Expectation and surprise determine neural population responses in the ventral visual stream

Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, "predictive coding" models propose that each stage of the visual hierarchy harbors two computationally distinct classe...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience Vol. 30; no. 49; p. 16601
Main Authors: Egner, Tobias, Monti, Jim M, Summerfield, Christopher
Format: Journal Article
Language:English
Published: United States 08.12.2010
Subjects:
ISSN:1529-2401, 1529-2401
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, "predictive coding" models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction ("face expectation") and prediction error ("face surprise"), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects' perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se.
AbstractList Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, "predictive coding" models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction ("face expectation") and prediction error ("face surprise"), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects' perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se.Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, "predictive coding" models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction ("face expectation") and prediction error ("face surprise"), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects' perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se.
Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, "predictive coding" models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction ("face expectation") and prediction error ("face surprise"), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects' perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se.
Author Summerfield, Christopher
Monti, Jim M
Egner, Tobias
Author_xml – sequence: 1
  givenname: Tobias
  surname: Egner
  fullname: Egner, Tobias
  email: tobias.egner@duke.edu
  organization: Department of Psychology and Neuroscience, and Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708, USA. tobias.egner@duke.edu
– sequence: 2
  givenname: Jim M
  surname: Monti
  fullname: Monti, Jim M
– sequence: 3
  givenname: Christopher
  surname: Summerfield
  fullname: Summerfield, Christopher
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21147999$$D View this record in MEDLINE/PubMed
BookMark eNpNkF1LwzAUhoNM3If-hZE7rzqT9CPJpZSpk-FA3ZUXJU1PsdKmNR9D_72VTfDqeTnvw4Fz5mhiegMILSlZ0ZTFN49P6_3z7iXfrBjnJBrHjFByhmZjKyOWEDr5l6do7twHIYQTyi_QlFGacCnlDL2tvwbQXvmmN1iZCrtgB9s4wBV4sF1jABsIVrV46IfQHkULbuiNA4cbg_074AMY_-scGhdGOG9BdZfovFatg6sTF2h_t37NH6Lt7n6T324jnVLqI11LHVdpJbRUNZck5awuVQaJykpZ61KVQlNJM0EqQQBKHtdMJ7wUmaCxgJot0PVx72D7zwDOF13jNLStMtAHVwhGE5ERLkdzeTJD2UFVjJd2yn4Xf_9gP-fcaGw
CitedBy_id crossref_primary_10_1016_j_neuroimage_2011_09_007
crossref_primary_10_1162_neco_a_01458
crossref_primary_10_1016_j_neucom_2013_02_044
crossref_primary_10_1162_jocn_a_01281
crossref_primary_10_1016_j_neuropsychologia_2016_02_003
crossref_primary_10_1016_j_neuroimage_2023_120347
crossref_primary_10_1111_cogs_12477
crossref_primary_10_1016_j_cub_2012_02_015
crossref_primary_10_1038_s41467_024_47749_9
crossref_primary_10_3389_fpsyg_2014_01052
crossref_primary_10_1016_j_neuroimage_2019_06_033
crossref_primary_10_1016_j_tics_2024_02_001
crossref_primary_10_1080_09540091_2016_1243655
crossref_primary_10_1002_hbm_22393
crossref_primary_10_1016_j_cortex_2020_10_006
crossref_primary_10_1016_j_cub_2011_01_040
crossref_primary_10_1177_0956797614553945
crossref_primary_10_1016_j_neuroimage_2012_12_033
crossref_primary_10_1038_s41467_025_58002_2
crossref_primary_10_1007_s11229_016_1040_1
crossref_primary_10_1523_JNEUROSCI_1092_16_2016
crossref_primary_10_1523_JNEUROSCI_1311_21_2021
crossref_primary_10_1016_j_plrev_2017_06_013
crossref_primary_10_1038_nn_2932
crossref_primary_10_1038_s41598_018_31678_x
crossref_primary_10_1016_j_neuropsychologia_2016_02_019
crossref_primary_10_3389_fnhum_2017_00596
crossref_primary_10_1080_17588928_2012_689960
crossref_primary_10_1016_j_neuroimage_2018_08_027
crossref_primary_10_1007_s10339_016_0765_6
crossref_primary_10_1016_j_neuron_2015_09_019
crossref_primary_10_1016_j_cortex_2014_12_020
crossref_primary_10_1016_j_neuroimage_2011_05_004
crossref_primary_10_1162_jocn_a_02111
crossref_primary_10_1162_jocn_a_00291
crossref_primary_10_1016_j_neubiorev_2020_04_014
crossref_primary_10_1111_bjop_12427
crossref_primary_10_3389_fnins_2023_1150168
crossref_primary_10_3758_s13423_018_1433_x
crossref_primary_10_1111_cogs_12814
crossref_primary_10_7554_eLife_91135_3
crossref_primary_10_1016_j_neuroimage_2020_117565
crossref_primary_10_1016_j_neuropsychologia_2017_08_010
crossref_primary_10_1186_s41235_018_0119_2
crossref_primary_10_1186_s12993_022_00203_6
crossref_primary_10_1038_nrn3838
crossref_primary_10_1038_s41467_020_16856_8
crossref_primary_10_1093_cercor_bhs211
crossref_primary_10_1371_journal_pone_0234695
crossref_primary_10_1016_j_dcn_2019_100680
crossref_primary_10_1016_j_biopsycho_2018_09_002
crossref_primary_10_1016_j_cortex_2015_11_027
crossref_primary_10_1016_j_conb_2018_05_003
crossref_primary_10_1016_j_neuropsychologia_2012_02_034
crossref_primary_10_1016_j_neuroimage_2021_118028
crossref_primary_10_1016_j_biopsych_2019_07_017
crossref_primary_10_1162_jocn_a_01958
crossref_primary_10_3390_biology13080576
crossref_primary_10_1027_2151_2604_a000403
crossref_primary_10_1111_psyp_70076
crossref_primary_10_1177_1946756719885661
crossref_primary_10_1038_s42003_022_04049_6
crossref_primary_10_1038_s41467_025_63381_7
crossref_primary_10_7554_eLife_91135
crossref_primary_10_1016_j_neuroimage_2014_08_006
crossref_primary_10_1371_journal_pone_0293781
crossref_primary_10_1007_s00429_014_0942_2
crossref_primary_10_1016_j_cortex_2024_06_003
crossref_primary_10_1016_j_neuroimage_2025_121379
crossref_primary_10_1007_s00221_015_4362_1
crossref_primary_10_2466_24_PMS_118k13w4
crossref_primary_10_1523_JNEUROSCI_2227_12_2012
crossref_primary_10_1523_JNEUROSCI_2800_16_2017
crossref_primary_10_1371_journal_pbio_3000474
crossref_primary_10_22172_cogbio_2017_29_2_003
crossref_primary_10_1016_j_neuroimage_2022_119708
crossref_primary_10_1016_j_cortex_2023_05_021
crossref_primary_10_1016_j_neunet_2011_10_002
crossref_primary_10_1016_j_neuroimage_2012_06_004
crossref_primary_10_3389_fnhum_2014_00152
crossref_primary_10_1017_S0140525X15002770
crossref_primary_10_1093_cercor_bhad115
crossref_primary_10_3758_s13415_016_0424_5
crossref_primary_10_1038_s41598_018_21407_9
crossref_primary_10_3389_fnins_2019_01292
crossref_primary_10_1016_j_neuroimage_2012_02_038
crossref_primary_10_1111_tops_12402
crossref_primary_10_1371_journal_pone_0035932
crossref_primary_10_3389_fpsyg_2014_00932
crossref_primary_10_1016_j_biopsycho_2021_108199
crossref_primary_10_1136_bmj_m1668
crossref_primary_10_1016_j_neuroimage_2020_116549
crossref_primary_10_1523_JNEUROSCI_1764_23_2024
crossref_primary_10_1016_j_cub_2022_03_064
crossref_primary_10_1073_pnas_2116616119
crossref_primary_10_1177_00222429231153582
crossref_primary_10_1093_nc_niw004
crossref_primary_10_1523_JNEUROSCI_3308_13_2013
crossref_primary_10_1007_s12124_022_09748_7
crossref_primary_10_1016_j_physbeh_2019_04_009
crossref_primary_10_3389_fncom_2015_00119
crossref_primary_10_1038_s41598_024_59284_0
crossref_primary_10_3389_fnhum_2015_00273
crossref_primary_10_1371_journal_pone_0162177
crossref_primary_10_1371_journal_pone_0077661
crossref_primary_10_1371_journal_pbio_1002577
crossref_primary_10_1016_j_cognition_2022_105325
crossref_primary_10_1016_j_brainres_2015_05_029
crossref_primary_10_1016_j_cortex_2017_09_017
crossref_primary_10_1108_IJWIS_10_2024_0314
crossref_primary_10_1162_jocn_a_00822
crossref_primary_10_1016_j_cortex_2016_03_017
crossref_primary_10_1371_journal_pcbi_1011839
crossref_primary_10_1016_j_neubiorev_2023_105404
crossref_primary_10_1371_journal_pone_0076467
crossref_primary_10_1016_j_biopsycho_2018_11_009
crossref_primary_10_3389_fpsyg_2016_01505
crossref_primary_10_1111_ejn_13735
crossref_primary_10_1111_sjp_12120
crossref_primary_10_1111_nyas_14321
crossref_primary_10_1016_j_actpsy_2018_11_011
crossref_primary_10_1111_ejn_13972
crossref_primary_10_1152_jn_00733_2017
crossref_primary_10_1002_cne_23108
crossref_primary_10_1002_hbm_26482
crossref_primary_10_1016_j_brainres_2019_146313
crossref_primary_10_1017_S0140525X12002440
crossref_primary_10_1016_j_tics_2018_06_002
crossref_primary_10_1038_s41598_018_28696_0
crossref_primary_10_1002_acp_3616
crossref_primary_10_1016_j_neuroimage_2019_04_020
crossref_primary_10_1016_j_neuropsychologia_2014_12_017
crossref_primary_10_1016_j_neuroimage_2017_12_029
crossref_primary_10_1016_j_neuroimage_2014_03_050
crossref_primary_10_1152_jn_00277_2013
crossref_primary_10_3389_fnhum_2014_00225
crossref_primary_10_1016_j_cortex_2015_01_025
crossref_primary_10_1080_17588928_2013_877880
crossref_primary_10_1073_pnas_1906595116
crossref_primary_10_1016_j_cub_2016_07_007
crossref_primary_10_1016_j_neuropsychologia_2019_107299
crossref_primary_10_1002_jcpy_1419
crossref_primary_10_1038_s44159_024_00385_y
crossref_primary_10_1016_j_cortex_2016_02_004
crossref_primary_10_1080_09515089_2022_2070063
crossref_primary_10_1016_j_concog_2015_04_015
crossref_primary_10_1163_15736121_12341320
crossref_primary_10_1093_cercor_bhab014
crossref_primary_10_1016_j_neuroimage_2014_10_006
crossref_primary_10_1093_scan_nsy105
crossref_primary_10_1152_jn_00667_2016
crossref_primary_10_1521_soco_2013_31_6_712
crossref_primary_10_3389_fnins_2019_01379
crossref_primary_10_1093_cercor_bhv333
crossref_primary_10_3389_fpsyg_2022_805386
crossref_primary_10_1068_i0466aap
crossref_primary_10_1038_srep22944
crossref_primary_10_1038_s42003_023_04508_8
crossref_primary_10_1016_j_neuron_2012_02_031
crossref_primary_10_1016_j_concog_2016_06_007
crossref_primary_10_1093_cercor_bhaf078
crossref_primary_10_1007_s10879_024_09637_7
crossref_primary_10_1371_journal_pone_0200976
crossref_primary_10_1002_hbm_23540
crossref_primary_10_1007_s11482_020_09854_x
crossref_primary_10_1038_srep40626
crossref_primary_10_1523_JNEUROSCI_0144_15_2015
crossref_primary_10_1162_jocn_a_01792
crossref_primary_10_3758_s13415_015_0373_4
crossref_primary_10_1073_pnas_1120118109
crossref_primary_10_1111_tops_12307
crossref_primary_10_3389_fnhum_2019_00030
crossref_primary_10_7554_eLife_75839
crossref_primary_10_1152_jn_00672_2010
crossref_primary_10_1371_journal_pbio_3002829
crossref_primary_10_1016_j_neuroimage_2023_119960
crossref_primary_10_7554_eLife_24770
crossref_primary_10_7554_eLife_62809
crossref_primary_10_1146_annurev_vision_102016_061214
crossref_primary_10_1007_s13164_019_00438_9
crossref_primary_10_1523_JNEUROSCI_2204_15_2015
crossref_primary_10_1523_JNEUROSCI_1232_23_2024
crossref_primary_10_1016_j_concog_2022_103374
crossref_primary_10_1016_j_jneumeth_2021_109080
crossref_primary_10_1016_j_bbr_2022_113969
crossref_primary_10_3389_fncir_2016_00007
crossref_primary_10_1038_s41598_017_00243_3
crossref_primary_10_1016_j_neuron_2013_08_020
crossref_primary_10_1002_hbm_22631
crossref_primary_10_1111_nyas_14919
crossref_primary_10_1016_j_neubiorev_2021_09_009
crossref_primary_10_1093_cercor_bhaa352
crossref_primary_10_1523_JNEUROSCI_5114_14_2015
crossref_primary_10_1016_j_neubiorev_2023_105473
crossref_primary_10_1162_imag_a_00459
crossref_primary_10_1016_j_neuron_2013_09_009
crossref_primary_10_1017_S0140525X12000477
crossref_primary_10_1038_ncomms3698
crossref_primary_10_1016_j_neuroimage_2018_02_068
crossref_primary_10_1177_17456916231221976
crossref_primary_10_1016_j_neuron_2018_10_004
crossref_primary_10_1016_j_neuron_2018_10_003
crossref_primary_10_1093_cercor_bhv250
crossref_primary_10_1162_neco_a_01476
crossref_primary_10_1016_j_cortex_2020_07_010
crossref_primary_10_1016_j_cognition_2016_12_009
crossref_primary_10_1016_j_neuroimage_2015_05_053
crossref_primary_10_1016_j_neuron_2021_08_025
crossref_primary_10_1038_s41598_023_47957_1
crossref_primary_10_1007_s13164_024_00763_8
crossref_primary_10_1109_ACCESS_2024_3395051
crossref_primary_10_1016_j_neubiorev_2013_01_029
crossref_primary_10_1007_s12264_020_00527_1
crossref_primary_10_1016_j_jneumeth_2020_108836
crossref_primary_10_3758_s13415_023_01062_y
crossref_primary_10_1016_j_neubiorev_2021_04_002
crossref_primary_10_1016_j_neubiorev_2021_04_001
crossref_primary_10_1523_JNEUROSCI_1546_16_2016
crossref_primary_10_7554_eLife_47869
crossref_primary_10_1017_S0140525X1200218X
crossref_primary_10_1523_JNEUROSCI_2133_18_2018
crossref_primary_10_1371_journal_pcbi_1010223
crossref_primary_10_1016_j_neuron_2014_02_042
crossref_primary_10_1016_j_cortex_2015_10_022
crossref_primary_10_1016_j_neuroimage_2011_08_073
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1523/JNEUROSCI.2770-10.2010
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
ExternalDocumentID 21147999
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 092646
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
AAFWJ
AAJMC
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFFNX
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
NPM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
7X8
ID FETCH-LOGICAL-c511t-cf9c3d5d8c9af790572fba6e4a6b9fcbab8c191680d80eeb73f2c47b868138ef2
IEDL.DBID 7X8
ISICitedReferencesCount 272
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285089100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1529-2401
IngestDate Thu Oct 02 10:45:50 EDT 2025
Thu Apr 03 07:00:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-cf9c3d5d8c9af790572fba6e4a6b9fcbab8c191680d80eeb73f2c47b868138ef2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jneurosci.org/content/jneuro/30/49/16601.full.pdf
PMID 21147999
PQID 821486079
PQPubID 23479
ParticipantIDs proquest_miscellaneous_821486079
pubmed_primary_21147999
PublicationCentury 2000
PublicationDate 2010-Dec-08
20101208
PublicationDateYYYYMMDD 2010-12-08
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-Dec-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2010
References 1540675 - Biol Cybern. 1992;66(3):241-51
20068583 - Nat Rev Neurosci. 2010 Feb;11(2):127-38
15937014 - Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):815-36
19716752 - Trends Cogn Sci. 2009 Sep;13(9):403-9
9488174 - Neurosci Lett. 1998 Jan 2;240(1):58-60
9054347 - Science. 1997 Mar 14;275(5306):1593-9
12868647 - J Opt Soc Am A Opt Image Sci Vis. 2003 Jul;20(7):1434-48
9151747 - J Neurosci. 1997 Jun 1;17(11):4302-11
10845072 - Annu Rev Neurosci. 2000;23:473-500
19559644 - Trends Cogn Sci. 2009 Jul;13(7):293-301
16772516 - J Neurophysiol. 2006 Jul;96(1):40-54
20181593 - J Neurosci. 2010 Feb 24;30(8):2960-6
7381367 - J Exp Psychol. 1980 Jun;109(2):160-74
18442841 - Vision Res. 2008 Jun;48(12):1391-408
10376597 - Nature. 1999 Jun 10;399(6736):575-9
19160497 - Nat Neurosci. 2008 Sep;11(9):1004-6
12662752 - Neural Netw. 1998 Oct;11(7-8):1317-29
12679297 - Cereb Cortex. 2003 May;13(5):508-16
14283058 - J Neurophysiol. 1965 Mar;28:229-89
18667160 - Neuron. 2008 Jul 31;59(2):336-47
20203180 - J Neurosci. 2010 Mar 3;30(9):3210-9
11127838 - Nat Neurosci. 2000 Nov;3 Suppl:1199-204
12417754 - Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15164-9
15641408 - Behav Res Methods Instrum Comput. 2004 Nov;36(4):630-3
17124325 - Science. 2006 Nov 24;314(5803):1311-4
10195184 - Nat Neurosci. 1999 Jan;2(1):79-87
20631856 - Front Hum Neurosci. 2010 Mar 22;4:25
15217345 - Annu Rev Neurosci. 2004;27:611-47
19038281 - Vision Res. 2009 Jun;49(10):1129-43
10230795 - Neuron. 1999 Apr;22(4):751-61
18820290 - Cereb Cortex. 2009 May;19(5):1175-85
9560155 - Nature. 1998 Apr 9;392(6676):598-601
9120566 - J Neurophysiol. 1997 Jan;77(1):24-42
References_xml – reference: 19160497 - Nat Neurosci. 2008 Sep;11(9):1004-6
– reference: 12417754 - Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15164-9
– reference: 12868647 - J Opt Soc Am A Opt Image Sci Vis. 2003 Jul;20(7):1434-48
– reference: 19038281 - Vision Res. 2009 Jun;49(10):1129-43
– reference: 20631856 - Front Hum Neurosci. 2010 Mar 22;4:25
– reference: 19559644 - Trends Cogn Sci. 2009 Jul;13(7):293-301
– reference: 20068583 - Nat Rev Neurosci. 2010 Feb;11(2):127-38
– reference: 14283058 - J Neurophysiol. 1965 Mar;28:229-89
– reference: 9488174 - Neurosci Lett. 1998 Jan 2;240(1):58-60
– reference: 11127838 - Nat Neurosci. 2000 Nov;3 Suppl:1199-204
– reference: 10195184 - Nat Neurosci. 1999 Jan;2(1):79-87
– reference: 9054347 - Science. 1997 Mar 14;275(5306):1593-9
– reference: 12662752 - Neural Netw. 1998 Oct;11(7-8):1317-29
– reference: 19716752 - Trends Cogn Sci. 2009 Sep;13(9):403-9
– reference: 7381367 - J Exp Psychol. 1980 Jun;109(2):160-74
– reference: 10376597 - Nature. 1999 Jun 10;399(6736):575-9
– reference: 16772516 - J Neurophysiol. 2006 Jul;96(1):40-54
– reference: 9151747 - J Neurosci. 1997 Jun 1;17(11):4302-11
– reference: 9120566 - J Neurophysiol. 1997 Jan;77(1):24-42
– reference: 10230795 - Neuron. 1999 Apr;22(4):751-61
– reference: 18667160 - Neuron. 2008 Jul 31;59(2):336-47
– reference: 17124325 - Science. 2006 Nov 24;314(5803):1311-4
– reference: 9560155 - Nature. 1998 Apr 9;392(6676):598-601
– reference: 20181593 - J Neurosci. 2010 Feb 24;30(8):2960-6
– reference: 18820290 - Cereb Cortex. 2009 May;19(5):1175-85
– reference: 10845072 - Annu Rev Neurosci. 2000;23:473-500
– reference: 15217345 - Annu Rev Neurosci. 2004;27:611-47
– reference: 20203180 - J Neurosci. 2010 Mar 3;30(9):3210-9
– reference: 12679297 - Cereb Cortex. 2003 May;13(5):508-16
– reference: 15641408 - Behav Res Methods Instrum Comput. 2004 Nov;36(4):630-3
– reference: 15937014 - Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):815-36
– reference: 1540675 - Biol Cybern. 1992;66(3):241-51
– reference: 18442841 - Vision Res. 2008 Jun;48(12):1391-408
SSID ssj0007017
Score 2.5003202
Snippet Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 16601
SubjectTerms Adult
Analysis of Variance
Brain Mapping
Computer Simulation
Female
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Models, Neurological
Oxygen - blood
Photic Stimulation - methods
Predictive Value of Tests
Reaction Time - physiology
Sensory Receptor Cells - physiology
Signal Detection, Psychological - physiology
Visual Cortex - blood supply
Visual Cortex - cytology
Visual Cortex - physiology
Visual Pathways - blood supply
Visual Pathways - physiology
Visual Perception - physiology
Young Adult
Title Expectation and surprise determine neural population responses in the ventral visual stream
URI https://www.ncbi.nlm.nih.gov/pubmed/21147999
https://www.proquest.com/docview/821486079
Volume 30
WOSCitedRecordID wos000285089100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qPXjxVR_1RQ7iLbqbfSQ5SSkWFV0KPih4KEk2gR66rd224L93kt3Wk3jwsgsLuyzJJPlm5ptvELpMVEpFHktiRKJJrLUhClCxK9SNrRO4Sr0S0_sTyzLe74tezc0pa1rlck_0G3U-1i5GfsNp6PolMXE7-SSuaZRLrtYdNNZRIwIk4xhdrP8jFs4C33AXTiifRAjrAmFwvW4eM0eUe-k8XFPGAuII0UEY_I4y_WnT3fnnf-6i7Rpm4nZlF3tozRT7qNkuwMUefeEr7ImfPqLeRB9O7lhXKXksixyXMPiw9g3Oa66MwU72Er43WbX7wtOKXGtKPCwwoEi8qOLEeDEs53BzRShydIDeunevnXtS91wgGqDXjGgrdJQnOddCWifexahVMjWxTJWwWknFNbh4KQ9yHhijWGSpjpniKQ8jbiw9RBvFuDDHCGt4aJQVysgollSpUNkklyayWlgwjxbCyxEcgE27RIUszHheDlZj2EJH1SwMJpX2xgD81ZgBqD35--VTtEWX3BN-hhoW1rM5R5t6MRuW0wtvK3DNes_f9pfMvw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expectation+and+surprise+determine+neural+population+responses+in+the+ventral+visual+stream&rft.jtitle=The+Journal+of+neuroscience&rft.au=Egner%2C+Tobias&rft.au=Monti%2C+Jim+M&rft.au=Summerfield%2C+Christopher&rft.date=2010-12-08&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=30&rft.issue=49&rft.spage=16601&rft_id=info:doi/10.1523%2FJNEUROSCI.2770-10.2010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2401&client=summon