Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms

One of the most popular feature extraction algorithms for brain-computer interfaces (BCI) is common spatial patterns (CSPs). Despite its known efficiency and widespread use, CSP is also known to be very sensitive to noise and prone to overfitting. To address this issue, it has been recently proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical engineering Jg. 58; H. 2; S. 355 - 362
Hauptverfasser: Lotte, Fabien, Guan, Cuntai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.02.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9294, 1558-2531, 1558-2531
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract One of the most popular feature extraction algorithms for brain-computer interfaces (BCI) is common spatial patterns (CSPs). Despite its known efficiency and widespread use, CSP is also known to be very sensitive to noise and prone to overfitting. To address this issue, it has been recently proposed to regularize CSP. In this paper, we present a simple and unifying theoretical framework to design such a regularized CSP (RCSP). We then present a review of existing RCSP algorithms and describe how to cast them in this framework. We also propose four new RCSP algorithms. Finally, we compare the performances of 11 different RCSP (including the four new ones and the original CSP), on electroencephalography data from 17 subjects, from BCI competition datasets. Results showed that the best RCSP methods can outperform CSP by nearly 10% in median classification accuracy and lead to more neurophysiologically relevant spatial filters. They also enable us to perform efficient subject-to-subject transfer. Overall, the best RCSP algorithms were CSP with Tikhonov regularization and weighted Tikhonov regularization, both proposed in this paper.
AbstractList One of the most popular feature extraction algorithms for brain-computer interfaces (BCI) is common spatial patterns (CSPs). Despite its known efficiency and widespread use, CSP is also known to be very sensitive to noise and prone to overfitting. To address this issue, it has been recently proposed to regularize CSP. In this paper, we present a simple and unifying theoretical framework to design such a regularized CSP (RCSP). We then present a review of existing RCSP algorithms and describe how to cast them in this framework. We also propose four new RCSP algorithms. Finally, we compare the performances of 11 different RCSP (including the four new ones and the original CSP), on electroencephalography data from 17 subjects, from BCI competition datasets. Results showed that the best RCSP methods can outperform CSP by nearly 10% in median classification accuracy and lead to more neurophysiologically relevant spatial filters. They also enable us to perform efficient subject-to-subject transfer. Overall, the best RCSP algorithms were CSP with Tikhonov regularization and weighted Tikhonov regularization, both proposed in this paper.
One of the most popular feature extraction algorithms for brain-computer interfaces (BCI) is common spatial patterns (CSPs). Despite its known efficiency and widespread use, CSP is also known to be very sensitive to noise and prone to overfitting. To address this issue, it has been recently proposed to regularize CSP. In this paper, we present a simple and unifying theoretical framework to design such a regularized CSP (RCSP). We then present a review of existing RCSP algorithms and describe how to cast them in this framework. We also propose four new RCSP algorithms. Finally, we compare the performances of 11 different RCSP (including the four new ones and the original CSP), on electroencephalography data from 17 subjects, from BCI competition datasets. Results showed that the best RCSP methods can outperform CSP by nearly 10% in median classification accuracy and lead to more neurophysiologically relevant spatial filters. They also enable us to perform efficient subject-to-subject transfer. Overall, the best RCSP algorithms were CSP with Tikhonov regularization and weighted Tikhonov regularization, both proposed in this paper.One of the most popular feature extraction algorithms for brain-computer interfaces (BCI) is common spatial patterns (CSPs). Despite its known efficiency and widespread use, CSP is also known to be very sensitive to noise and prone to overfitting. To address this issue, it has been recently proposed to regularize CSP. In this paper, we present a simple and unifying theoretical framework to design such a regularized CSP (RCSP). We then present a review of existing RCSP algorithms and describe how to cast them in this framework. We also propose four new RCSP algorithms. Finally, we compare the performances of 11 different RCSP (including the four new ones and the original CSP), on electroencephalography data from 17 subjects, from BCI competition datasets. Results showed that the best RCSP methods can outperform CSP by nearly 10% in median classification accuracy and lead to more neurophysiologically relevant spatial filters. They also enable us to perform efficient subject-to-subject transfer. Overall, the best RCSP algorithms were CSP with Tikhonov regularization and weighted Tikhonov regularization, both proposed in this paper.
One of the most popular feature extraction algorithms for Brain-Computer Interfaces (BCI) is the Common Spatial Patterns (CSP) algorithm. Despite its known efficiency and widespread use, CSP is also known to be very sensitive to noise and prone to overfitting. To address this issue, some groups have recently proposed to regularize CSP. In this paper, we present a simple and unifying theoretical framework to perform such a CSP regularization. We then present a mini-review of existing Regularized CSP (RCSP) algorithms, and describe how to cast them in this framework. We also propose 4 new RCSP algorithms. Finally, we compare the performances of 11 different RCSP algorithms (including these 4 new ones and the original CSP), on EEG data from 17 subjects, from BCI competition data sets. Results showed that the best RCSP methods can outperform CSP by nearly 10% in median classification accuracy and lead to more neurophysiologically relevant spatial filters. They also enable us to perform efficient subject-to-subject transfer. Overall, the best RCSP algorithms on these data were the CSP with Tikhonov Regularization and Weighted Tikhonov Regularization, both newly proposed in this paper.
Author Guan, Cuntai
Lotte, Fabien
Author_xml – sequence: 1
  givenname: Fabien
  surname: Lotte
  fullname: Lotte, Fabien
  email: fprlotte@i2r.a-star.edu.sg
  organization: Brain-Computer Interface Laboratory , Signal Processing Department, Institute for Infocomm Research, Singapore
– sequence: 2
  givenname: Cuntai
  surname: Guan
  fullname: Guan, Cuntai
  email: ctguan@i2r.a-star.edu.sg
  organization: Institute for Infocomm Research , Singapore
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23853177$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20889426$$D View this record in MEDLINE/PubMed
https://inria.hal.science/inria-00476820$$DView record in HAL
BookMark eNqFkttuEzEQhi3UiqaFB0BIyEJCXFRbfNiDzV0aCo0UDoL0FmuymU1c7drB3i0qT4-jhCD1Aq48I33_eA7_KTly3iEhzzi74JzpN_PLj1cXgqVUMCUKqR-RES8KlaWYH5ERY1xlWuj8hJzGeJvSXOXlY3KScKVzUY7I96-4GloI9pd1KzrxXecd_baB3kJLv0DfY3CR9p5Ou03wd0gvJ1P6DqNdufiW3jjbWFzS-Rp9uKfglvQT_qTjduWD7dddfEKOG2gjPt2_Z-Tm_dV8cp3NPn-YTsazrC447zPQcom11LoqQQJUhdIV4HIhm4bXqsRS6wVUTVNqkXJAUEoupBSiFqAWtZRn5HxXdw2t2QTbQbg3Hqy5Hs-MdcGCYSyvSiXYXZ7o1zs6jfRjwNibzsYa2xYc-iEaVfIiZwVn_yfzSqTNi23Nlw_IWz8El4ZOUOq7rAqdoBd7aFh0uDx0-uceCXi1ByDW0DYBXG3jX06qdNmqShzfcXXwMQZsDghnZusNs_WG2XrD7L2RNNUDTW37dGjv-gC2_afy-U5pEfHwU5EGEmlHvwEqecOq
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_eswa_2017_12_015
crossref_primary_10_3233_JIFS_201779
crossref_primary_10_1016_j_inffus_2014_02_006
crossref_primary_10_1109_JSTSP_2018_2873987
crossref_primary_10_1109_TNSRE_2020_3001990
crossref_primary_10_1109_TNSRE_2023_3321640
crossref_primary_10_1016_j_bspc_2022_104397
crossref_primary_10_3389_fnins_2020_568000
crossref_primary_10_1007_s10015_025_01024_2
crossref_primary_10_1088_1741_2552_aa8235
crossref_primary_10_3389_fninf_2016_00007
crossref_primary_10_3390_s20174749
crossref_primary_10_3390_mi12121521
crossref_primary_10_1016_j_bspc_2025_108590
crossref_primary_10_3390_s19173769
crossref_primary_10_1016_j_ifacol_2021_11_179
crossref_primary_10_1049_el_2017_1637
crossref_primary_10_1109_ACCESS_2020_2997116
crossref_primary_10_1088_1741_2552_ab839e
crossref_primary_10_1088_1741_2552_aa8232
crossref_primary_10_1007_s00521_013_1523_7
crossref_primary_10_1109_TNSRE_2017_2757519
crossref_primary_10_1007_s11042_023_17118_7
crossref_primary_10_3389_fnins_2020_584971
crossref_primary_10_1007_s11517_023_02769_3
crossref_primary_10_1109_TBME_2011_2177523
crossref_primary_10_1109_TNSRE_2019_2894914
crossref_primary_10_1155_2013_591216
crossref_primary_10_1109_TNNLS_2015_2402694
crossref_primary_10_1007_s00521_022_08027_1
crossref_primary_10_1038_s41598_018_28295_z
crossref_primary_10_1016_j_bspc_2023_105867
crossref_primary_10_3389_fnins_2017_00371
crossref_primary_10_1016_j_jneumeth_2014_04_032
crossref_primary_10_1371_journal_pone_0168766
crossref_primary_10_1002_advs_202413195
crossref_primary_10_1109_TNSRE_2019_2923315
crossref_primary_10_1109_TNSRE_2017_2684084
crossref_primary_10_1088_1741_2552_abb069
crossref_primary_10_1007_s11571_023_10030_8
crossref_primary_10_1016_j_neuroimage_2021_118809
crossref_primary_10_1088_1741_2552_ab21fd
crossref_primary_10_1109_TCYB_2020_2968625
crossref_primary_10_1109_TNSRE_2019_2915801
crossref_primary_10_1016_j_neucom_2016_08_082
crossref_primary_10_1016_j_neucom_2016_08_083
crossref_primary_10_1016_j_bspc_2021_102702
crossref_primary_10_1109_TKDE_2021_3100353
crossref_primary_10_1109_TSMC_2019_2958647
crossref_primary_10_1155_2020_7285057
crossref_primary_10_3390_s20216321
crossref_primary_10_3390_s19020379
crossref_primary_10_3390_sym14122677
crossref_primary_10_1088_1741_2552_abaa9d
crossref_primary_10_1016_j_patrec_2015_09_003
crossref_primary_10_1088_1741_2560_10_3_036015
crossref_primary_10_1016_j_neucom_2017_10_013
crossref_primary_10_1007_s11571_021_09676_z
crossref_primary_10_1186_1743_0003_10_106
crossref_primary_10_1109_TNSRE_2020_3019276
crossref_primary_10_1080_10400435_2021_1872737
crossref_primary_10_1016_j_bspc_2017_06_016
crossref_primary_10_1016_j_bspc_2021_102930
crossref_primary_10_1109_JBHI_2025_3536212
crossref_primary_10_1371_journal_pone_0146610
crossref_primary_10_1007_s00521_021_05793_2
crossref_primary_10_1007_s11265_019_1440_9
crossref_primary_10_1109_JSEN_2020_3026172
crossref_primary_10_1007_s11517_024_03137_5
crossref_primary_10_3390_brainsci15020129
crossref_primary_10_1016_j_compbiomed_2018_04_022
crossref_primary_10_1016_j_eswa_2020_113202
crossref_primary_10_1109_TNNLS_2020_3029198
crossref_primary_10_3389_fninf_2019_00047
crossref_primary_10_3390_app15095159
crossref_primary_10_3390_s23115051
crossref_primary_10_1088_1741_2552_aa5166
crossref_primary_10_3390_electronics8111273
crossref_primary_10_1016_j_neuroscience_2018_03_013
crossref_primary_10_1145_3297713
crossref_primary_10_1016_j_bspc_2018_06_008
crossref_primary_10_3389_fnins_2023_1124089
crossref_primary_10_1007_s11063_012_9228_y
crossref_primary_10_1088_1741_2552_ad0a01
crossref_primary_10_1088_1741_2560_10_1_016002
crossref_primary_10_1016_j_neucom_2020_03_055
crossref_primary_10_3390_app142110062
