Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding

Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable paramete...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Hydrology and earth system sciences Ročník 21; číslo 7; s. 3325 - 3352
Hlavní autoři: Kelleher, Christa, McGlynn, Brian, Wagener, Thorsten
Médium: Journal Article
Jazyk:angličtina
Vydáno: Katlenburg-Lindau Copernicus GmbH 05.07.2017
Copernicus Publications
Témata:
ISSN:1607-7938, 1027-5606, 1607-7938
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology–soil–vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale.
AbstractList Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology–soil–vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale.
Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology–soil–vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale.
Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology-soil-vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale.
Audience Academic
Author Wagener, Thorsten
McGlynn, Brian
Kelleher, Christa
Author_xml – sequence: 1
  givenname: Christa
  orcidid: 0000-0003-3557-201X
  surname: Kelleher
  fullname: Kelleher, Christa
– sequence: 2
  givenname: Brian
  orcidid: 0000-0001-5266-4894
  surname: McGlynn
  fullname: McGlynn, Brian
– sequence: 3
  givenname: Thorsten
  orcidid: 0000-0003-3881-5849
  surname: Wagener
  fullname: Wagener, Thorsten
BookMark eNp9Uttu1DAQjVCRaBc-gDdLPCGRYjt2HD9WFZeVKiFxebYmEyfrVTZubYeyfAzfirMLgkWA_GDP8TkznvG5KM4mP9mieMropWRavNzYGEvOyqrisuSUqQfFOaupKpWumrPfzo-Kixi3lPKmqfl58e16AwEw2eC-umkgMHUk2G7GJbB3s-vdBKNLe9LuCfoppgBuOjBJ53Lk2jnZjiAk3OzslMjOd3Yk9y5tcqLB-Swn0Q0TpDnY-IKMHjPi22jDZ0j5PmNL1dvgMTdB5qmzIaYM5SqPi4c9jNE--bGvik-vX328flvevHuzvr66KVEylkrkoKimAG2NigG2kmuUooaK1q2UuutVq6DltKmgZ0JbXvUMbF8hCsuUrFbF-pi387A1t8HtIOyNB2cOgA-DgZAcjtZoxWldUdnojgpkuuEUK2waiUwIlTOvimfHXLmju9nGZLZ-DnkM0XDBRM0roev_sZhmUuVXNeIXa4Bc2k29z_PHnYtoroRWSlFOl4qXf2Hl1dmdy59me5fxE8HzE0HmJPslDTDHaNYf3p9y1ZGLwccYbG_QpcPHLVYYDaNmcaBZHGg4M4sDzeLArGR_KH8O9t-a79Um4do
CitedBy_id crossref_primary_10_1029_2021WR029677
crossref_primary_10_1016_j_jhydrol_2020_125572
crossref_primary_10_1139_cjce_2020_0275
crossref_primary_10_1002_hyp_14703
crossref_primary_10_1002_hyp_14704
crossref_primary_10_1002_hyp_14387
crossref_primary_10_5194_hess_29_2361_2025
crossref_primary_10_1061_JHYEFF_HEENG_6258
crossref_primary_10_1061__ASCE_HE_1943_5584_0001726
crossref_primary_10_5194_bg_15_3143_2018
crossref_primary_10_5194_hess_27_3329_2023
crossref_primary_10_2166_bgs_2025_046
crossref_primary_10_1016_j_infgeo_2025_100016
crossref_primary_10_5194_hess_24_2457_2020
crossref_primary_10_1029_2020WR028598
crossref_primary_10_1038_s41598_018_24122_7
crossref_primary_10_5194_hess_29_361_2025
crossref_primary_10_1029_2020WR028393
crossref_primary_10_1016_j_scitotenv_2021_148715
crossref_primary_10_1029_2020WR028511
crossref_primary_10_1016_j_jclepro_2021_126960
crossref_primary_10_1029_2018WR023750
crossref_primary_10_1029_2018WR023160
crossref_primary_10_1080_07011784_2020_1803143
crossref_primary_10_1029_2022WR032440
crossref_primary_10_1002_wat2_1550
crossref_primary_10_3390_hydrology9070112
crossref_primary_10_1016_j_advwatres_2018_11_015
crossref_primary_10_5194_hess_21_3953_2017
crossref_primary_10_1016_j_jenvman_2023_119955
crossref_primary_10_1002_wat2_1761
crossref_primary_10_1002_hyp_13518
crossref_primary_10_1016_j_envsoft_2025_106332
crossref_primary_10_5194_hess_24_1939_2020
crossref_primary_10_1016_j_envsoft_2024_105960
crossref_primary_10_3390_w10121841
crossref_primary_10_1016_j_jhydrol_2024_130820
crossref_primary_10_5194_hess_23_1833_2019
crossref_primary_10_1016_j_jhydrol_2021_127286
crossref_primary_10_1029_2017WR021895
crossref_primary_10_1016_j_jclepro_2018_08_319
crossref_primary_10_1080_02626667_2020_1790566
crossref_primary_10_1016_j_catena_2025_109181
crossref_primary_10_1016_j_jenvman_2020_110905
crossref_primary_10_1002_wat2_1499
crossref_primary_10_1016_j_jhydrol_2019_124474
crossref_primary_10_1016_j_envsoft_2024_106189
crossref_primary_10_1038_s41598_020_61194_w
crossref_primary_10_1029_2018WR024266
crossref_primary_10_1016_j_jenvman_2025_127035
crossref_primary_10_1002_eco_2208
crossref_primary_10_5194_hess_26_1319_2022
crossref_primary_10_1002_hyp_13480
crossref_primary_10_1016_j_jhydrol_2023_129429
crossref_primary_10_1016_j_jhydrol_2023_129549
crossref_primary_10_3389_fenvs_2025_1535598
Cites_doi 10.5194/hess-17-341-2013
10.1002/wrcr.20431
10.1016/j.jhydrol.2004.01.002
10.1002/hyp.3360060305
10.1029/2001WR000978
10.1002/hyp.10082
10.1029/92WR01259
10.5194/hess-5-13-2001
10.1029/2008WR007327
10.1002/hyp.8037
10.1111/j.1749-8198.2007.00039.x
10.1029/2006WR005439
10.1016/0043-1354(80)90040-8
10.1002/hyp.8017
10.3120/0024-9637(2006)53[211:VFOTTC]2.0.CO;2
10.1016/j.jhydrol.2009.04.031
10.5194/hess-20-1151-2016
10.1029/2007WR006271
10.1002/hyp.10764
10.1002/hyp.10955
10.1016/0309-1708(93)90028-E
10.1016/0022-1694(94)02640-W
10.1029/2008WR007225
10.5194/hess-11-793-2007
10.1002/2014WR016147
10.1016/j.jhydrol.2016.03.020
10.5194/hess-19-1727-2015
10.1029/94WR00436
10.1029/97WR03041
10.1002/2016WR019430
10.1029/2011WR010666
10.1029/2008WR007347
10.1016/j.cageo.2015.11.002
10.1029/2007WR006615
10.1002/hyp.7228
10.1016/0378-4754(90)90009-8
10.1029/97WR03495
10.1029/2003WR002414
10.1016/j.envsoft.2014.02.013
10.1029/2006WR005370
10.1016/0022-1694(95)02745-B
10.1016/j.jhydrol.2012.12.005
10.1002/hyp.3360090313
10.5194/hess-17-5109-2013
10.1029/2007WR006716
10.1016/j.jhydrol.2004.03.033
10.1016/j.jhydrol.2009.07.017
10.1016/0022-1694(69)90020-1
10.1080/02626667909491834
10.1111/gwat.12330
10.1002/hyp.1119
10.5194/hess-2017-36
10.1002/9780470725184
10.1016/0022-1694(89)90101-7
10.5194/hess-18-4839-2014
10.1029/2006WR005752
10.1016/0168-1923(93)90024-C
10.1007/s00254-001-0486-7
10.1002/2014WR016719
10.1016/j.agrformet.2015.04.003
10.2136/sssaj2005.0117
10.1061/(ASCE)1084-0699(2002)7:4(270)
10.1016/j.envsoft.2012.09.011
10.1016/j.advwatres.2004.10.001
10.1017/CBO9781139235761.006
10.1002/wrcr.20546
10.1016/0022-1694(95)02739-C
10.5194/hess-18-4635-2014
10.1002/2013WR014063
10.1139/X10-079
10.1016/j.pce.2008.01.003
10.1029/94WR00586
10.1016/j.jhydrol.2005.07.007
10.1002/hyp.8328
10.1002/2014WR015484
10.1016/0304-3800(91)90199-B
10.1029/2008WR007536
10.1029/2010WR010174
10.1002/2015WR017780
10.1007/s10021-012-9545-z
10.1016/S0309-1708(02)00060-X
10.1016/0043-1354(80)90039-1
10.1016/j.foreco.2005.12.009
10.1002/for.3980100110
10.1016/j.envsoft.2013.04.006
10.1002/hyp.10445
10.1016/S0022-1694(97)00107-8
10.2737/RDS-2010-0003.2
10.1016/j.envsoft.2016.10.005
10.1016/0022-1694(70)90255-6
10.1029/2006WR005563
10.1016/j.agee.2008.01.014
10.1016/j.jhydrol.2008.04.008
10.1016/j.jhydrol.2016.03.026
10.1029/2002GL015937
10.1016/S0309-1708(98)00020-7
10.1016/S0022-1694(96)03329-X
10.1029/2007WR006735
10.1016/j.envsoft.2016.10.011
10.1029/2010WR009827
10.1016/j.advwatres.2007.01.005
10.1002/hyp.343
10.1111/j.1752-1688.2008.00233.x
10.1002/hyp.10110
10.13031/2013.23153
10.1002/2014WR016520
10.1016/j.jhydrol.2015.12.002
10.1016/0022-1694(81)90003-2
10.1002/2015WR017398
10.5194/hess-20-2207-2016
10.1017/CBO9781139235761
10.1002/hyp.8463
10.5194/hess-5-1-2001
10.1002/2013WR014925
10.1016/j.jhydrol.2013.12.044
10.1007/s00477-005-0006-5
10.1002/hyp.6989
ContentType Journal Article
Copyright COPYRIGHT 2017 Copernicus GmbH
Copyright Copernicus GmbH 2017
2017. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2017 Copernicus GmbH
– notice: Copyright Copernicus GmbH 2017
– notice: 2017. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
DOA
DOI 10.5194/hess-21-3325-2017
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1607-7938
EndPage 3352
ExternalDocumentID oai_doaj_org_article_9720630589d04c19820c3c885c1447e2
A497770202
10_5194_hess_21_3325_2017
GroupedDBID 29I
2WC
5GY
5VS
7XC
8CJ
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BANNL
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
EBS
ECGQY
EDH
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
IPNFZ
ISR
ITC
K6-
KQ8
L6V
L8X
LK5
M7R
M7S
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
~KM
7QH
7TG
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H96
KL.
KR7
L.G
PKEHL
PQEST
PQUKI
ID FETCH-LOGICAL-c511t-c2a7090aab6c71acb529c546a306b559df7b7ab2083af149e23f1aef3cc4e1753
IEDL.DBID M7S
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404795000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1607-7938
1027-5606
IngestDate Tue Oct 14 19:06:00 EDT 2025
Fri Aug 22 20:50:31 EDT 2025
Mon Oct 20 01:50:59 EDT 2025
Sat Nov 29 13:10:27 EST 2025
Sat Nov 29 10:14:40 EST 2025
Wed Nov 26 10:30:49 EST 2025
Sat Nov 29 04:01:45 EST 2025
Tue Nov 18 22:31:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-c2a7090aab6c71acb529c546a306b559df7b7ab2083af149e23f1aef3cc4e1753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5266-4894
0000-0003-3557-201X
0000-0003-3881-5849
OpenAccessLink https://www.proquest.com/docview/2414623496?pq-origsite=%requestingapplication%
PQID 1915717584
PQPubID 105724
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_9720630589d04c19820c3c885c1447e2
proquest_journals_2414623496
proquest_journals_1915717584
gale_infotracmisc_A497770202
gale_infotracacademiconefile_A497770202
gale_incontextgauss_ISR_A497770202
crossref_citationtrail_10_5194_hess_21_3325_2017
crossref_primary_10_5194_hess_21_3325_2017
PublicationCentury 2000
PublicationDate 2017-07-05
PublicationDateYYYYMMDD 2017-07-05
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-05
  day: 05
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Hydrology and earth system sciences
PublicationYear 2017
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref113
  doi: 10.5194/hess-17-341-2013
– ident: ref69
  doi: 10.1002/wrcr.20431
– ident: ref56
  doi: 10.1016/j.jhydrol.2004.01.002
– ident: ref11
  doi: 10.1002/hyp.3360060305
– ident: ref104
  doi: 10.1029/2001WR000978
– ident: ref12
  doi: 10.1002/hyp.10082
– ident: ref44
  doi: 10.1029/92WR01259
– ident: ref118
  doi: 10.5194/hess-5-13-2001
– ident: ref101
  doi: 10.1029/2008WR007327
– ident: ref70
  doi: 10.1002/hyp.8037
– ident: ref131
– ident: ref120
  doi: 10.1111/j.1749-8198.2007.00039.x
– ident: ref53
– ident: ref57
  doi: 10.1029/2006WR005439
– ident: ref13
– ident: ref111
  doi: 10.1016/0043-1354(80)90040-8
– ident: ref26
  doi: 10.1002/hyp.8017
– ident: ref76
  doi: 10.3120/0024-9637(2006)53[211:VFOTTC]2.0.CO;2
– ident: ref65
  doi: 10.1016/j.jhydrol.2009.04.031
– ident: ref83
  doi: 10.5194/hess-20-1151-2016
– ident: ref117
  doi: 10.1029/2007WR006271
– ident: ref48
  doi: 10.1002/hyp.10764
– ident: ref82
– ident: ref110
  doi: 10.1002/hyp.10955
– ident: ref7
  doi: 10.1016/0309-1708(93)90028-E
– ident: ref20
  doi: 10.1016/0022-1694(94)02640-W
– ident: ref59
  doi: 10.1029/2008WR007225
– ident: ref114
  doi: 10.5194/hess-11-793-2007
– ident: ref64
  doi: 10.1002/2014WR016147
– ident: ref31
  doi: 10.1016/j.jhydrol.2016.03.020
– ident: ref107
  doi: 10.5194/hess-19-1727-2015
– ident: ref124
  doi: 10.1029/94WR00436
– ident: ref38
  doi: 10.1029/97WR03041
– ident: ref95
  doi: 10.1002/2016WR019430
– ident: ref68
– ident: ref60
  doi: 10.1029/2011WR010666
– ident: ref121
  doi: 10.1029/2008WR007347
– ident: ref58
  doi: 10.1016/j.cageo.2015.11.002
– ident: ref97
– ident: ref89
  doi: 10.1029/2007WR006615
– ident: ref32
– ident: ref25
  doi: 10.1002/hyp.7228
– ident: ref63
  doi: 10.1016/0378-4754(90)90009-8
– ident: ref46
  doi: 10.1029/97WR03495
– ident: ref115
  doi: 10.1029/2003WR002414
– ident: ref49
  doi: 10.1016/j.envsoft.2014.02.013
– ident: ref62
  doi: 10.1029/2006WR005370
– ident: ref91
  doi: 10.1016/0022-1694(95)02745-B
– ident: ref130
  doi: 10.1016/j.jhydrol.2012.12.005
– ident: ref37
  doi: 10.1002/hyp.3360090313
– ident: ref50
  doi: 10.5194/hess-17-5109-2013
– ident: ref128
  doi: 10.1029/2007WR006716
– ident: ref2
  doi: 10.1016/j.jhydrol.2004.03.033
– ident: ref61
  doi: 10.1016/j.jhydrol.2009.07.017
– ident: ref39
  doi: 10.1016/0022-1694(69)90020-1
– ident: ref14
  doi: 10.1080/02626667909491834
– ident: ref125
– ident: ref51
  doi: 10.1111/gwat.12330
– ident: ref123
  doi: 10.1002/hyp.1119
– ident: ref55
  doi: 10.5194/hess-2017-36
– ident: ref100
  doi: 10.1002/9780470725184
– ident: ref6
  doi: 10.1016/0022-1694(89)90101-7
– ident: ref40
  doi: 10.5194/hess-18-4839-2014
– ident: ref93
  doi: 10.1029/2006WR005752
– ident: ref4
  doi: 10.1016/0168-1923(93)90024-C
– ident: ref16
  doi: 10.1007/s00254-001-0486-7
– ident: ref81
– ident: ref84
  doi: 10.1002/2014WR016719
– ident: ref77
  doi: 10.1016/j.agrformet.2015.04.003
– ident: ref103
  doi: 10.2136/sssaj2005.0117
– ident: ref108
  doi: 10.1061/(ASCE)1084-0699(2002)7:4(270)
– ident: ref5
  doi: 10.1016/j.envsoft.2012.09.011
– ident: ref72
– ident: ref122
  doi: 10.1016/j.advwatres.2004.10.001
– ident: ref73
  doi: 10.1017/CBO9781139235761.006
– ident: ref109
  doi: 10.1002/wrcr.20546
– ident: ref90
  doi: 10.1016/0022-1694(95)02739-C
– ident: ref129
  doi: 10.5194/hess-18-4635-2014
– ident: ref94
  doi: 10.1002/2013WR014063
– ident: ref112
  doi: 10.1139/X10-079
– ident: ref67
  doi: 10.1016/j.pce.2008.01.003
– ident: ref75
  doi: 10.1029/94WR00586
– ident: ref10
  doi: 10.1016/j.jhydrol.2005.07.007
– ident: ref86
– ident: ref99
  doi: 10.1002/hyp.8328
– ident: ref54
  doi: 10.1002/2014WR015484
– ident: ref3
  doi: 10.1016/0304-3800(91)90199-B
– ident: ref18
  doi: 10.1029/2008WR007536
– ident: ref35
  doi: 10.1029/2010WR010174
– ident: ref87
  doi: 10.1002/2015WR017780
– ident: ref23
– ident: ref106
  doi: 10.1007/s10021-012-9545-z
– ident: ref45
  doi: 10.1016/S0309-1708(02)00060-X
– ident: ref52
  doi: 10.1016/0043-1354(80)90039-1
– ident: ref24
  doi: 10.1016/j.foreco.2005.12.009
– ident: ref116
  doi: 10.1002/for.3980100110
– ident: ref78
  doi: 10.1016/j.envsoft.2013.04.006
– ident: ref92
– ident: ref30
  doi: 10.1002/hyp.10445
– ident: ref127
  doi: 10.1016/S0022-1694(97)00107-8
– ident: ref42
  doi: 10.2737/RDS-2010-0003.2
– ident: ref19
  doi: 10.1016/j.envsoft.2016.10.005
– ident: ref80
  doi: 10.1016/0022-1694(70)90255-6
– ident: ref34
  doi: 10.1029/2006WR005563
– ident: ref132
  doi: 10.1016/j.agee.2008.01.014
– ident: ref27
  doi: 10.1016/j.jhydrol.2008.04.008
– ident: ref33
  doi: 10.1016/j.jhydrol.2016.03.026
– ident: ref102
  doi: 10.1029/2002GL015937
– ident: ref71
  doi: 10.1016/S0309-1708(98)00020-7
– ident: ref96
  doi: 10.1016/S0022-1694(96)03329-X
– ident: ref21
  doi: 10.1029/2007WR006735
– ident: ref41
  doi: 10.1016/j.envsoft.2016.10.011
– ident: ref22
  doi: 10.1029/2010WR009827
– ident: ref126
  doi: 10.1016/j.advwatres.2007.01.005
– ident: ref9
  doi: 10.1002/hyp.343
– ident: ref1
  doi: 10.1111/j.1752-1688.2008.00233.x
– ident: ref29
  doi: 10.1002/hyp.10110
– ident: ref79
  doi: 10.13031/2013.23153
– ident: ref105
  doi: 10.1002/2014WR016520
– ident: ref66
  doi: 10.1016/j.jhydrol.2015.12.002
– ident: ref85
  doi: 10.1016/0022-1694(81)90003-2
– ident: ref36
  doi: 10.1002/2015WR017398
– ident: ref74
  doi: 10.5194/hess-20-2207-2016
– ident: ref17
  doi: 10.1017/CBO9781139235761
– ident: ref43
  doi: 10.1002/hyp.8463
– ident: ref28
– ident: ref8
  doi: 10.5194/hess-5-1-2001
– ident: ref98
– ident: ref15
  doi: 10.1002/2013WR014925
– ident: ref88
  doi: 10.1016/j.jhydrol.2013.12.044
– ident: ref119
  doi: 10.1007/s00477-005-0006-5
– ident: ref47
  doi: 10.1002/hyp.6989
SSID ssj0028862
Score 2.436719
Snippet Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3325
SubjectTerms Behavior
Calibration
Case studies
Catchment models
Catchment scale
Catchments
Coastal inlets
Computer simulation
Constraints
Design and construction
Goodness of fit
Groundwater
Groundwater levels
Groundwater table
Headwater catchments
Headwaters
Hydrologic models
Hydrology
Knowledge bases (artificial intelligence)
Modelling
Parameter estimation
Parameter identification
Parameters
Researchers
Scale (ratio)
Signatures
Simulation
Snow
Snow-water equivalent
Soil
Soil investigations
Stream discharge
Stream flow
Stringers
Studies
Time series
Vegetation
Water cycle
Water table
Watersheds
SummonAdditionalLinks – databaseName: Copernicus Open Access Journals
  dbid: RKB
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yCPriXRxdJYggiGHbtE2ax3VxUZBFVoV9C8lp4gwsnXUuwvpj_K2ek2THHfDyoI9tT2iTLzmX9OQ7jD1zrY5SayMUDFG0sVHCNHUjfO_B43qqusyu_04fHfUnJ-b9pVJflBOW6YHzwO0ZLYkWquvNULWAIbKsoIG-7wBDAR1I--I0pCV5TDXcSqjV9yr_55RaoE1X-X8meivt3hQ1iJC1aBrZ4RxJlcp-WqRE3P879ZxszuHNf_jaW-xGcTT5fm5ym10J4x12rdQ8n57fZd8PNlzN39B-cTcOfEFErnQRvqxncZaddO7POZAbWapJcMcHotulSllh4IDKfEp7jDxV1eG0s8up3gP5-JzyQxJ36PIlT3aTz_1mIxjv0VvP8mEFvr580OYe-3T4-uPBG1GqNQhAp20lQDpdmco5r0DXDnwnDXStchiUeER8iNpr5yX6fC5iXBZkE2sXYgPQBuILvc92xvkYHlC6FeqZqEPwCgMYbXzle2ylYhh0JUM9YdUFYhYKlTmNwanFkIZAtgSylbUlkC2BPGEvNk3OMo_Hn4RfEbIbQaLgTjcQalugtn-DesKe0iSyRLIxUhbPZ7fG97z9cGz3sVMae1Kh0PMiFOfYA3DlUASOA_FybUnubkmiFoDtxxdz1RYttLQYi3cYrqOP-cvH6Ly16P22Rj38Hx1-xK7T4KVc5m6X7awW6_CYXYWvq9ly8SStzx_ZRTqE
  priority: 102
  providerName: Copernicus Gesellschaft
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yCHqR9YWjqwQRBDFsOt2ddI7r4qIgi_iAvYWkOnEGpGedx8L6Y_ytVqUz4w74uHic7mp6UlWp1JeufMXYM9-YpIyxQkOfRJNqLWxd1SJ0AQLOJ9mO7PrvzOlpd3Zm319p9UU1YSM98Ki4Q2sU0UK1ne1lAwiRlYQauq4FhAIm5ugrjd2AqQK1uk6P3zmVEbim6_F7JmYrzeEUI4hQlahr1aKP5E5lv1akTNz_p_Cc15yTfXarJIv8aPyTt9m1ONxhN0rf8unlXfbjeMu3_B3XIO6Hni-IjJV-xG_rWZqNiTYPlxwoFSwdIbjnPVHmUrer2HPAgDylfUKeO-Nw2p3l1LOB8nRONR6Z_3P5kue1j8_DdjMXr9Fbz8cDB3x99bDMPfb55PWn4zeidFwQgInXSoDyRlrpfdBgKg-hVRbaRnsEFgGt1icTjA8K8zafEFtFVafKx1QDNJE4P--zvWE-xAdUMoWxIpkYg0YQYmyQocOndIq9kSpWEyY3WndQ6MhJB18dwhIylCNDOVU5MpQjQ03Yi-0j5yMXx9-EX5Ept4JEo50voHO54lzuX841YU_JERwRZQxUifPFr_E9bz9-cEc4KIMjkSj0vAilOY4AfDnYgHogbq0dyYMdSZzJsHt742-uRJKlQzzdIuTGPPG3tzEBazCDbax--D8G_IjdJOXleuT2gO2tFuv4mF2Hi9VsuXiS59hPFwYpaQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding
URI https://www.proquest.com/docview/1915717584
https://www.proquest.com/docview/2414623496
https://doaj.org/article/9720630589d04c19820c3c885c1447e2
Volume 21
WOSCitedRecordID wos000404795000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Open Access Journals
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: RKB
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: BFMQW
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: PCBAR
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: M7S
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: PATMY
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: BENPR
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: PIMPY
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFA62FfTFu7halyCCIIbOZC6ZeZLd0mLRLsu2Qn0KSSbpLsjMdi9C_TH-Vs_JZKcuaF98GjbJMJuck3PLyXcIeatS4bgQJctN5VjqkpyVSZwwXWijYT9FWYuu_0WMRsXFRTkOAbdlSKvcyEQvqKvGYIz8ADRNCqo6LfOP8yuGVaPwdDWU0Nghe4iSEPvUvbPO4SqKvD3t5IKBZs_bU02wWdKDKcgRxmOWJDwDTvH1ym70kofv_5eQ9prn-OH__udH5EGwOemgZZLH5I6tn5B7ofz59Pop-XXYwTb_BFVGVV3RBWK64g97tZ65WWuvU31NDVqUobAEVbRC5F0smmUrakCuTzHcSH2BHYpBXoqlH9Dcp5gq4mFElx-oV6G00V1MGNrwq_P23gJd_3nn5hn5enx0fviJhcINzID9tmKGKxGVkVI6NyJWRme8NFmaK_BPNBC_ckILpTmYf8qBi2Z54mJlXWJMahE69DnZrZvavsDMKxA5Tlirc_BlRKkjXcBbubOViLiNeyTakE2agGqOa_BdgneDlJZIacljiZSWSOkeed-9Mm8hPW4bPERe6AYiGrdvaBaXMmxuWQqO0GVZUVZRauISrCqTmKLIDLirwvIeeYOcJBFvo8aEnku1hu-cnE3kACYlYCYRDHoXBrkGZmBUuB8B64AQXVsj97dGgkAw290bbpRBIC0luOUZeO5gbv61-4ZTX97e_Yrcx2XxCcvZPtldLdb2Nblrfqxmy0Wf7A2PRuNJ30c2-n4zQtt4cH76DZ8np2N47kw-D38DHY1Ahg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhzReuCMKAywEQkJYS5yL4weExmBata6qYEjjydiOvVZCSdcLqPwYfgK_kXOSNKMS7G0PPCY-SerTz-fiy3cIeaZj4bkQkqU29yz2UcpkFEbMZMYaGE9BUrPr98VgkJ2cyOEG-bU6C4PbKlc2sTLUeWlxjnwHPE0MrjqW6ZvJGcOqUbi6uiqhUcPi0C2_Q8o2e917B__vc8733x_vHbCmqgCzEFzMmeVaBDLQ2qRWhNqahEubxKmG4NnAL8u9MEIbDrGJ9pA_OB75UDsfWRs75LWE914hmzGCvUM2h72j4ec2xcuytF5f5YJBLJHW66gQJcU7I7BcjIcsingC2KwqpJ17wqpgwL_cQuXr9m_8b1q6Sa43UTXdrYfBLbLhittkqynwPlreIT_3WmLqH-CsqS5yOkXWWrxwZ4uxH9cZCTVLajFmbkpnUE1z5BbGsmAupxY81wgnVGlVQojiNDbF4haY0FDcDFMRpc5e0SpIoKVpZ73hHn51Up_MoIs_TxXdJZ8uRT33SKcoC3cf95aBUfXCOZNCtiakCUwGT6Xe5SLgLuySYAUTZRvedtTBVwX5GyJLIbIUDxUiSyGyuuRl-8ikJi25SPgtYq8VRL7x6kY5PVWN-VJScCRnSzKZB7ENJcSNNrJZllhIyIXjXfIUkauQUaTALUunegHf6X38oHahUwJ6EoDQi0bIl9ADq5sTIKAHJCFbk9xekwSTZ9ebV-hXjcmdqVCGiQDVZvFfm89HxoOLm5-QrYPjo77q9waHD8k1VFG1PTvZJp35dOEekav223w8mz5uBj8lXy57JP0GzGqZCQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zj9MwELaWLgJeuBGFBSwEQkJETZzD9gNCe1BR7VItl9g3Yzv2thJKuz1A5cfwQ_h1zCRul0qwb_vAY-JJUk_ntMffEPJEZ9wzzmVU2NJHmU-LSKZJGhlhrAF9ivMGXf-A9_vi6EgebpBfy7MwWFa5tIm1oS5HFtfIO-BpMnDVmSw6PpRFHO51X41PIuwghTuty3YajYjsu8V3SN-mL3t78F8_Zaz7-uPumyh0GIgsBBqzyDLNYxlrbQrLE21NzqTNs0JDIG3gV5aeG64NgzhFe8glHEt9op1Prc0cYlzCey-QTVEUIm6RzZ3u23efV-meEEWz18p4BHFF0eypQsSUdQZgxSKWRGnKcpDTulvaqVesmwf8y0XUfq977X_m2HVyNUTbdLtRjxtkw1U3yeXQ-H2wuEV-7q4Aq3-AE6e6KukE0Wzxwp3Mh37YZCrULKjFWDq01KCalog5jO3CXEkteLQBLrTSurUQxeVtik0vMNGhWCRTA6hOX9A6eKAjs1oNh3v41XFzYoPO_zxtdJt8Ohf23CGtalS5u1hzBsbWc-dMAVkclyY2Ap4qvCt5zFzSJvFSZJQNeO7Ig68K8jqUMoVSpliiUMoUSlmbPF89Mm7ATM4i3kE5XBEiDnl9YzQ5VsGsKckZgrblQpZxZhMJ8aRNrRC5hUSdO9Ymj1GKFSKNVCiBx3oO3-l9eK-2YVIcZhID0bNA5EcwA6vDyRDgA4KTrVFurVGCKbTrw0tNUMEUT1Uik5wDa0X21-FTLbl39vAjcgnURx30-vv3yRXkUFMHukVas8ncPSAX7bfZcDp5GOwAJV_OW5F-A4QioaY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+and+reducing+equifinality+by+constraining+a+distributed+catchment+model+with+regional+signatures%2C+local+observations%2C+and+process+understanding&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Kelleher%2C+Christa&rft.au=McGlynn%2C+Brian&rft.au=Wagener%2C+Thorsten&rft.date=2017-07-05&rft.pub=Copernicus+GmbH&rft.issn=1027-5606&rft.eissn=1607-7938&rft.volume=21&rft.issue=7&rft.spage=3325&rft.epage=3352&rft_id=info:doi/10.5194%2Fhess-21-3325-2017&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon