex_2020_07_010 crossref_primary_10_1016_j_cognition_2016_12_009 crossref_primary_10_1016_j_neuroimage_2015_05_053 crossref_primary_10_1016_j_neuron_2021_08_025 crossref_primary_10_1038_s41598_023_47957_1 crossref_primary_10_1007_s13164_024_00763_8 crossref_primary_10_1109_ACCESS_2024_3395051 crossref_primary_10_1016_j_neubiorev_2013_01_029 crossref_primary_10_1007_s12264_020_00527_1 crossref_primary_10_1016_j_jneumeth_2020_108836 crossref_primary_10_3758_s13415_023_01062_y crossref_primary_10_1016_j_neubiorev_2021_04_002 crossref_primary_10_1016_j_neubiorev_2021_04_001 crossref_primary_10_1523_JNEUROSCI_1546_16_2016 crossref_primary_10_7554_eLife_47869 crossref_primary_10_1017_S0140525X1200218X crossref_primary_10_1523_JNEUROSCI_2133_18_2018 crossref_primary_10_1371_journal_pcbi_1010223 crossref_primary_10_1016_j_neuron_2014_02_042 crossref_primary_10_1016_j_cortex_2015_10_022 crossref_primary_10_1016_j_neuroimage_2011_08_073 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1523/JNEUROSCI.2770-10.2010 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1529-2401 |
| ExternalDocumentID | 21147999 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Wellcome Trust grantid: 092646 |
| GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ AAJMC ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFFNX AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM NPM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK 7X8 |
| ID | FETCH-LOGICAL-c511t-cf9c3d5d8c9af790572fba6e4a6b9fcbab8c191680d80eeb73f2c47b868138ef2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 272 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285089100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1529-2401 |
| IngestDate | Thu Oct 02 10:45:50 EDT 2025 Thu Apr 03 07:00:09 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 49 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511t-cf9c3d5d8c9af790572fba6e4a6b9fcbab8c191680d80eeb73f2c47b868138ef2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.jneurosci.org/content/jneuro/30/49/16601.full.pdf |
| PMID | 21147999 |
| PQID | 821486079 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_821486079 pubmed_primary_21147999 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-Dec-08 20101208 |
| PublicationDateYYYYMMDD | 2010-12-08 |
| PublicationDate_xml | – month: 12 year: 2010 text: 2010-Dec-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of neuroscience |
| PublicationTitleAlternate | J Neurosci |
| PublicationYear | 2010 |
| References | 1540675 - Biol Cybern. 1992;66(3):241-51 20068583 - Nat Rev Neurosci. 2010 Feb;11(2):127-38 15937014 - Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):815-36 19716752 - Trends Cogn Sci. 2009 Sep;13(9):403-9 9488174 - Neurosci Lett. 1998 Jan 2;240(1):58-60 9054347 - Science. 1997 Mar 14;275(5306):1593-9 12868647 - J Opt Soc Am A Opt Image Sci Vis. 2003 Jul;20(7):1434-48 9151747 - J Neurosci. 1997 Jun 1;17(11):4302-11 10845072 - Annu Rev Neurosci. 2000;23:473-500 19559644 - Trends Cogn Sci. 2009 Jul;13(7):293-301 16772516 - J Neurophysiol. 2006 Jul;96(1):40-54 20181593 - J Neurosci. 2010 Feb 24;30(8):2960-6 7381367 - J Exp Psychol. 1980 Jun;109(2):160-74 18442841 - Vision Res. 2008 Jun;48(12):1391-408 10376597 - Nature. 1999 Jun 10;399(6736):575-9 19160497 - Nat Neurosci. 2008 Sep;11(9):1004-6 12662752 - Neural Netw. 1998 Oct;11(7-8):1317-29 12679297 - Cereb Cortex. 2003 May;13(5):508-16 14283058 - J Neurophysiol. 1965 Mar;28:229-89 18667160 - Neuron. 2008 Jul 31;59(2):336-47 20203180 - J Neurosci. 2010 Mar 3;30(9):3210-9 11127838 - Nat Neurosci. 2000 Nov;3 Suppl:1199-204 12417754 - Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15164-9 15641408 - Behav Res Methods Instrum Comput. 2004 Nov;36(4):630-3 17124325 - Science. 2006 Nov 24;314(5803):1311-4 10195184 - Nat Neurosci. 1999 Jan;2(1):79-87 20631856 - Front Hum Neurosci. 2010 Mar 22;4:25 15217345 - Annu Rev Neurosci. 2004;27:611-47 19038281 - Vision Res. 2009 Jun;49(10):1129-43 10230795 - Neuron. 1999 Apr;22(4):751-61 18820290 - Cereb Cortex. 2009 May;19(5):1175-85 9560155 - Nature. 1998 Apr 9;392(6676):598-601 9120566 - J Neurophysiol. 1997 Jan;77(1):24-42 |
| References_xml | – reference: 19160497 - Nat Neurosci. 2008 Sep;11(9):1004-6 – reference: 12417754 - Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15164-9 – reference: 12868647 - J Opt Soc Am A Opt Image Sci Vis. 2003 Jul;20(7):1434-48 – reference: 19038281 - Vision Res. 2009 Jun;49(10):1129-43 – reference: 20631856 - Front Hum Neurosci. 2010 Mar 22;4:25 – reference: 19559644 - Trends Cogn Sci. 2009 Jul;13(7):293-301 – reference: 20068583 - Nat Rev Neurosci. 2010 Feb;11(2):127-38 – reference: 14283058 - J Neurophysiol. 1965 Mar;28:229-89 – reference: 9488174 - Neurosci Lett. 1998 Jan 2;240(1):58-60 – reference: 11127838 - Nat Neurosci. 2000 Nov;3 Suppl:1199-204 – reference: 10195184 - Nat Neurosci. 1999 Jan;2(1):79-87 – reference: 9054347 - Science. 1997 Mar 14;275(5306):1593-9 – reference: 12662752 - Neural Netw. 1998 Oct;11(7-8):1317-29 – reference: 19716752 - Trends Cogn Sci. 2009 Sep;13(9):403-9 – reference: 7381367 - J Exp Psychol. 1980 Jun;109(2):160-74 – reference: 10376597 - Nature. 1999 Jun 10;399(6736):575-9 – reference: 16772516 - J Neurophysiol. 2006 Jul;96(1):40-54 – reference: 9151747 - J Neurosci. 1997 Jun 1;17(11):4302-11 – reference: 9120566 - J Neurophysiol. 1997 Jan;77(1):24-42 – reference: 10230795 - Neuron. 1999 Apr;22(4):751-61 – reference: 18667160 - Neuron. 2008 Jul 31;59(2):336-47 – reference: 17124325 - Science. 2006 Nov 24;314(5803):1311-4 – reference: 9560155 - Nature. 1998 Apr 9;392(6676):598-601 – reference: 20181593 - J Neurosci. 2010 Feb 24;30(8):2960-6 – reference: 18820290 - Cereb Cortex. 2009 May;19(5):1175-85 – reference: 10845072 - Annu Rev Neurosci. 2000;23:473-500 – reference: 15217345 - Annu Rev Neurosci. 2004;27:611-47 – reference: 20203180 - J Neurosci. 2010 Mar 3;30(9):3210-9 – reference: 12679297 - Cereb Cortex. 2003 May;13(5):508-16 – reference: 15641408 - Behav Res Methods Instrum Comput. 2004 Nov;36(4):630-3 – reference: 15937014 - Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):815-36 – reference: 1540675 - Biol Cybern. 1992;66(3):241-51 – reference: 18442841 - Vision Res. 2008 Jun;48(12):1391-408 |
| SSID | ssj0007017 |
| Score | 2.5003202 |
| Snippet | Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 16601 |
| SubjectTerms | Adult Analysis of Variance Brain Mapping Computer Simulation Female Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Models, Neurological Oxygen - blood Photic Stimulation - methods Predictive Value of Tests Reaction Time - physiology Sensory Receptor Cells - physiology Signal Detection, Psychological - physiology Visual Cortex - blood supply Visual Cortex - cytology Visual Cortex - physiology Visual Pathways - blood supply Visual Pathways - physiology Visual Perception - physiology Young Adult |
| Title | Expectation and surprise determine neural population responses in the ventral visual stream |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21147999 https://www.proquest.com/docview/821486079 |
| Volume | 30 |
| WOSCitedRecordID | wos000285089100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qPXjxVR_1RQ7iLbqbfSQ5SSkWFV0KPih4KEk2gR66rd224L93kt3Wk3jwsgsLuyzJJPlm5ptvELpMVEpFHktiRKJJrLUhClCxK9SNrRO4Sr0S0_sTyzLe74tezc0pa1rlck_0G3U-1i5GfsNp6PolMXE7-SSuaZRLrtYdNNZRIwIk4xhdrP8jFs4C33AXTiifRAjrAmFwvW4eM0eUe-k8XFPGAuII0UEY_I4y_WnT3fnnf-6i7Rpm4nZlF3tozRT7qNkuwMUefeEr7ImfPqLeRB9O7lhXKXksixyXMPiw9g3Oa66MwU72Er43WbX7wtOKXGtKPCwwoEi8qOLEeDEs53BzRShydIDeunevnXtS91wgGqDXjGgrdJQnOddCWifexahVMjWxTJWwWknFNbh4KQ9yHhijWGSpjpniKQ8jbiw9RBvFuDDHCGt4aJQVysgollSpUNkklyayWlgwjxbCyxEcgE27RIUszHheDlZj2EJH1SwMJpX2xgD81ZgBqD35--VTtEWX3BN-hhoW1rM5R5t6MRuW0wtvK3DNes_f9pfMvw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expectation+and+surprise+determine+neural+population+responses+in+the+ventral+visual+stream&rft.jtitle=The+Journal+of+neuroscience&rft.au=Egner%2C+Tobias&rft.au=Monti%2C+Jim+M&rft.au=Summerfield%2C+Christopher&rft.date=2010-12-08&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=30&rft.issue=49&rft.spage=16601&rft_id=info:doi/10.1523%2FJNEUROSCI.2770-10.2010&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2401&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2401&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2401&client=summon |