crossref_primary_10_3390_app142311323
crossref_primary_10_3390_s22166042
crossref_primary_10_1109_TCYB_2020_2982901
crossref_primary_10_1016_j_jneumeth_2013_11_009
crossref_primary_10_1016_j_bspc_2020_101882
crossref_primary_10_1080_2326263X_2024_2334558
crossref_primary_10_1088_1741_2552_ab64a0
crossref_primary_10_1088_1741_2560_12_6_066009
crossref_primary_10_3389_fnhum_2023_1075666
crossref_primary_10_1109_TIM_2021_3069026
crossref_primary_10_1109_ACCESS_2020_3017888
crossref_primary_10_1109_JBHI_2024_3431230
crossref_primary_10_1007_s11265_016_1192_8
crossref_primary_10_1109_TNSRE_2015_2474141
crossref_primary_10_1088_1741_2560_9_2_026013
crossref_primary_10_1109_ACCESS_2025_3563417
crossref_primary_10_1109_TNSRE_2021_3071140
crossref_primary_10_1016_j_bspc_2022_104252
crossref_primary_10_1038_s41598_022_26882_9
crossref_primary_10_1016_j_cmpb_2020_105464
crossref_primary_10_1145_3699732
crossref_primary_10_3390_electronics12051186
crossref_primary_10_1016_j_bspc_2023_105537
crossref_primary_10_1109_TNSRE_2020_2979464
crossref_primary_10_1016_j_compeleceng_2018_07_056
crossref_primary_10_1109_JETCAS_2020_3031698
crossref_primary_10_1371_journal_pone_0248511
crossref_primary_10_1016_j_bbr_2025_115652
crossref_primary_10_1109_TNNLS_2023_3292179
crossref_primary_10_1016_j_compbiomed_2019_103441
crossref_primary_10_1109_JPROC_2015_2425807
crossref_primary_10_1016_j_ijleo_2016_10_047
crossref_primary_10_1109_TNSRE_2017_2744664
crossref_primary_10_1002_acs_1293
crossref_primary_10_1109_ACCESS_2019_2939288
crossref_primary_10_1016_j_jneumeth_2019_108346
crossref_primary_10_1007_s00422_024_00984_1
crossref_primary_10_1109_JBHI_2013_2285232
crossref_primary_10_1002_ima_22700
crossref_primary_10_1016_j_jneumeth_2018_04_013
crossref_primary_10_1109_ACCESS_2018_2860633
crossref_primary_10_3390_app15116021
crossref_primary_10_1088_1741_2560_12_5_051001
crossref_primary_10_1186_s12984_018_0431_6
crossref_primary_10_1016_j_compbiomed_2018_09_021
crossref_primary_10_1155_2020_8863223
crossref_primary_10_1016_j_bspc_2019_04_034
crossref_primary_10_1016_j_knosys_2024_111904
crossref_primary_10_1016_j_bspc_2022_103582
crossref_primary_10_1109_TBME_2021_3137184
crossref_primary_10_1109_TIM_2021_3051996
crossref_primary_10_3390_s23052425
crossref_primary_10_1016_j_compbiomed_2015_03_023
crossref_primary_10_1109_TIM_2024_3420350
crossref_primary_10_20965_jaciii_2019_p0274
crossref_primary_10_1016_j_neucom_2016_01_007
crossref_primary_10_3389_fnins_2023_1288433
crossref_primary_10_1016_j_bspc_2019_101812
crossref_primary_10_1016_j_neunet_2021_06_022
crossref_primary_10_1109_TCYB_2021_3110732
crossref_primary_10_1371_journal_pone_0087056
crossref_primary_10_1109_ACCESS_2019_2941867
crossref_primary_10_1109_JBHI_2019_2922976
crossref_primary_10_1016_j_patcog_2021_107918
crossref_primary_10_1088_1742_6596_1631_1_012007
crossref_primary_10_1109_TFUZZ_2016_2540072
crossref_primary_10_3389_fnins_2023_1292724
crossref_primary_10_3390_inventions8040091
crossref_primary_10_1088_1741_2552_ac1ade
crossref_primary_10_1109_JBHI_2024_3504604
crossref_primary_10_3389_fnbot_2019_00094
crossref_primary_10_1109_TNNLS_2021_3100583
crossref_primary_10_1016_j_neuroimage_2021_118652
crossref_primary_10_1016_j_irbm_2019_05_004
crossref_primary_10_1088_1741_2552_ab405f
crossref_primary_10_1109_TBME_2013_2253608
crossref_primary_10_1109_TBME_2017_2668612
crossref_primary_10_1155_2022_2856818
crossref_primary_10_1016_j_bspc_2021_103190
crossref_primary_10_1016_j_neunet_2018_02_011
crossref_primary_10_3390_math12111727
crossref_primary_10_1051_e3sconf_202235101016
crossref_primary_10_1109_ACCESS_2019_2913154
crossref_primary_10_1016_j_bspc_2013_08_012
crossref_primary_10_1016_j_bspc_2025_108528
crossref_primary_10_1016_j_cmpb_2013_12_020
crossref_primary_10_1016_j_eswa_2016_08_007
crossref_primary_10_1109_TNSRE_2015_2477687
crossref_primary_10_1109_TBME_2014_2345458
crossref_primary_10_1088_1741_2552_acb386
crossref_primary_10_1016_j_ijpsycho_2014_07_009
crossref_primary_10_1007_s11571_016_9417_x
crossref_primary_10_1016_j_isatra_2025_07_058
crossref_primary_10_1007_s11517_018_1917_x
crossref_primary_10_1109_ACCESS_2020_2995302
crossref_primary_10_1016_j_neunet_2025_107511
crossref_primary_10_1016_j_bspc_2020_101917
crossref_primary_10_1007_s11517_024_03133_9
crossref_primary_10_1109_RBME_2018_2848228
crossref_primary_10_1109_TNSRE_2021_3049998
crossref_primary_10_3390_s19235218
crossref_primary_10_1007_s12559_017_9533_x
crossref_primary_10_1016_j_compbiomed_2015_02_010
crossref_primary_10_1080_10255842_2024_2404541
crossref_primary_10_1016_j_eswa_2020_113285
crossref_primary_10_1109_TNSRE_2022_3198434
crossref_primary_10_1109_TNSRE_2019_2893113
crossref_primary_10_1007_s10845_022_01997_y
crossref_primary_10_1088_1741_2552_abbd21
crossref_primary_10_1109_TSMC_2024_3382828
crossref_primary_10_1016_j_neucom_2019_08_037
crossref_primary_10_1109_TCDS_2018_2826840
crossref_primary_10_1109_TIFS_2018_2825940
crossref_primary_10_1109_ACCESS_2025_3553554
crossref_primary_10_1038_s41598_018_22207_x
crossref_primary_10_1049_ell2_12540
crossref_primary_10_1093_cercor_bhaa234
crossref_primary_10_1109_JPROC_2015_2413993
crossref_primary_10_1109_JSEN_2020_3016402
crossref_primary_10_3390_s24186110
crossref_primary_10_3390_math11071570
crossref_primary_10_1109_ACCESS_2025_3608083
crossref_primary_10_1073_pnas_1817207116
crossref_primary_10_1109_TNNLS_2018_2886414
crossref_primary_10_7305_automatika_2016_07_1078
crossref_primary_10_3390_brainsci6030036
crossref_primary_10_3389_fnins_2022_1009878
crossref_primary_10_1016_j_bspc_2019_01_017
crossref_primary_10_3390_brainsci13121706
crossref_primary_10_1016_j_bspc_2016_12_006
crossref_primary_10_1371_journal_pone_0125039
crossref_primary_10_1109_TFUZZ_2016_2637403
crossref_primary_10_1109_TNSRE_2023_3236372
crossref_primary_10_1038_s41598_022_08490_9
crossref_primary_10_3390_s20185283
crossref_primary_10_3390_brainsci11060696
crossref_primary_10_1007_s10994_016_5605_5
crossref_primary_10_1007_s11517_018_1883_3
crossref_primary_10_1007_s13278_018_0519_9
crossref_primary_10_1109_TBME_2014_2300492
crossref_primary_10_1080_2326263X_2020_1801112
crossref_primary_10_1155_2017_4653256
crossref_primary_10_3389_fnhum_2023_1162712
crossref_primary_10_1016_j_neunet_2023_08_008
crossref_primary_10_3389_fninf_2022_961089
crossref_primary_10_1016_j_inffus_2025_103022
crossref_primary_10_1109_TNSRE_2022_3179971
crossref_primary_10_1109_JPROC_2015_2404941
crossref_primary_10_1109_THMS_2016_2608931
crossref_primary_10_1016_j_neucom_2011_10_010
crossref_primary_10_3389_fnagi_2016_00273
crossref_primary_10_1016_j_jneumeth_2021_109425
crossref_primary_10_1016_j_imed_2024_05_004
crossref_primary_10_3389_fnhum_2023_1243750
crossref_primary_10_1109_TCYB_2018_2841847
crossref_primary_10_1371_journal_pone_0268880
crossref_primary_10_1109_TNSRE_2012_2184838
crossref_primary_10_1186_s13638_019_1497_y
crossref_primary_10_1109_JSEN_2019_2912790
crossref_primary_10_1002_hbm_23730
crossref_primary_10_1016_j_bspc_2024_106081
crossref_primary_10_1088_1741_2552_aabf16
crossref_primary_10_1109_ACCESS_2019_2908851
crossref_primary_10_1016_j_bica_2018_10_005
crossref_primary_10_1109_ACCESS_2020_2993318
crossref_primary_10_1016_j_neunet_2012_08_006
crossref_primary_10_1109_TBME_2024_3356665
crossref_primary_10_1109_TNSRE_2024_3360194
crossref_primary_10_1007_s12530_019_09280_x
crossref_primary_10_1097_JCE_0000000000000238
crossref_primary_10_1016_j_bspc_2021_103102
crossref_primary_10_3390_s19224878
crossref_primary_10_1016_j_cmpb_2017_05_009
crossref_primary_10_1002_INMD_20250003
crossref_primary_10_1109_TBME_2021_3115799
crossref_primary_10_3390_brainsci12050659
crossref_primary_10_1109_TPAMI_2012_69
crossref_primary_10_3390_s22010096
crossref_primary_10_1186_1475_925X_12_77
crossref_primary_10_1109_TNSRE_2021_3108187
crossref_primary_10_1016_j_jneumeth_2022_109607
crossref_primary_10_1109_TNSRE_2020_2978951
crossref_primary_10_3389_fnins_2025_1635588
crossref_primary_10_1109_TCDS_2020_3040438
crossref_primary_10_1109_TBME_2019_2954470
crossref_primary_10_1016_j_cogr_2022_06_001
crossref_primary_10_3390_e19030089
crossref_primary_10_1109_ACCESS_2016_2602354
crossref_primary_10_1109_COMST_2024_3396847
crossref_primary_10_1016_j_neucom_2015_02_057
crossref_primary_10_3390_s22155860
crossref_primary_10_1016_j_bspc_2021_102485
crossref_primary_10_1109_TFUZZ_2017_2728521
crossref_primary_10_3390_electronics12122743
crossref_primary_10_1016_j_bspc_2021_103205
crossref_primary_10_1088_1741_2560_11_5_056020
crossref_primary_10_1186_s40779_025_00598_z
crossref_primary_10_1007_s11042_024_18698_8
crossref_primary_10_1016_j_jneumeth_2022_109736
crossref_primary_10_1016_j_asoc_2020_106573
crossref_primary_10_1080_02564602_2019_1620138
crossref_primary_10_1109_ACCESS_2023_3285236
crossref_primary_10_1016_j_medengphy_2021_08_006
crossref_primary_10_1109_TBME_2022_3154885
crossref_primary_10_1016_j_jneumeth_2016_04_008
crossref_primary_10_1109_TBCAS_2019_2916981
crossref_primary_10_1016_j_neuroimage_2022_119666
crossref_primary_10_1109_TNSRE_2014_2312270
crossref_primary_10_1016_j_bspc_2021_103241
crossref_primary_10_1088_1755_1315_206_1_012043
crossref_primary_10_1109_JBHI_2025_3545856
crossref_primary_10_1109_ACCESS_2019_2909058
crossref_primary_10_1109_TBME_2022_3140246
crossref_primary_10_1109_TNSRE_2014_2365834
crossref_primary_10_3390_e20010007
crossref_primary_10_1016_j_neunet_2025_107806
crossref_primary_10_1080_2326263X_2017_1297192
crossref_primary_10_1016_j_compbiomed_2022_105288
crossref_primary_10_1109_TNSRE_2014_2361478
crossref_primary_10_1109_TII_2019_2925624
crossref_primary_10_1109_TCYB_2021_3061094
crossref_primary_10_1007_s10514_020_09916_x
crossref_primary_10_1016_j_jneumeth_2015_03_031
crossref_primary_10_1109_TSMC_2018_2855106
crossref_primary_10_1088_1741_2552_aadeed
crossref_primary_10_1007_s11063_021_10567_x
crossref_primary_10_1155_2013_537218
crossref_primary_10_1109_RBME_2013_2290621
crossref_primary_10_1109_TDSC_2021_3060775
crossref_primary_10_1109_ACCESS_2019_2956018
crossref_primary_10_1038_s41598_022_05079_0
crossref_primary_10_3389_fnins_2018_00227
crossref_primary_10_1016_j_bspc_2019_101748
crossref_primary_10_1016_j_bspc_2019_101749
crossref_primary_10_1016_j_cmpb_2020_105808
crossref_primary_10_1088_1741_2552_adb335
crossref_primary_10_1186_s12984_021_00820_8
crossref_primary_10_1007_s10115_022_01750_0
crossref_primary_10_1162_NECO_a_00544
crossref_primary_10_1109_TNNLS_2020_3015505
crossref_primary_10_1155_2020_8882764
crossref_primary_10_1038_s41598_017_04464_4
crossref_primary_10_3389_fnins_2020_00918
crossref_primary_10_1016_j_neuroimage_2022_118994
crossref_primary_10_1109_ACCESS_2017_2768118
crossref_primary_10_1080_2326263X_2021_1943955
crossref_primary_10_1016_j_bspc_2021_102574
crossref_primary_10_1016_j_bspc_2024_107345
crossref_primary_10_1007_s11571_025_10291_5
crossref_primary_10_1016_j_heliyon_2024_e28235
crossref_primary_10_1088_1741_2552_ad3eb3
crossref_primary_10_1109_JSEN_2017_2671842
crossref_primary_10_3389_fnins_2021_779231
crossref_primary_10_3389_fncom_2024_1431815
crossref_primary_10_1109_TCDS_2018_2875052
crossref_primary_10_1007_s12559_019_09708_1
crossref_primary_10_1162_NECO_a_00474
crossref_primary_10_1109_TNNLS_2016_2601084
crossref_primary_10_1109_TNSRE_2019_2922713
crossref_primary_10_1080_10255842_2025_2457122
crossref_primary_10_1088_1741_2552_aab2f2
crossref_primary_10_1016_j_neuroimage_2016_11_036
crossref_primary_10_1109_TNSRE_2015_2398573
crossref_primary_10_1109_ACCESS_2019_2939623
crossref_primary_10_1109_TNNLS_2020_3048385
crossref_primary_10_1371_journal_pone_0198786
crossref_primary_10_1016_j_bspc_2022_103825
crossref_primary_10_1371_journal_pone_0207351
crossref_primary_10_1016_j_compbiomed_2022_105299
crossref_primary_10_1109_JBHI_2020_2967128
crossref_primary_10_1109_TNSRE_2023_3249831
crossref_primary_10_1145_3534601
crossref_primary_10_3390_electronics9101584
crossref_primary_10_1007_s10470_023_02240_1
crossref_primary_10_1080_10255842_2023_2301421
crossref_primary_10_1109_ACCESS_2023_3270803
crossref_primary_10_1016_j_neucom_2015_11_065
crossref_primary_10_1016_j_neunet_2014_05_012
crossref_primary_10_1109_TBME_2017_2742541
crossref_primary_10_1002_ima_22038
crossref_primary_10_1016_j_bspc_2020_102026
crossref_primary_10_1109_TNSRE_2015_2466079
crossref_primary_10_1016_j_bspc_2020_102152
crossref_primary_10_1145_3397850
crossref_primary_10_1007_s10489_022_04226_4
crossref_primary_10_1109_TNSRE_2020_3037326
crossref_primary_10_3389_fnhum_2023_1070404
crossref_primary_10_3390_app11188761
crossref_primary_10_1007_s12530_019_09311_7
crossref_primary_10_1088_1741_2552_ab598f
crossref_primary_10_1109_TCYB_2019_2963709
crossref_primary_10_1016_j_asoc_2016_06_035
crossref_primary_10_1007_s11517_022_02557_5
crossref_primary_10_1007_s12555_012_0035_z
crossref_primary_10_3390_brainsci10120965
crossref_primary_10_1016_j_patcog_2024_110726
crossref_primary_10_1088_1741_2560_12_5_056009
crossref_primary_10_3390_electronics10020112
crossref_primary_10_1088_1741_2560_13_1_016005
crossref_primary_10_1109_TII_2024_3441637
crossref_primary_10_1109_TNNLS_2021_3053576
crossref_primary_10_3390_s24217084
crossref_primary_10_1088_1741_2552_ab2373
crossref_primary_10_1088_1741_2560_9_4_045009
crossref_primary_10_1109_TBME_2012_2205383
crossref_primary_10_1109_TNSRE_2016_2628057
crossref_primary_10_3390_s19030522
crossref_primary_10_1016_j_bspc_2015_12_005
crossref_primary_10_1109_THMS_2024_3395153
crossref_primary_10_1007_s11517_021_02488_7
crossref_primary_10_1109_TBME_2019_2919488
crossref_primary_10_3233_JIFS_169567
crossref_primary_10_3390_app132111787
crossref_primary_10_1007_s00521_022_07833_x
crossref_primary_10_1109_JSEN_2022_3205956
crossref_primary_10_3390_diagnostics12040995
crossref_primary_10_1109_TBME_2021_3105912
crossref_primary_10_3390_brainsci10090657
crossref_primary_10_1016_j_bspc_2021_102763
crossref_primary_10_3389_fnhum_2024_1447662
crossref_primary_10_1109_MSMC_2016_2576638
crossref_primary_10_1016_j_neucom_2021_08_119
crossref_primary_10_1088_1741_2560_11_3_036001
crossref_primary_10_1109_ACCESS_2022_3170906
crossref_primary_10_1109_MCI_2015_2501545
crossref_primary_10_1038_s44222_024_00185_2
crossref_primary_10_3390_electronics14050827
crossref_primary_10_1016_j_bspc_2025_108068
crossref_primary_10_1109_TAI_2021_3097307
crossref_primary_10_1007_s11517_023_02780_8
crossref_primary_10_1186_s12938_016_0134_9
crossref_primary_10_1109_MSMC_2021_3069145
crossref_primary_10_1016_j_bspc_2020_102144
crossref_primary_10_1162_NECO_a_00963
crossref_primary_10_1109_MSP_2023_3278074
crossref_primary_10_1088_1741_2552_aadea0
crossref_primary_10_1111_ejn_15361
crossref_primary_10_1371_journal_pone_0084341
crossref_primary_10_1016_j_jad_2021_08_071
crossref_primary_10_31083_j_jin_2019_02_17
crossref_primary_10_1371_journal_pone_0076923
crossref_primary_10_1109_ACCESS_2018_2868178
crossref_primary_10_1109_TFUZZ_2019_2892921
crossref_primary_10_1016_j_eswa_2024_123239
crossref_primary_10_1109_JSTSP_2016_2599297
crossref_primary_10_1007_s11042_025_20605_8
crossref_primary_10_3390_brainsci9120372
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_1007_s11517_020_02176_y
crossref_primary_10_1109_JBHI_2022_3151570
crossref_primary_10_1016_j_knosys_2024_112668
crossref_primary_10_1088_1741_2552_aa6baf
crossref_primary_10_1016_j_apmr_2014_08_024
crossref_primary_10_1109_JIOT_2024_3402254
crossref_primary_10_1109_MSP_2012_2219675
crossref_primary_10_1109_TNNLS_2013_2239310
crossref_primary_10_1016_j_compeleceng_2023_108737
crossref_primary_10_1109_TNSRE_2017_2778178
crossref_primary_10_22430_22565337_1392
crossref_primary_10_1109_TNNLS_2023_3236635
crossref_primary_10_1016_j_jneumeth_2014_05_007
crossref_primary_10_1109_TBME_2022_3227036
crossref_primary_10_3389_fnhum_2022_975410
crossref_primary_10_3390_s21062173
crossref_primary_10_1016_j_asoc_2015_03_028
crossref_primary_10_1088_1741_2552_ab6df3
crossref_primary_10_1007_s11042_016_4323_0
crossref_primary_10_1016_j_neucom_2013_03_044
crossref_primary_10_1109_TNSRE_2024_3364752
crossref_primary_10_1109_TNNLS_2018_2789927
crossref_primary_10_3389_fninf_2025_1559335
crossref_primary_10_1088_1361_6501_ac6cc8
crossref_primary_10_1109_TNNLS_2022_3172108
crossref_primary_10_1111_jtsa_12274
crossref_primary_10_1007_s41870_021_00857_x
crossref_primary_10_1109_TNSRE_2023_3327788
crossref_primary_10_1016_j_compbiomed_2024_108504
crossref_primary_10_1088_1361_6579_aba07b
crossref_primary_10_1016_j_eswa_2017_11_007
crossref_primary_10_1088_1741_2560_13_2_026021
crossref_primary_10_1109_THMS_2021_3056274
crossref_primary_10_1016_j_jneumeth_2022_109489
crossref_primary_10_1088_1741_2552_aae597
crossref_primary_10_1016_j_inffus_2025_102946
crossref_primary_10_1109_ACCESS_2020_2971600
crossref_primary_10_1109_TNSRE_2018_2794415
crossref_primary_10_1109_TNSRE_2019_2905894
crossref_primary_10_3390_s20195528
crossref_primary_10_1371_journal_pone_0074433
crossref_primary_10_1109_JPROC_2012_2185009
crossref_primary_10_1109_JSTSP_2016_2594945
crossref_primary_10_1109_ACCESS_2020_3016700
crossref_primary_10_1016_j_irbm_2021_02_008
crossref_primary_10_1109_TBME_2016_2628958
crossref_primary_10_1186_s12984_017_0344_9
crossref_primary_10_1007_s11517_023_02782_6
crossref_primary_10_1016_j_compbiomed_2025_109944
crossref_primary_10_3390_bios12010022
crossref_primary_10_1109_TNSRE_2016_2625039
crossref_primary_10_3390_s22135000
crossref_primary_10_1007_s11517_017_1611_4
crossref_primary_10_3390_app132111924
crossref_primary_10_1007_s13755_019_0076_2
crossref_primary_10_1088_1741_2560_10_5_056018
crossref_primary_10_3389_fnhum_2020_00103
crossref_primary_10_1007_s10548_015_0429_3
crossref_primary_10_3390_electronics14081512
crossref_primary_10_1016_j_cag_2018_05_024
crossref_primary_10_1109_JBHI_2018_2832538
crossref_primary_10_3390_s22145158
crossref_primary_10_1016_j_jneumeth_2020_108725
crossref_primary_10_1109_TNSRE_2018_2877620
crossref_primary_10_1007_s10916_020_01571_0
crossref_primary_10_1088_1741_2560_10_5_056014
crossref_primary_10_1088_1741_2552_ad2496
crossref_primary_10_1016_j_compbiomed_2015_06_001
crossref_primary_10_1109_ACCESS_2022_3178100
crossref_primary_10_1109_TNSRE_2018_2877987
crossref_primary_10_1007_s11760_022_02142_1
crossref_primary_10_1088_1741_2552_ad5404
crossref_primary_10_1109_TETCI_2022_3147030
crossref_primary_10_1109_TNSRE_2024_3432102
crossref_primary_10_1109_TCDS_2021_3099988
crossref_primary_10_1080_10400435_2021_1949405
crossref_primary_10_3389_fnins_2017_00140
crossref_primary_10_1109_TNSRE_2022_3184402
crossref_primary_10_1109_TPAMI_2014_2330598
crossref_primary_10_1007_s11517_019_02075_x
crossref_primary_10_3390_bioengineering9070323
crossref_primary_10_1007_s00500_018_3670_3
crossref_primary_10_3390_math13132157
crossref_primary_10_1016_j_neunet_2022_03_025
crossref_primary_10_3389_fnins_2017_00028
crossref_primary_10_1016_j_eswa_2015_01_031
crossref_primary_10_1016_j_jneumeth_2020_108833
crossref_primary_10_1016_j_bspc_2024_106645
crossref_primary_10_26599_BSA_2022_9050014
crossref_primary_10_1007_s11042_020_08675_2
crossref_primary_10_1007_s12021_018_9396_7
crossref_primary_10_3389_fnhum_2022_880304
crossref_primary_10_1109_LSP_2018_2823683
crossref_primary_10_1186_s40708_023_00204_9
crossref_primary_10_1088_1741_2552_abed81
crossref_primary_10_1016_j_patcog_2023_109838
crossref_primary_10_1016_j_jneumeth_2020_108949
crossref_primary_10_1088_1741_2552_ad83f4
Cites_doi 10.1016/S0047-259X(03)00096-4
10.1109/CVPR.2007.383054
10.1109/TBME.2008.921154
10.1007/978-1-4757-3264-1
10.1109/ICPR.2010.904
10.1109/86.895946
10.1016/j.neunet.2009.06.003
10.1109/5.939829
10.1109/MSP.2008.4408441
10.1109/TBME.2004.826692
10.1109/ICASSP.2010.5495183
10.1088/1741-2560/4/2/R01
10.1109/TBME.2008.2009768
10.1109/ICPR.1994.576920
10.1016/j.neunet.2009.07.020
10.1016/j.neuroimage.2009.07.045
10.1109/TBME.2004.827088
10.1088/1741-2560/3/3/003
10.1109/LSP.2009.2022557
10.1088/1741-2560/2/4/L02
10.1109/TNSRE.2006.875642
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
VOOES
DOI 10.1109/TBME.2010.2082539
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Engineering Research Database
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Applied Sciences
Computer Science
EISSN 1558-2531
EndPage 362
ExternalDocumentID oai:HAL:inria-00476820v4
2246772951
20889426
23853177
10_1109_TBME_2010_2082539
5593210
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
VOOES
ID FETCH-LOGICAL-c511t-a93dec39976a3aa75897aedb3ff1c86e699ba7ff6921c8aea883b3322c2a8bc33
IEDL.DBID RIE
ISICitedReferencesCount 800
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286514500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Sat Nov 29 14:58:30 EST 2025
Tue Oct 07 10:06:19 EDT 2025
Sun Sep 28 03:05:04 EDT 2025
Mon Jun 30 09:06:46 EDT 2025
Mon Jul 21 06:03:10 EDT 2025
Mon Jul 21 09:12:18 EDT 2025
Tue Nov 18 21:20:28 EST 2025
Sat Nov 29 03:34:57 EST 2025
Wed Aug 27 02:52:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Human
regularization
Theoretical study
Man machine dialogue
Brain-computer interfaces (BCI)
Electroencephalography
common spatial patterns (CSP)
Pattern recognition
Algorithm
Design
Brain-computer interface
electroencephalography (EEG)
Electrodiagnosis
User interface
subject-to-subject transfer
Signal processing
Biomedical engineering
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-a93dec39976a3aa75897aedb3ff1c86e699ba7ff6921c8aea883b3322c2a8bc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
SourceType-Conference Papers & Proceedings-2
ORCID 0000-0002-6888-9198
OpenAccessLink https://inria.hal.science/inria-00476820
PMID 20889426
PQID 846926759
PQPubID 85474
PageCount 8
ParticipantIDs proquest_miscellaneous_847282524
pascalfrancis_primary_23853177
crossref_primary_10_1109_TBME_2010_2082539
proquest_miscellaneous_861540510
crossref_citationtrail_10_1109_TBME_2010_2082539
proquest_journals_846926759
hal_primary_oai_HAL_inria_00476820v4
ieee_primary_5593210
pubmed_primary_20889426
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2011
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
yong (ref15) 2008
ref30
ref11
ref32
blankertz (ref9) 2008
ref2
ref1
ref17
ref16
sprent (ref25) 2001
ref18
lotte (ref29) 2009
alamgir (ref31) 2010
ref24
ref23
lu (ref10) 2009
ref22
ref21
ref28
ref27
cardillo (ref26) 0
tikhonov (ref19) 1963; 4
ref8
farquhar (ref14) 2006
ref4
ref3
ref6
ref5
xiang (ref20) 2009
reuderink (ref7) 2008
References_xml – ident: ref16
  doi: 10.1016/S0047-259X(03)00096-4
– ident: ref21
  doi: 10.1109/CVPR.2007.383054
– start-page: 17
  year: 2010
  ident: ref31
  article-title: multitask learning for brain-computer interfaces
  publication-title: Proc AISTATS
– ident: ref30
  doi: 10.1109/TBME.2008.921154
– start-page: 417
  year: 2008
  ident: ref15
  article-title: sparse spatial filter optimization for eeg channel reduction in brain-computer interface
  publication-title: Proc ICASSP
– ident: ref27
  doi: 10.1007/978-1-4757-3264-1
– ident: ref12
  doi: 10.1109/ICPR.2010.904
– year: 2008
  ident: ref9
  publication-title: NIPS 20
– ident: ref3
  doi: 10.1109/86.895946
– ident: ref28
  doi: 10.1016/j.neunet.2009.06.003
– year: 0
  ident: ref26
– year: 2001
  ident: ref25
  publication-title: Applied Nonparametric Statistical Methods
– start-page: 6599
  year: 2009
  ident: ref10
  article-title: regularized common spatial patterns with generic learning for eeg signal classification
  publication-title: Proc EMBC
– ident: ref1
  doi: 10.1109/5.939829
– ident: ref4
  doi: 10.1109/MSP.2008.4408441
– ident: ref5
  doi: 10.1109/TBME.2004.826692
– ident: ref13
  doi: 10.1109/ICASSP.2010.5495183
– year: 2009
  ident: ref29
  article-title: an efficient p300-based brain-computer interface with minimal calibration time
  publication-title: Proc AMD-NIPS
– ident: ref2
  doi: 10.1088/1741-2560/4/2/R01
– ident: ref8
  doi: 10.1109/TBME.2008.2009768
– year: 2008
  ident: ref7
  publication-title: Robustness of the common spatial patterns algorithm in the BCI-pipeline
– ident: ref18
  doi: 10.1109/ICPR.1994.576920
– volume: 4
  start-page: 1624
  year: 1963
  ident: ref19
  article-title: regularization of incorrectly posed problems
  publication-title: Soviet Math
– year: 2006
  ident: ref14
  article-title: Regularised CSP for sensor selection in BCI
  publication-title: 3rd Int BCI workshop
– ident: ref17
  doi: 10.1016/j.neunet.2009.07.020
– ident: ref32
  doi: 10.1016/j.neuroimage.2009.07.045
– ident: ref22
  doi: 10.1109/TBME.2004.827088
– ident: ref24
  doi: 10.1088/1741-2560/3/3/003
– ident: ref11
  doi: 10.1109/LSP.2009.2022557
– ident: ref23
  doi: 10.1088/1741-2560/2/4/L02
– ident: ref6
  doi: 10.1109/TNSRE.2006.875642
– start-page: 2107
  year: 2009
  ident: ref20
  article-title: boosting with spatial regularization
  publication-title: Proc NIPS
SSID ssj0014846
Score 2.570302
Snippet One of the most popular feature extraction algorithms for brain-computer interfaces (BCI) is common spatial patterns (CSPs). Despite its known efficiency and...
One of the most popular feature extraction algorithms for Brain-Computer Interfaces (BCI) is the Common Spatial Patterns (CSP) algorithm. Despite its known...
SourceID hal
proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 355
SubjectTerms Algorithm design and analysis
Algorithms
Applied sciences
Artificial Intelligence
Biological and medical sciences
Biotechnology
Brain-computer interfaces (BCI)
common spatial patterns (CSP)
Computer Science
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Computerized, statistical medical data processing and models in biomedicine
Covariance matrix
Eigenvalues and eigenfunctions
Electrodes
Electrodiagnosis. Electric activity recording
Electroencephalography
electroencephalography (EEG)
Electroencephalography - methods
Engineering Sciences
Exact sciences and technology
Humans
Investigative techniques, diagnostic techniques (general aspects)
Life Sciences
Man-Machine Systems
Medical management aid. Diagnosis aid
Medical sciences
Models, Neurological
Nervous system
Noise
Pattern Recognition, Automated - methods
Regression Analysis
regularization
Signal and Image Processing
Signal Processing, Computer-Assisted
Software
subject-to-subject transfer
Training
User-Computer Interface
Title Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms
URI https://ieeexplore.ieee.org/document/5593210
https://www.ncbi.nlm.nih.gov/pubmed/20889426
https://www.proquest.com/docview/846926759
https://www.proquest.com/docview/847282524
https://www.proquest.com/docview/861540510
https://inria.hal.science/inria-00476820
Volume 58
WOSCitedRecordID wos000286514500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-tE0LsgY-NQRhUftgTIixx3NjmrRubhrRNExqoT0SOY7NKW4Kadg_89dzFWRgSTOKtkS9K2_vIz7673wHsGiI14RMVT4STsTDCxlroKnaJEaUubZp0Z7pfT-TZmZrN9PkavBt6YZxzXfGZe08fu1x-1dgVHZXtIfqllpMRjKSUoVdryBgIFZpykhQdmGvRZzDTRO9d7J8ehiIuThuijJhCOZX3CKJUuPM6Gl1SMWQ3ZYVqJE2Lf5MP8y3-DUC7F9HRk__7CU_hcQ842TRYyDNYc_UmbNyhIdyEh6d9gn0Lvn3uZtMv5j9xhVH3SFMzGluMZsrOOy7OumXLhoXDCMf2Dz6xj10VSPuBIYD1CGlZaPhnpq4YBlE2vfreLObLy-v2OXw5Orw4OI77EQyxRSS2jI3OKmcRxMjcZMbg5kJL46oy8z61Kne51qWR3uea47VxRqmszDBIWG5UabNsG9brpnYvgfncc68mLrC0lVzlHvXklS0Ty1OTR5DcaqKwPT85jcm4Krp9SqIL0mNBeix6PUbwdrjlRyDnuE94F9U7yBGt9vH0pJjX6OgFkWbmCIZuRARbpLVBrldYBOM_7GFYR8iDYUzKCHZuDaTow0BboE1qjlsyfDgbVtF_KSljatesSERS-zAX94gg6hQUPCN4ESzv99N7M37192-9A4_CGTiV37yG9eVi5d7AA3uznLeLMbrRTI07N_oFx-cUdA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61BfE48GgphELxoSdEaOJ4k5jbtrTait1VhRbUE5Hj2O1KJUGb3R749czYaSgSVOKWyBPlMePJZ8_MNwB7ikhN-CAPB8JkoVBCh1LIKjSREqUsdRy5Pd2v42w6zc_O5OkavOtrYYwxLvnMvKdDF8uvGr2irbJ9RL9UcrIOdwZC8NhXa_UxA5H7spwoxinMpehimHEk92cHkyOfxsVpSZQQVyinBB9BpAo3fkjrF5QO6fqsUJakavFDWd_h4t8Q1P2Kjh__30s8gUcd5GRDbyNPYc3Um_DwBhHhJtybdCH2Lfj22XWnX8x_4gij-pGmZtS4GA2VnTo2zrply4b57QjDDg5P2EeXB9J-YAhhLYJa5kv-maorhm6UDS_Pm8V8efG9fQZfjo9mh6Owa8IQasRiy1DJpDIaYUyWqkQpXF7ITJmqTKyNdZ6aVMpSZdamkuO5MirPkzJBN6G5ykudJNuwUTe1eQHMppbbfGA8T1vJ89Sinmyuy0jzWKUBRNeaKHTHUE6NMi4Lt1KJZEF6LEiPRafHAN72l_zw9By3Ce-hens5ItYeDcfFvMapXhBtZopw6EoEsEVa6-U6hQWw-4c99OMIetCRZVkAO9cGUnSOoC3QJiXHRRnenPWjOIMpLKNq06xIJKMCYi5uEUHcKch9BvDcW97vu3dm_PLvT_0G7o9mk3ExPpl-2oEHfkecknFewcZysTKv4a6-Ws7bxa6bTL8Aw90W0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularizing+common+spatial+patterns+to+improve+BCI+designs%3A+unified+theory+and+new+algorithms&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Lotte%2C+Fabien&rft.au=Guan%2C+Cuntai&rft.date=2011-02-01&rft.eissn=1558-2531&rft.volume=58&rft.issue=2&rft.spage=355&rft_id=info:doi/10.1109%2FTBME.2010.2082539&rft_id=info%3Apmid%2F20889426&rft.externalDocID=20889426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon