Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding
Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable paramete...
Uloženo v:
| Vydáno v: | Hydrology and earth system sciences Ročník 21; číslo 7; s. 3325 - 3352 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Katlenburg-Lindau
Copernicus GmbH
05.07.2017
Copernicus Publications |
| Témata: | |
| ISSN: | 1607-7938, 1027-5606, 1607-7938 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology–soil–vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale. |
|---|---|
| AbstractList | Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology–soil–vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale. Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology–soil–vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale. Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology-soil-vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000Â parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale. |
| Audience | Academic |
| Author | Wagener, Thorsten McGlynn, Brian Kelleher, Christa |
| Author_xml | – sequence: 1 givenname: Christa orcidid: 0000-0003-3557-201X surname: Kelleher fullname: Kelleher, Christa – sequence: 2 givenname: Brian orcidid: 0000-0001-5266-4894 surname: McGlynn fullname: McGlynn, Brian – sequence: 3 givenname: Thorsten orcidid: 0000-0003-3881-5849 surname: Wagener fullname: Wagener, Thorsten |
| BookMark | eNp9Uttu1DAQjVCRaBc-gDdLPCGRYjt2HD9WFZeVKiFxebYmEyfrVTZubYeyfAzfirMLgkWA_GDP8TkznvG5KM4mP9mieMropWRavNzYGEvOyqrisuSUqQfFOaupKpWumrPfzo-Kixi3lPKmqfl58e16AwEw2eC-umkgMHUk2G7GJbB3s-vdBKNLe9LuCfoppgBuOjBJ53Lk2jnZjiAk3OzslMjOd3Yk9y5tcqLB-Swn0Q0TpDnY-IKMHjPi22jDZ0j5PmNL1dvgMTdB5qmzIaYM5SqPi4c9jNE--bGvik-vX328flvevHuzvr66KVEylkrkoKimAG2NigG2kmuUooaK1q2UuutVq6DltKmgZ0JbXvUMbF8hCsuUrFbF-pi387A1t8HtIOyNB2cOgA-DgZAcjtZoxWldUdnojgpkuuEUK2waiUwIlTOvimfHXLmju9nGZLZ-DnkM0XDBRM0roev_sZhmUuVXNeIXa4Bc2k29z_PHnYtoroRWSlFOl4qXf2Hl1dmdy59me5fxE8HzE0HmJPslDTDHaNYf3p9y1ZGLwccYbG_QpcPHLVYYDaNmcaBZHGg4M4sDzeLArGR_KH8O9t-a79Um4do |
| CitedBy_id | crossref_primary_10_1029_2021WR029677 crossref_primary_10_1016_j_jhydrol_2020_125572 crossref_primary_10_1139_cjce_2020_0275 crossref_primary_10_1002_hyp_14703 crossref_primary_10_1002_hyp_14704 crossref_primary_10_1002_hyp_14387 crossref_primary_10_5194_hess_29_2361_2025 crossref_primary_10_1061_JHYEFF_HEENG_6258 crossref_primary_10_1061__ASCE_HE_1943_5584_0001726 crossref_primary_10_5194_bg_15_3143_2018 crossref_primary_10_5194_hess_27_3329_2023 crossref_primary_10_2166_bgs_2025_046 crossref_primary_10_1016_j_infgeo_2025_100016 crossref_primary_10_5194_hess_24_2457_2020 crossref_primary_10_1029_2020WR028598 crossref_primary_10_1038_s41598_018_24122_7 crossref_primary_10_5194_hess_29_361_2025 crossref_primary_10_1029_2020WR028393 crossref_primary_10_1016_j_scitotenv_2021_148715 crossref_primary_10_1029_2020WR028511 crossref_primary_10_1016_j_jclepro_2021_126960 crossref_primary_10_1029_2018WR023750 crossref_primary_10_1029_2018WR023160 crossref_primary_10_1080_07011784_2020_1803143 crossref_primary_10_1029_2022WR032440 crossref_primary_10_1002_wat2_1550 crossref_primary_10_3390_hydrology9070112 crossref_primary_10_1016_j_advwatres_2018_11_015 crossref_primary_10_5194_hess_21_3953_2017 crossref_primary_10_1016_j_jenvman_2023_119955 crossref_primary_10_1002_wat2_1761 crossref_primary_10_1002_hyp_13518 crossref_primary_10_1016_j_envsoft_2025_106332 crossref_primary_10_5194_hess_24_1939_2020 crossref_primary_10_1016_j_envsoft_2024_105960 crossref_primary_10_3390_w10121841 crossref_primary_10_1016_j_jhydrol_2024_130820 crossref_primary_10_5194_hess_23_1833_2019 crossref_primary_10_1016_j_jhydrol_2021_127286 crossref_primary_10_1029_2017WR021895 crossref_primary_10_1016_j_jclepro_2018_08_319 crossref_primary_10_1080_02626667_2020_1790566 crossref_primary_10_1016_j_catena_2025_109181 crossref_primary_10_1016_j_jenvman_2020_110905 crossref_primary_10_1002_wat2_1499 crossref_primary_10_1016_j_jhydrol_2019_124474 crossref_primary_10_1016_j_envsoft_2024_106189 crossref_primary_10_1038_s41598_020_61194_w crossref_primary_10_1029_2018WR024266 crossref_primary_10_1016_j_jenvman_2025_127035 crossref_primary_10_1002_eco_2208 crossref_primary_10_5194_hess_26_1319_2022 crossref_primary_10_1002_hyp_13480 crossref_primary_10_1016_j_jhydrol_2023_129429 crossref_primary_10_1016_j_jhydrol_2023_129549 crossref_primary_10_3389_fenvs_2025_1535598 |
| Cites_doi | 10.5194/hess-17-341-2013 10.1002/wrcr.20431 10.1016/j.jhydrol.2004.01.002 10.1002/hyp.3360060305 10.1029/2001WR000978 10.1002/hyp.10082 10.1029/92WR01259 10.5194/hess-5-13-2001 10.1029/2008WR007327 10.1002/hyp.8037 10.1111/j.1749-8198.2007.00039.x 10.1029/2006WR005439 10.1016/0043-1354(80)90040-8 10.1002/hyp.8017 10.3120/0024-9637(2006)53[211:VFOTTC]2.0.CO;2 10.1016/j.jhydrol.2009.04.031 10.5194/hess-20-1151-2016 10.1029/2007WR006271 10.1002/hyp.10764 10.1002/hyp.10955 10.1016/0309-1708(93)90028-E 10.1016/0022-1694(94)02640-W 10.1029/2008WR007225 10.5194/hess-11-793-2007 10.1002/2014WR016147 10.1016/j.jhydrol.2016.03.020 10.5194/hess-19-1727-2015 10.1029/94WR00436 10.1029/97WR03041 10.1002/2016WR019430 10.1029/2011WR010666 10.1029/2008WR007347 10.1016/j.cageo.2015.11.002 10.1029/2007WR006615 10.1002/hyp.7228 10.1016/0378-4754(90)90009-8 10.1029/97WR03495 10.1029/2003WR002414 10.1016/j.envsoft.2014.02.013 10.1029/2006WR005370 10.1016/0022-1694(95)02745-B 10.1016/j.jhydrol.2012.12.005 10.1002/hyp.3360090313 10.5194/hess-17-5109-2013 10.1029/2007WR006716 10.1016/j.jhydrol.2004.03.033 10.1016/j.jhydrol.2009.07.017 10.1016/0022-1694(69)90020-1 10.1080/02626667909491834 10.1111/gwat.12330 10.1002/hyp.1119 10.5194/hess-2017-36 10.1002/9780470725184 10.1016/0022-1694(89)90101-7 10.5194/hess-18-4839-2014 10.1029/2006WR005752 10.1016/0168-1923(93)90024-C 10.1007/s00254-001-0486-7 10.1002/2014WR016719 10.1016/j.agrformet.2015.04.003 10.2136/sssaj2005.0117 10.1061/(ASCE)1084-0699(2002)7:4(270) 10.1016/j.envsoft.2012.09.011 10.1016/j.advwatres.2004.10.001 10.1017/CBO9781139235761.006 10.1002/wrcr.20546 10.1016/0022-1694(95)02739-C 10.5194/hess-18-4635-2014 10.1002/2013WR014063 10.1139/X10-079 10.1016/j.pce.2008.01.003 10.1029/94WR00586 10.1016/j.jhydrol.2005.07.007 10.1002/hyp.8328 10.1002/2014WR015484 10.1016/0304-3800(91)90199-B 10.1029/2008WR007536 10.1029/2010WR010174 10.1002/2015WR017780 10.1007/s10021-012-9545-z 10.1016/S0309-1708(02)00060-X 10.1016/0043-1354(80)90039-1 10.1016/j.foreco.2005.12.009 10.1002/for.3980100110 10.1016/j.envsoft.2013.04.006 10.1002/hyp.10445 10.1016/S0022-1694(97)00107-8 10.2737/RDS-2010-0003.2 10.1016/j.envsoft.2016.10.005 10.1016/0022-1694(70)90255-6 10.1029/2006WR005563 10.1016/j.agee.2008.01.014 10.1016/j.jhydrol.2008.04.008 10.1016/j.jhydrol.2016.03.026 10.1029/2002GL015937 10.1016/S0309-1708(98)00020-7 10.1016/S0022-1694(96)03329-X 10.1029/2007WR006735 10.1016/j.envsoft.2016.10.011 10.1029/2010WR009827 10.1016/j.advwatres.2007.01.005 10.1002/hyp.343 10.1111/j.1752-1688.2008.00233.x 10.1002/hyp.10110 10.13031/2013.23153 10.1002/2014WR016520 10.1016/j.jhydrol.2015.12.002 10.1016/0022-1694(81)90003-2 10.1002/2015WR017398 10.5194/hess-20-2207-2016 10.1017/CBO9781139235761 10.1002/hyp.8463 10.5194/hess-5-1-2001 10.1002/2013WR014925 10.1016/j.jhydrol.2013.12.044 10.1007/s00477-005-0006-5 10.1002/hyp.6989 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2017 Copernicus GmbH Copyright Copernicus GmbH 2017 2017. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2017 Copernicus GmbH – notice: Copyright Copernicus GmbH 2017 – notice: 2017. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7QH 7TG 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY DOA |
| DOI | 10.5194/hess-21-3325-2017 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1607-7938 |
| EndPage | 3352 |
| ExternalDocumentID | oai_doaj_org_article_9720630589d04c19820c3c885c1447e2 A497770202 10_5194_hess_21_3325_2017 |
| GroupedDBID | 29I 2WC 5GY 5VS 7XC 8CJ 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACGFO ACIWK ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ATCPS BANNL BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z EBS ECGQY EDH EJD GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS IPNFZ ISR ITC K6- KQ8 L6V L8X LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PYCSY Q2X RIG RKB RNS TR2 XSB ~02 ~KM 7QH 7TG 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H96 KL. KR7 L.G PKEHL PQEST PQUKI |
| ID | FETCH-LOGICAL-c511t-c2a7090aab6c71acb529c546a306b559df7b7ab2083af149e23f1aef3cc4e1753 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404795000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1607-7938 1027-5606 |
| IngestDate | Tue Oct 14 19:06:00 EDT 2025 Fri Aug 22 20:50:31 EDT 2025 Mon Oct 20 01:50:59 EDT 2025 Sat Nov 29 13:10:27 EST 2025 Sat Nov 29 10:14:40 EST 2025 Wed Nov 26 10:30:49 EST 2025 Sat Nov 29 04:01:45 EST 2025 Tue Nov 18 22:31:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://creativecommons.org/licenses/by/3.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511t-c2a7090aab6c71acb529c546a306b559df7b7ab2083af149e23f1aef3cc4e1753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5266-4894 0000-0003-3557-201X 0000-0003-3881-5849 |
| OpenAccessLink | https://www.proquest.com/docview/1915717584?pq-origsite=%requestingapplication% |
| PQID | 1915717584 |
| PQPubID | 105724 |
| PageCount | 28 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9720630589d04c19820c3c885c1447e2 proquest_journals_2414623496 proquest_journals_1915717584 gale_infotracmisc_A497770202 gale_infotracacademiconefile_A497770202 gale_incontextgauss_ISR_A497770202 crossref_citationtrail_10_5194_hess_21_3325_2017 crossref_primary_10_5194_hess_21_3325_2017 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-05 |
| PublicationDateYYYYMMDD | 2017-07-05 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Hydrology and earth system sciences |
| PublicationYear | 2017 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
| References_xml | – ident: ref113 doi: 10.5194/hess-17-341-2013 – ident: ref69 doi: 10.1002/wrcr.20431 – ident: ref56 doi: 10.1016/j.jhydrol.2004.01.002 – ident: ref11 doi: 10.1002/hyp.3360060305 – ident: ref104 doi: 10.1029/2001WR000978 – ident: ref12 doi: 10.1002/hyp.10082 – ident: ref44 doi: 10.1029/92WR01259 – ident: ref118 doi: 10.5194/hess-5-13-2001 – ident: ref101 doi: 10.1029/2008WR007327 – ident: ref70 doi: 10.1002/hyp.8037 – ident: ref131 – ident: ref120 doi: 10.1111/j.1749-8198.2007.00039.x – ident: ref53 – ident: ref57 doi: 10.1029/2006WR005439 – ident: ref13 – ident: ref111 doi: 10.1016/0043-1354(80)90040-8 – ident: ref26 doi: 10.1002/hyp.8017 – ident: ref76 doi: 10.3120/0024-9637(2006)53[211:VFOTTC]2.0.CO;2 – ident: ref65 doi: 10.1016/j.jhydrol.2009.04.031 – ident: ref83 doi: 10.5194/hess-20-1151-2016 – ident: ref117 doi: 10.1029/2007WR006271 – ident: ref48 doi: 10.1002/hyp.10764 – ident: ref82 – ident: ref110 doi: 10.1002/hyp.10955 – ident: ref7 doi: 10.1016/0309-1708(93)90028-E – ident: ref20 doi: 10.1016/0022-1694(94)02640-W – ident: ref59 doi: 10.1029/2008WR007225 – ident: ref114 doi: 10.5194/hess-11-793-2007 – ident: ref64 doi: 10.1002/2014WR016147 – ident: ref31 doi: 10.1016/j.jhydrol.2016.03.020 – ident: ref107 doi: 10.5194/hess-19-1727-2015 – ident: ref124 doi: 10.1029/94WR00436 – ident: ref38 doi: 10.1029/97WR03041 – ident: ref95 doi: 10.1002/2016WR019430 – ident: ref68 – ident: ref60 doi: 10.1029/2011WR010666 – ident: ref121 doi: 10.1029/2008WR007347 – ident: ref58 doi: 10.1016/j.cageo.2015.11.002 – ident: ref97 – ident: ref89 doi: 10.1029/2007WR006615 – ident: ref32 – ident: ref25 doi: 10.1002/hyp.7228 – ident: ref63 doi: 10.1016/0378-4754(90)90009-8 – ident: ref46 doi: 10.1029/97WR03495 – ident: ref115 doi: 10.1029/2003WR002414 – ident: ref49 doi: 10.1016/j.envsoft.2014.02.013 – ident: ref62 doi: 10.1029/2006WR005370 – ident: ref91 doi: 10.1016/0022-1694(95)02745-B – ident: ref130 doi: 10.1016/j.jhydrol.2012.12.005 – ident: ref37 doi: 10.1002/hyp.3360090313 – ident: ref50 doi: 10.5194/hess-17-5109-2013 – ident: ref128 doi: 10.1029/2007WR006716 – ident: ref2 doi: 10.1016/j.jhydrol.2004.03.033 – ident: ref61 doi: 10.1016/j.jhydrol.2009.07.017 – ident: ref39 doi: 10.1016/0022-1694(69)90020-1 – ident: ref14 doi: 10.1080/02626667909491834 – ident: ref125 – ident: ref51 doi: 10.1111/gwat.12330 – ident: ref123 doi: 10.1002/hyp.1119 – ident: ref55 doi: 10.5194/hess-2017-36 – ident: ref100 doi: 10.1002/9780470725184 – ident: ref6 doi: 10.1016/0022-1694(89)90101-7 – ident: ref40 doi: 10.5194/hess-18-4839-2014 – ident: ref93 doi: 10.1029/2006WR005752 – ident: ref4 doi: 10.1016/0168-1923(93)90024-C – ident: ref16 doi: 10.1007/s00254-001-0486-7 – ident: ref81 – ident: ref84 doi: 10.1002/2014WR016719 – ident: ref77 doi: 10.1016/j.agrformet.2015.04.003 – ident: ref103 doi: 10.2136/sssaj2005.0117 – ident: ref108 doi: 10.1061/(ASCE)1084-0699(2002)7:4(270) – ident: ref5 doi: 10.1016/j.envsoft.2012.09.011 – ident: ref72 – ident: ref122 doi: 10.1016/j.advwatres.2004.10.001 – ident: ref73 doi: 10.1017/CBO9781139235761.006 – ident: ref109 doi: 10.1002/wrcr.20546 – ident: ref90 doi: 10.1016/0022-1694(95)02739-C – ident: ref129 doi: 10.5194/hess-18-4635-2014 – ident: ref94 doi: 10.1002/2013WR014063 – ident: ref112 doi: 10.1139/X10-079 – ident: ref67 doi: 10.1016/j.pce.2008.01.003 – ident: ref75 doi: 10.1029/94WR00586 – ident: ref10 doi: 10.1016/j.jhydrol.2005.07.007 – ident: ref86 – ident: ref99 doi: 10.1002/hyp.8328 – ident: ref54 doi: 10.1002/2014WR015484 – ident: ref3 doi: 10.1016/0304-3800(91)90199-B – ident: ref18 doi: 10.1029/2008WR007536 – ident: ref35 doi: 10.1029/2010WR010174 – ident: ref87 doi: 10.1002/2015WR017780 – ident: ref23 – ident: ref106 doi: 10.1007/s10021-012-9545-z – ident: ref45 doi: 10.1016/S0309-1708(02)00060-X – ident: ref52 doi: 10.1016/0043-1354(80)90039-1 – ident: ref24 doi: 10.1016/j.foreco.2005.12.009 – ident: ref116 doi: 10.1002/for.3980100110 – ident: ref78 doi: 10.1016/j.envsoft.2013.04.006 – ident: ref92 – ident: ref30 doi: 10.1002/hyp.10445 – ident: ref127 doi: 10.1016/S0022-1694(97)00107-8 – ident: ref42 doi: 10.2737/RDS-2010-0003.2 – ident: ref19 doi: 10.1016/j.envsoft.2016.10.005 – ident: ref80 doi: 10.1016/0022-1694(70)90255-6 – ident: ref34 doi: 10.1029/2006WR005563 – ident: ref132 doi: 10.1016/j.agee.2008.01.014 – ident: ref27 doi: 10.1016/j.jhydrol.2008.04.008 – ident: ref33 doi: 10.1016/j.jhydrol.2016.03.026 – ident: ref102 doi: 10.1029/2002GL015937 – ident: ref71 doi: 10.1016/S0309-1708(98)00020-7 – ident: ref96 doi: 10.1016/S0022-1694(96)03329-X – ident: ref21 doi: 10.1029/2007WR006735 – ident: ref41 doi: 10.1016/j.envsoft.2016.10.011 – ident: ref22 doi: 10.1029/2010WR009827 – ident: ref126 doi: 10.1016/j.advwatres.2007.01.005 – ident: ref9 doi: 10.1002/hyp.343 – ident: ref1 doi: 10.1111/j.1752-1688.2008.00233.x – ident: ref29 doi: 10.1002/hyp.10110 – ident: ref79 doi: 10.13031/2013.23153 – ident: ref105 doi: 10.1002/2014WR016520 – ident: ref66 doi: 10.1016/j.jhydrol.2015.12.002 – ident: ref85 doi: 10.1016/0022-1694(81)90003-2 – ident: ref36 doi: 10.1002/2015WR017398 – ident: ref74 doi: 10.5194/hess-20-2207-2016 – ident: ref17 doi: 10.1017/CBO9781139235761 – ident: ref43 doi: 10.1002/hyp.8463 – ident: ref28 – ident: ref8 doi: 10.5194/hess-5-1-2001 – ident: ref98 – ident: ref15 doi: 10.1002/2013WR014925 – ident: ref88 doi: 10.1016/j.jhydrol.2013.12.044 – ident: ref119 doi: 10.1007/s00477-005-0006-5 – ident: ref47 doi: 10.1002/hyp.6989 |
| SSID | ssj0028862 |
| Score | 2.436719 |
| Snippet | Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system,... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3325 |
| SubjectTerms | Behavior Calibration Case studies Catchment models Catchment scale Catchments Coastal inlets Computer simulation Constraints Design and construction Goodness of fit Groundwater Groundwater levels Groundwater table Headwater catchments Headwaters Hydrologic models Hydrology Knowledge bases (artificial intelligence) Modelling Parameter estimation Parameter identification Parameters Researchers Scale (ratio) Signatures Simulation Snow Snow-water equivalent Soil Soil investigations Stream discharge Stream flow Stringers Studies Time series Vegetation Water cycle Water table Watersheds |
| SummonAdditionalLinks | – databaseName: Copernicus Publications dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SCvrit3i2ShBBEJfuZZPN7mNbLPpSpCr0LUxmE-9A9up9FNo_pn-rM9n07IEfD_p4u7PkNpPM_Cab_H5CvOrKSGkeVVFB6QtdK1u0TRsLZGYRXXsMoJPYhD0-bk5P2483pL54T9hADzx03F5rFdNCmabtSo1UIqsSK2wag1QK2MDRl4YhT8kT1nDLpVbT1MN3Tmqbcno9fM8ktKL3JhRBCjUuqkoZGiNJqexnRkrE_b8LzynnHN37h397X9zNQFPuD488ELdC_1Dczprnk4tH4upwzdV8SflLQt_JORO58o_wfTWN0wGkS38hkWFkVpOQIDum22WlrNBJpGA-4TVGmVR1JK_sStZ7YIwveX9I4g5dvJUpb8qZXy8E0zVu9Ww4rCBXNw_aPBZfjt59PnxfZLWGAgm0Lcm7YMu2BPA12jGgN6pFo2ugosRT3dJF6y14RZgPItVlQVVxDCFWiDowX-gTsdXP-vBUSN9qgwYIyrA6uzYAOoY6IoNNC8aMRHntMYeZypz74Jujkoad7NjJTo0dO9mxk0fizfqRs4HH40_GB-zZtSFTcKcL5GqXXe3-5uqReMmDyDHJRs-7eL7Citr58OnE7WtC3ZaAOhm9zkZxRm-AkA9FUD8wL9eG5e6GJUUB3Lx9PVZdjkILR7W4oXKdMOYvbxN4o8nJigHP_scL74g73HlpL7PZFVvL-So8F9t4vpwu5i_S_PwBzAY54w priority: 102 providerName: Copernicus Gesellschaft – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SBH0RrYrXVgkiCOLSvWyy2X2sxVJfivgBfQuT2cQ7kL32PoT2j-nf6kw2d_bAjxcfb3eW3M5MZn6TTX4jxKuujJTmURUVlL7QtbJF27SxQGYW0bXHADo1m7BnZ835efvxVqsv3hM20AMPijtsrWJaKNO0XamRSmRVYoVNY5BKARtS9C1tuy6mcqnVNPXwnZPGppxeD98zCa3owwlFkEKNi6pShnwkdSr7lZEScf-fwnPKOScPxYMMFuXR8CcfiTuh3xX3ct_yydVjcXO84Vu-phwkoe_knMlY-Ue4XE3jdADa0l9JZCiYO0JIkB1T5nK3q9BJpIA84XVCmTrjSF6dldyzgXG65D0eif9z8Vam3CdnfrOYS9d41IvhwIFc3T4s80R8PXn_5fi0yB0XCiTgtSQLgS3bEsDXaMeA3qgWja6BCgtPtUcXrbfgFeE2iFRbBVXFMYRYIerAnJ9PxU4_68MzIX2rDRogOMId1rUB0DHUERkwWjBmJMq11h1mOnLWwXdHZQkbyrGhnBo7NpRjQ43Em80jFwMXx9-E37EpN4JMo50ukHO57FzuX841Ei_ZERwTZfS8E-cbrGicD58_uSNNyNkS2Cah11kozugNEPLBBtIDc2ttSR5sSdJMxu3ba39zOZIsHNXThkpuwom_vU0AjCYYs_7v_Y8X3hf3WXlpP7I5EDvL-So8F3fxx3K6mL9Ic-wnItsoyA priority: 102 providerName: Directory of Open Access Journals |
| Title | Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding |
| URI | https://www.proquest.com/docview/1915717584 https://www.proquest.com/docview/2414623496 https://doaj.org/article/9720630589d04c19820c3c885c1447e2 |
| Volume | 21 |
| WOSCitedRecordID | wos000404795000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: RKB dateStart: 19970101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: BFMQW dateStart: 20090601 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: PCBAR dateStart: 20090601 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: M7S dateStart: 20090601 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: PATMY dateStart: 20090601 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: BENPR dateStart: 20090601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: PIMPY dateStart: 20090601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdrO9he9l2WrQtiDAZjpv6Q_PE0ktKyMhpC2kH3JOSz1ASGneZj0P0x-1t3JyvuAltf9mRiy1jRne5-d5J-x9i7KrTo5iEOEh2WgUjjLCjywgZAzCIiLcFo4YpNZKNRfnlZjH3Cbem3VW5sojPUVQOUIz_EuEJi6IH-8tP8OqCqUbS66kto7LA9YkmI3Na98y7gyvO0Xe3EHqBnT9tVTcQs4nCKdiSIoyBJYoma4uqV3folR9__LyPtPM_J4__t8xP2yGNOPmiV5Cm7Z-pn7IEvfz69ec5-HXW0zT_RlXFdV3xBnK70w1yvZ3bW4nVe3nAgROkLS3DNK2LepaJZpuKAdn1K6UbuCuxwSvJyKv1AcJ_TVhFHI7r8yJ0L5U3Z5YTxHn113p5b4Os_z9y8YF9Pji-OPge-cEMAiN9WKGidhUWodZlCFmkoZVyAFKnG-KTEEKayWZnpMkb4py2GaCZObKSNTQCEIerQfbZbN7V5yXhZCAlSI6qhQu1Cai2sSS0Q7sy0lD0WbsSmwLOa0xh8VxjdkKQVSVrFkSJJK5J0j33oXpm3lB53NR6SLnQNiY3b3WgWV8pPblVkMVGXybyoQoFdQ1QFCeS5BAxXMxP32FvSJEV8GzVt6LnSa_zO6flEDQQC8AwxOzZ67xvZBv8BaH8-AseBKLq2Wh5stUSDANuPN9qovEFaqltV_OtjxHE4T6l4wKu7337NHtKwuA3L8oDtrhZr84bdhx-r2XLRZ3vD49F40neZjb6bjHhvPLg4-0bX07MxXncmX4a_AT9iP_o |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEF2VFKm8lLtIKbBCICSEVWe968sDQqVQNWobRVCk8rSsx-smErLTXEDhY_gEvpGZ9aVEgr71gcfY49hen505s5c5jD3L_BzDPAgvMH7qyVBEXhInuQdUWUSGKVgjndhENBjEp6fJcI39avbC0LLKxic6R52VQGPkO5hXKEw9MF6-mZx7pBpFs6uNhEYFi0O7_I4p2-x1_x1-3-dC7L8_2TvwalUBD5BczPEpTOQnvjFpCFHPQKpEAkqGBslzivw6y6M0MqlAbmJyzB-sCPKesXkAIC3VtcT_vcbWJYG9w9aH_ePh5zbFi-Owml_Fd0YuEVbzqMiS5M4IPZcnel4QCIXYdAppF5HQCQb8Kyy4WLd_839rpVtss2bVfLfqBrfZmi3usI1a4H20vMt-7rWFqX9gsOamyPiUqtbSD3u-GOfjKiPh6ZIDceZaOoMbnlFtYZIFsxkHjFwjGlDlTkKI0zA2J3ELSmg4LYZxhVJnr7gjCbxM21FvPEZ3nVQ7M_jiz11F99inK2me-6xTlIV9wHiaSAXKIG8jKXqpjJG5DXMgZh0ZpbrMb2Cioa7bTm3wVWP-RsjShCwtepqQpQlZXfayvWRSFS25zPgtYa81pHrj7kA5PdO1-9JJJKg4m4qTzJf4aMgbIYA4VoAJeWRFlz0l5GqqKFLQkqUzs8D79D9-0LsSU4wIsxI0elEb5SW-AZh6Bwi2AxUhW7HcXrFElwerpxv069rlzvQF9P96GpkqeiKSR9i6_OonbOPg5PhIH_UHhw_ZDWoitzxbbbPOfLqwj9h1-DYfz6aP687P2Zer7km_AW7rmH0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bjtMwELWWLgJeuCMKC1gIhISImjp2Lg8I7YWKaqFaLiv2zTgTe1sJJd1eQOVj-BC-jpnE7VIJ9m0feGwyaRJnPHPGl3MYe1KEDtM8iCAyYR7IWCRBlmYuAGIWkXEO1shabCIZDNKjo-xgg_1a7oWhZZXLmFgH6qICGiPvYF2hsPTAfNlxflnEwV7v1fgkIAUpmmldymk0LrJvF9-xfJu-7O_ht34qRO_1p903gVcYCACBxgyfyCRhFhqTx5B0DeRKZKBkbBBI54i1C5fkickF4hTjsJawInJdY10EIC1xXOL_XmCbaRynYYtt7vTevf-8KvfSNG7mWvH9EVfEzZwqIibZGWIUC0Q3iCKh0E9rtbTTrFiLB_wrRdR5r3ftf26x6-yqR9t8u-keN9iGLW-yy174fbi4xX7urgirf2AS56Ys-ITYbOmHPZmP3KipVHi-4EBY2ktqcMML4hwmuTBbcMCMNqSBVl5LC3Ea3uYkekGFDqdFMjWB6vQFr8EDr_LVaDgeo7uOmx0bfP7nbqPb7PBcmucOa5VVae8ynmdSgTKI50iiXipjpLOxA0LciVGqzcKly2jwfO7UBl811nXkZZq8TIuuJi_T5GVt9nx1ybghMznLeIf8cGVIPOT1gWpyrH1Y01kiiLRNpVkRSnw0xJMQQZoqwEI9saLNHpMXa2IaKckDj80c79P_-EFvSyw9EqxW0OiZN3IVvgEYvzME24HIydYst9YsMRTC-ullT9A-FE_1aTf462lEsBihSDbh3tlXP2KXsPvot_3B_n12hVqoXrWttlhrNpnbB-wifJuNppOHPg5w9uW8O9JvH5ShHQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+and+reducing+equifinality+by+constraining+a+distributed+catchment+model+with+regional+signatures%2C+local+observations%2C+and+process+understanding&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Kelleher%2C+Christa&rft.au=McGlynn%2C+Brian&rft.au=Wagener%2C+Thorsten&rft.date=2017-07-05&rft.pub=Copernicus+GmbH&rft.issn=1027-5606&rft.volume=21&rft.issue=7&rft.spage=3325&rft_id=info:doi/10.5194%2Fhess-21-3325-2017&rft.externalDocID=A497770202 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon |