Predicting the daily return direction of the stock market using hybrid machine learning algorithms

Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields, including stock market investment. However, few studies have focused on forecasting daily stock market returns, especially when using powerful machine le...

Full description

Saved in:
Bibliographic Details
Published in:Financial innovation (Heidelberg) Vol. 5; no. 1; pp. 1 - 20
Main Authors: Zhong, Xiao, Enke, David
Format: Journal Article
Language:English
Published: Heidelberg Springer 15.06.2019
Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:2199-4730, 2199-4730
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields, including stock market investment. However, few studies have focused on forecasting daily stock market returns, especially when using powerful machine learning techniques, such as deep neural networks (DNNs), to perform the analyses. DNNs employ various deep learning algorithms based on the combination of network structure, activation function, and model parameters, with their performance depending on the format of the data representation. This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF (ticker symbol: SPY) based on 60 financial and economic features. DNNs and traditional artificial neural networks (ANNs) are then deployed over the entire preprocessed but untransformed dataset, along with two datasets transformed via principal component analysis (PCA), to predict the daily direction of future stock market index returns. While controlling for overfitting, a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000. Moreover, a set of hypothesis testing procedures are implemented on the classification, and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset, as well as several other hybrid machine learning algorithms. In addition, the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested, including in a comparison against two standard benchmarks.
AbstractList Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields, including stock market investment. However, few studies have focused on forecasting daily stock market returns, especially when using powerful machine learning techniques, such as deep neural networks (DNNs), to perform the analyses. DNNs employ various deep learning algorithms based on the combination of network structure, activation function, and model parameters, with their performance depending on the format of the data representation. This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF (ticker symbol: SPY) based on 60 financial and economic features. DNNs and traditional artificial neural networks (ANNs) are then deployed over the entire preprocessed but untransformed dataset, along with two datasets transformed via principal component analysis (PCA), to predict the daily direction of future stock market index returns. While controlling for overfitting, a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000. Moreover, a set of hypothesis testing procedures are implemented on the classification, and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset, as well as several other hybrid machine learning algorithms. In addition, the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested, including in a comparison against two standard benchmarks.
Abstract Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields, including stock market investment. However, few studies have focused on forecasting daily stock market returns, especially when using powerful machine learning techniques, such as deep neural networks (DNNs), to perform the analyses. DNNs employ various deep learning algorithms based on the combination of network structure, activation function, and model parameters, with their performance depending on the format of the data representation. This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF (ticker symbol: SPY) based on 60 financial and economic features. DNNs and traditional artificial neural networks (ANNs) are then deployed over the entire preprocessed but untransformed dataset, along with two datasets transformed via principal component analysis (PCA), to predict the daily direction of future stock market index returns. While controlling for overfitting, a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000. Moreover, a set of hypothesis testing procedures are implemented on the classification, and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset, as well as several other hybrid machine learning algorithms. In addition, the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested, including in a comparison against two standard benchmarks.
ArticleNumber 24
Author Zhong, Xiao
Enke, David
Author_xml – sequence: 1
  givenname: Xiao
  surname: Zhong
  fullname: Zhong, Xiao
– sequence: 2
  givenname: David
  surname: Enke
  fullname: Enke, David
BookMark eNp9kUtv1TAQhS1UJErpD2CBFIl1qF-J7SWqeFSqVBawtmxncq9vU7uMfRf33-M0IBCLLqyxxucbH815Tc5STkDIW0Y_MKbHqyKpHmRPmWlH6J6-IOecGdNLJejZP_dX5LKUA6WUN07y8Zz4bwhTDDWmXVf30E0uLqcOoR4xdVNEaE85dXl-ei01h_vuweE91O5YVmh_8hin1gv7mKBbwGFa-27ZZYx1_1DekJezWwpc_q4X5MfnT9-vv_a3d19urj_e9mFgrPZaTioYE7wahZMwScaEn2ceXKAGOBvmYdJ-MLKJpHNUScZHNzivtGbgpLggN9vcKbuDfcTYfJ5sdtE-NTLurMMawwLWh0EJ4UEzpWVQQWthqBdupjSs_7RZ77dZj5h_HqFUe8htI82-5VyZ5mJkY1OpTRUwl4Iw2xCrWxdWse3RMmrXfOyWj2352DUfSxvJ_iP_-H2O4RtTmjbtAP96eg56t0EQcorFrqWliJYLxRQVvwBsha6P
CitedBy_id crossref_primary_10_3390_app12084067
crossref_primary_10_3390_math9212646
crossref_primary_10_1080_08839514_2024_2429188
crossref_primary_10_1007_s10614_022_10283_1
crossref_primary_10_1051_shsconf_20219209006
crossref_primary_10_3390_math9243268
crossref_primary_10_1142_S0218488525500229
crossref_primary_10_4018_JOEUC_333689
crossref_primary_10_1177_09711023251358054
crossref_primary_10_20900_jsr_20250022
crossref_primary_10_1186_s40854_021_00243_3
crossref_primary_10_3390_joitmc8020096
crossref_primary_10_3390_economies10020043
crossref_primary_10_1007_s10614_025_10947_8
crossref_primary_10_1016_j_irfa_2025_104098
crossref_primary_10_3846_tede_2021_12005
crossref_primary_10_1007_s00521_020_05377_6
crossref_primary_10_1007_s00500_023_08676_x
crossref_primary_10_3390_app11178240
crossref_primary_10_1177_02560909211059992
crossref_primary_10_1080_17517575_2021_2008514
crossref_primary_10_1109_ACCESS_2023_3305432
crossref_primary_10_1016_j_technovation_2024_103067
crossref_primary_10_3390_forecast6040053
crossref_primary_10_1186_s40854_022_00446_2
crossref_primary_10_1186_s40854_022_00423_9
crossref_primary_10_1016_j_asoc_2024_111469
crossref_primary_10_1016_j_procs_2019_12_017
crossref_primary_10_1016_j_procs_2019_12_019
crossref_primary_10_1016_j_eswa_2023_120840
crossref_primary_10_1007_s13369_020_04782_2
crossref_primary_10_1515_jisys_2025_0027
crossref_primary_10_3390_e25020219
crossref_primary_10_3390_su14084832
crossref_primary_10_1016_j_ememar_2020_100791
crossref_primary_10_1016_j_dajour_2021_100015
crossref_primary_10_3389_fenvs_2022_917047
crossref_primary_10_1051_e3sconf_202345301047
crossref_primary_10_1016_j_eswa_2022_116970
crossref_primary_10_1155_2021_9903518
crossref_primary_10_1002_for_2951
crossref_primary_10_1016_j_neucom_2022_07_016
crossref_primary_10_1186_s40854_020_00175_4
crossref_primary_10_1007_s10462_022_10272_8
crossref_primary_10_1016_j_asoc_2023_110469
crossref_primary_10_1016_j_asoc_2024_112305
crossref_primary_10_1016_j_resourpol_2023_103513
crossref_primary_10_1016_j_eswa_2024_126298
crossref_primary_10_1080_16081625_2023_2215234
crossref_primary_10_1109_ACCESS_2020_3004284
crossref_primary_10_1007_s42979_024_02651_5
crossref_primary_10_1051_shsconf_20207301024
crossref_primary_10_1007_s42044_022_00120_x
crossref_primary_10_1051_shsconf_20207301025
crossref_primary_10_1007_s42521_025_00156_1
crossref_primary_10_1186_s40854_022_00399_6
crossref_primary_10_1016_j_asoc_2019_105836
crossref_primary_10_3390_bdcc8060056
crossref_primary_10_1186_s40854_023_00489_z
crossref_primary_10_1007_s12652_023_04653_2
crossref_primary_10_1007_s10614_024_10566_9
crossref_primary_10_1109_ACCESS_2021_3058133
crossref_primary_10_1016_j_iimb_2025_100570
crossref_primary_10_1007_s10614_022_10333_8
crossref_primary_10_1007_s13198_025_02946_7
crossref_primary_10_3390_app13031956
crossref_primary_10_1007_s11071_025_11185_1
crossref_primary_10_3390_data7050051
crossref_primary_10_1007_s11042_023_17686_8
crossref_primary_10_31166_VoprosyIstorii202109Statyi48
crossref_primary_10_1016_j_asoc_2020_106491
crossref_primary_10_1016_j_eswa_2022_118739
crossref_primary_10_1155_2022_2850604
crossref_primary_10_1016_j_eswa_2024_125780
crossref_primary_10_1016_j_procs_2022_08_101
crossref_primary_10_1109_ACCESS_2022_3167153
crossref_primary_10_1186_s40854_025_00779_8
crossref_primary_10_1007_s10586_022_03634_y
crossref_primary_10_1002_int_22732
crossref_primary_10_1007_s10614_021_10110_z
crossref_primary_10_1007_s00521_023_08305_6
crossref_primary_10_1007_s10614_024_10760_9
crossref_primary_10_1016_j_ribaf_2025_102796
crossref_primary_10_1038_s41598_025_05122_w
crossref_primary_10_1016_j_procs_2022_11_301
crossref_primary_10_1177_21576203251360571
crossref_primary_10_1155_2022_7588303
crossref_primary_10_1007_s13132_024_02081_x
crossref_primary_10_2478_foli_2023_0022
crossref_primary_10_3390_e22080840
crossref_primary_10_12677_ecl_2024_1341847
crossref_primary_10_3390_electronics11213443
crossref_primary_10_1016_j_jbef_2025_101067
crossref_primary_10_3390_risks10040084
crossref_primary_10_26845_KJFS_2025_06_54_3_141
crossref_primary_10_1016_j_eswa_2020_114444
crossref_primary_10_3390_ijfs11030094
crossref_primary_10_1002_widm_1461
crossref_primary_10_1177_09722629251349031
crossref_primary_10_1186_s40854_021_00269_7
crossref_primary_10_1155_2021_4984265
crossref_primary_10_1016_j_eswa_2022_116659
crossref_primary_10_1186_s40854_020_00177_2
Cites_doi 10.1016/S0925-2312(00)00364-7
10.1109/72.641449
10.1016/j.neucom.2003.05.001
10.1016/j.eswa.2016.04.025
10.1016/j.eswa.2016.09.027
10.1016/j.eswa.2017.04.030
10.1016/j.eswa.2008.07.006
10.1080/10798587.2013.839287
10.1016/S0957-4174(00)00027-0
10.1016/j.neucom.2017.06.010
10.1016/j.eswa.2005.06.024
10.1007/978-1-4757-3115-6
10.1007/978-1-4757-1904-8
10.1016/S0167-9236(03)00088-5
10.1016/S0167-9236(03)00089-7
10.1007/s005210170010
10.1016/j.dss.2014.04.004
10.1016/j.ins.2003.03.023
10.1016/j.eswa.2008.08.019
10.1016/S0925-2312(01)00702-0
10.1016/S0957-4174(01)00047-1
10.1186/2251-712X-9-1
10.1016/j.eswa.2005.09.002
10.1016/S0169-2070(97)00044-7
10.1016/j.eswa.2007.08.038
10.1016/j.eswa.2016.04.031
10.1080/03081070701210303
10.1016/S0305-0548(02)00037-0
10.1038/323533a0
10.1016/S0957-4174(99)00042-1
10.1016/S0957-4174(03)00113-1
10.1016/j.ejor.2016.08.058
ContentType Journal Article
Copyright The Author(s). 2019
Financial Innovation is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: Financial Innovation is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID OT2
C6C
AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8FK
8FL
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FRNLG
F~G
K60
K6~
L.-
M0C
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
Q9U
DOA
DOI 10.1186/s40854-019-0138-0
DatabaseName EconStor
Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: Open Access资源_DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Business
Economics
EISSN 2199-4730
EndPage 20
ExternalDocumentID oai_doaj_org_article_bc5733be81784c7c88390b3af00c5f5d
10_1186_s40854_019_0138_0
237170
GroupedDBID 0R~
7WY
8FL
AAFWJ
AAKKN
ABEEZ
ABUWG
ACACY
ACGFS
ACULB
ADBBV
AFFHD
AFGXO
AFKRA
AFPKN
AHBYD
AHQJS
AHSBF
AHYZX
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
BCNDV
BENPR
BEZIV
BPHCQ
C24
C6C
CCPQU
DWQXO
EBS
EBU
EJD
FRNLG
GROUPED_DOAJ
IAO
IBB
ITC
K60
K6~
M0C
M~E
OK1
OT2
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RSV
SOJ
ADINQ
AAYXX
CITATION
3V.
7XB
8FK
AZQEC
L.-
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c511t-84d7c99cb763a4ed4113bff2cac09e215f5d8b594c994aa074126a5ab7881ea43
IEDL.DBID BENPR
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473770000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2199-4730
IngestDate Tue Oct 14 18:53:54 EDT 2025
Sat Oct 11 13:40:48 EDT 2025
Thu Oct 30 07:33:34 EDT 2025
Tue Nov 18 22:12:54 EST 2025
Fri Feb 21 02:29:54 EST 2025
Fri Dec 05 12:06:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Data representation
Return direction classification
Hybrid machine learning algorithms
Trading strategies
Daily stock return forecasting
Deep neural networks (DNNs)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-84d7c99cb763a4ed4113bff2cac09e215f5d8b594c994aa074126a5ab7881ea43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2740-0528
OpenAccessLink https://www.proquest.com/docview/2279594616?pq-origsite=%requestingapplication%
PQID 2279594616
PQPubID 2044336
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_bc5733be81784c7c88390b3af00c5f5d
proquest_journals_2279594616
crossref_citationtrail_10_1186_s40854_019_0138_0
crossref_primary_10_1186_s40854_019_0138_0
springer_journals_10_1186_s40854_019_0138_0
econis_econstor_237170
PublicationCentury 2000
PublicationDate 2019-06-15
PublicationDateYYYYMMDD 2019-06-15
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-15
  day: 15
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: Berlin/Heidelberg
PublicationTitle Financial innovation (Heidelberg)
PublicationTitleAbbrev Financ Innov
PublicationYear 2019
Publisher Springer
Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References RefenesAPNBurgessANBentzYNeural networks in financial engineering: a study in methodologyIEEE Trans Neural Netw1997861222126710.1109/72.641449
ZhangGTime series forecasting using a hybrid ARIMA and neural network modelNeurocomputing20035015917510.1016/S0925-2312(01)00702-0
ChongEHanCParkFCDeep learning networks for stock market analysis and prediction: methodology, data representations, and case studiesExpert Syst Appl20178318720510.1016/j.eswa.2017.04.030
VellidoALisboaPJGMeehanKSegmentation of the on-line shopping market using neural networksExpert Syst Appl199917430331410.1016/S0957-4174(99)00042-1
EnkeDMehdiyevNStock market prediction using a combination of stepwise regression analysis, differential evolution-based fuzzy clustering, and a fuzzy inference neural networkIntell Autom Soft Comput201319463664810.1080/10798587.2013.839287
ZhongXEnkeDA comprehensive cluster and classification mining procedure for daily stock market return forecastingNeurocomputing201726715216810.1016/j.neucom.2017.06.010
BogulluVKEnkeDDagliCUsing neural networks and technical indicators for generating stock trading signalsIntell Eng Syst Art Neural Networks, Am Soc Mechanical Eng200212721726
LamMNeural network techniques for financial performance prediction: integrating fundamental and technical analysisDecis Support Syst20043756758110.1016/S0167-9236(03)00088-5
HuangYKouGA kernel entropy manifold learning approach for financial data analysisDecis Support Syst201464314210.1016/j.dss.2014.04.004
ChunSHKimSHData mining for financial prediction and trading: application to single and multiple marketsExpert Syst Appl200426213113910.1016/S0957-4174(03)00113-1
RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsNature1986323608853353610.1038/323533a0
ZhongXEnkeDForecasting daily stock market return using dimensionality reductionExpert Syst Appl20176712613910.1016/j.eswa.2016.09.027
EnkeDThawornwongSThe use of data mining and neural networks for forecasting stock market returnsExpert Syst Appl200529492794010.1016/j.eswa.2005.06.024
KimYMEnkeDDeveloping a rule change trading system for the futures market using rough set analysisExpert Syst Appl20165916517310.1016/j.eswa.2016.04.031
Dechter R (1986) Learning while searching in constraint-satisfaction problems. AAAI-86 Proceedings, Palo Alto, pp 178–183
KimKJHanIGenetic algorithms approach to feature discretization in artificial neural networks for the predication of stock price indexExpert Syst Appl200019212513210.1016/S0957-4174(00)00027-0
NavidiWStatistics for engineers and scientists20113New YorkMcGraw-Hill
van der MaatenLJPostmaEOvan den HerikHJDimensionality reduction: a comparative reviewJ Mach Learn Res2009101–416671
WangYFPredicting stock price using fuzzy grey prediction systemExpert Syst Appl2002221333910.1016/S0957-4174(01)00047-1
HussainAJKnowlesALisboaPJGEl-DeredyWFinancial time series prediction using polynomial pipelined neural networksExpert Syst Appl2007351186119910.1016/j.eswa.2007.08.038
Sorzano, C. O. S., Vargas, J., & Pascual-Montano, A. (2014). A survey of dimensionality reduction techniques. arXiv: 1403.2877v1 [stat.ML]
ZhangGPatuwoBEHuMYForecasting with artificial neural networks: the state of the artInt J Forecast1998141356210.1016/S0169-2070(97)00044-7
HuangYKouGPengYNonlinear manifold learning for early warning in financial marketsEur J Oper Res2017258269270210.1016/j.ejor.2016.08.058
VanstoneBFinnieGAn empirical methodology for developing stock market trading systems using artificial neural networksExpert Syst Appl20093636668668010.1016/j.eswa.2008.08.019
AmornwattanaSEnkeDDagliCA hybrid options pricing model using a neural network for estimating volatilityInt J Gen Syst200736555857310.1080/03081070701210303
ChenASLeungMTDaoukHApplication of neural networks to an emerging financial market: forecasting and trading the Taiwan stock indexComput Oper Res200330690192310.1016/S0305-0548(02)00037-0
NiakiSTAHoseinzadeSForecasting S&P 500 index using artificial neural networks and design of experimentsJ Indust Eng Int2013911910.1186/2251-712X-9-1
Aizenberg I, Aizenberg NN, Vandewalle JPL (2000) Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Springer Science & Business Media, Boston
AtsalakisGSValavanisKPSurveying stock market forecasting techniques – part II: soft computing methodsExpert Syst Appl20093635941595010.1016/j.eswa.2008.07.006
CaoLTayFFinancial forecasting using vector machinesNeural Comput & Applic20011018419210.1007/s005210170010
ThawornwongSDagliCEnkeDUsing neural networks and technical analysis indicators for predicting stock trends. Intelligent Engineering Systems through Artificial Neural NetworksAm Soc Mech Eng200111739744
ChiangWCEnkeDWuTWangRAn adaptive stock index trading decision support systemExpert Syst Appl20165919520710.1016/j.eswa.2016.04.025
JolliffeTPrincipal component analysis1986New YorkSpringer-Verlag10.1007/978-1-4757-1904-8
NayakSCMisraBBEstimating stock closing indices using a GA-weighted condensed polynomial neural networkFinanc Innov2018421122
ArmanoGMarchesiMMurruAA hybrid genetic-neural architecture for stock indexes forecastingInf Sci2005170133310.1016/j.ins.2003.03.023
ShenLLohHTApplying rough sets to market timing decisionsDecis Support Syst200437458359710.1016/S0167-9236(03)00089-7
ThawornwongSEnkeDThe adaptive selection of financial and economic variables for use with artificial neural networksNeurocomputing20045620523210.1016/j.neucom.2003.05.001
HansenJVNelsonRDData mining of time series using stacked generalizersNeurocomputing2002431–417318410.1016/S0925-2312(00)00364-7
TureMKurtIComparison of four different time series methods to forecast hepatitis a virus infectionExpert Syst Appl2006311414610.1016/j.eswa.2005.09.002
Ivakhnenko AG (1973) Cybernetic predicting devices. CCM Information Corporation, Amsterdam
SH Chun (138_CR10) 2004; 26
L Shen (138_CR28) 2004; 37
AJ Hussain (138_CR17) 2007; 35
E Chong (138_CR9) 2017; 83
W Navidi (138_CR23) 2011
STA Niaki (138_CR25) 2013; 9
S Amornwattana (138_CR2) 2007; 36
GS Atsalakis (138_CR4) 2009; 36
G Zhang (138_CR38) 1998; 14
M Lam (138_CR22) 2004; 37
KJ Kim (138_CR20) 2000; 19
M Ture (138_CR32) 2006; 31
S Thawornwong (138_CR31) 2004; 56
WC Chiang (138_CR8) 2016; 59
X Zhong (138_CR40) 2017; 267
D Enke (138_CR12) 2013; 19
YF Wang (138_CR36) 2002; 22
AS Chen (138_CR7) 2003; 30
G Zhang (138_CR37) 2003; 50
X Zhong (138_CR39) 2017; 67
138_CR29
138_CR1
VK Bogullu (138_CR5) 2002; 12
G Armano (138_CR3) 2005; 170
YM Kim (138_CR21) 2016; 59
A Vellido (138_CR35) 1999; 17
Y Huang (138_CR15) 2014; 64
JV Hansen (138_CR14) 2002; 43
L Cao (138_CR6) 2001; 10
D Enke (138_CR13) 2005; 29
B Vanstone (138_CR34) 2009; 36
Y Huang (138_CR16) 2017; 258
T Jolliffe (138_CR19) 1986
APN Refenes (138_CR26) 1997; 8
LJ van der Maaten (138_CR33) 2009; 10
138_CR11
S Thawornwong (138_CR30) 2001; 11
SC Nayak (138_CR24) 2018; 4
138_CR18
DE Rumelhart (138_CR27) 1986; 323
References_xml – reference: NayakSCMisraBBEstimating stock closing indices using a GA-weighted condensed polynomial neural networkFinanc Innov2018421122
– reference: Sorzano, C. O. S., Vargas, J., & Pascual-Montano, A. (2014). A survey of dimensionality reduction techniques. arXiv: 1403.2877v1 [stat.ML]
– reference: HansenJVNelsonRDData mining of time series using stacked generalizersNeurocomputing2002431–417318410.1016/S0925-2312(00)00364-7
– reference: ThawornwongSDagliCEnkeDUsing neural networks and technical analysis indicators for predicting stock trends. Intelligent Engineering Systems through Artificial Neural NetworksAm Soc Mech Eng200111739744
– reference: Dechter R (1986) Learning while searching in constraint-satisfaction problems. AAAI-86 Proceedings, Palo Alto, pp 178–183
– reference: VanstoneBFinnieGAn empirical methodology for developing stock market trading systems using artificial neural networksExpert Syst Appl20093636668668010.1016/j.eswa.2008.08.019
– reference: CaoLTayFFinancial forecasting using vector machinesNeural Comput & Applic20011018419210.1007/s005210170010
– reference: ShenLLohHTApplying rough sets to market timing decisionsDecis Support Syst200437458359710.1016/S0167-9236(03)00089-7
– reference: HussainAJKnowlesALisboaPJGEl-DeredyWFinancial time series prediction using polynomial pipelined neural networksExpert Syst Appl2007351186119910.1016/j.eswa.2007.08.038
– reference: KimYMEnkeDDeveloping a rule change trading system for the futures market using rough set analysisExpert Syst Appl20165916517310.1016/j.eswa.2016.04.031
– reference: RefenesAPNBurgessANBentzYNeural networks in financial engineering: a study in methodologyIEEE Trans Neural Netw1997861222126710.1109/72.641449
– reference: TureMKurtIComparison of four different time series methods to forecast hepatitis a virus infectionExpert Syst Appl2006311414610.1016/j.eswa.2005.09.002
– reference: AtsalakisGSValavanisKPSurveying stock market forecasting techniques – part II: soft computing methodsExpert Syst Appl20093635941595010.1016/j.eswa.2008.07.006
– reference: LamMNeural network techniques for financial performance prediction: integrating fundamental and technical analysisDecis Support Syst20043756758110.1016/S0167-9236(03)00088-5
– reference: van der MaatenLJPostmaEOvan den HerikHJDimensionality reduction: a comparative reviewJ Mach Learn Res2009101–416671
– reference: HuangYKouGPengYNonlinear manifold learning for early warning in financial marketsEur J Oper Res2017258269270210.1016/j.ejor.2016.08.058
– reference: ChenASLeungMTDaoukHApplication of neural networks to an emerging financial market: forecasting and trading the Taiwan stock indexComput Oper Res200330690192310.1016/S0305-0548(02)00037-0
– reference: KimKJHanIGenetic algorithms approach to feature discretization in artificial neural networks for the predication of stock price indexExpert Syst Appl200019212513210.1016/S0957-4174(00)00027-0
– reference: NiakiSTAHoseinzadeSForecasting S&P 500 index using artificial neural networks and design of experimentsJ Indust Eng Int2013911910.1186/2251-712X-9-1
– reference: EnkeDMehdiyevNStock market prediction using a combination of stepwise regression analysis, differential evolution-based fuzzy clustering, and a fuzzy inference neural networkIntell Autom Soft Comput201319463664810.1080/10798587.2013.839287
– reference: RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsNature1986323608853353610.1038/323533a0
– reference: VellidoALisboaPJGMeehanKSegmentation of the on-line shopping market using neural networksExpert Syst Appl199917430331410.1016/S0957-4174(99)00042-1
– reference: ZhangGPatuwoBEHuMYForecasting with artificial neural networks: the state of the artInt J Forecast1998141356210.1016/S0169-2070(97)00044-7
– reference: ZhongXEnkeDForecasting daily stock market return using dimensionality reductionExpert Syst Appl20176712613910.1016/j.eswa.2016.09.027
– reference: BogulluVKEnkeDDagliCUsing neural networks and technical indicators for generating stock trading signalsIntell Eng Syst Art Neural Networks, Am Soc Mechanical Eng200212721726
– reference: Ivakhnenko AG (1973) Cybernetic predicting devices. CCM Information Corporation, Amsterdam
– reference: AmornwattanaSEnkeDDagliCA hybrid options pricing model using a neural network for estimating volatilityInt J Gen Syst200736555857310.1080/03081070701210303
– reference: Aizenberg I, Aizenberg NN, Vandewalle JPL (2000) Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Springer Science & Business Media, Boston
– reference: ChongEHanCParkFCDeep learning networks for stock market analysis and prediction: methodology, data representations, and case studiesExpert Syst Appl20178318720510.1016/j.eswa.2017.04.030
– reference: HuangYKouGA kernel entropy manifold learning approach for financial data analysisDecis Support Syst201464314210.1016/j.dss.2014.04.004
– reference: JolliffeTPrincipal component analysis1986New YorkSpringer-Verlag10.1007/978-1-4757-1904-8
– reference: ArmanoGMarchesiMMurruAA hybrid genetic-neural architecture for stock indexes forecastingInf Sci2005170133310.1016/j.ins.2003.03.023
– reference: ThawornwongSEnkeDThe adaptive selection of financial and economic variables for use with artificial neural networksNeurocomputing20045620523210.1016/j.neucom.2003.05.001
– reference: EnkeDThawornwongSThe use of data mining and neural networks for forecasting stock market returnsExpert Syst Appl200529492794010.1016/j.eswa.2005.06.024
– reference: ZhangGTime series forecasting using a hybrid ARIMA and neural network modelNeurocomputing20035015917510.1016/S0925-2312(01)00702-0
– reference: ChunSHKimSHData mining for financial prediction and trading: application to single and multiple marketsExpert Syst Appl200426213113910.1016/S0957-4174(03)00113-1
– reference: WangYFPredicting stock price using fuzzy grey prediction systemExpert Syst Appl2002221333910.1016/S0957-4174(01)00047-1
– reference: NavidiWStatistics for engineers and scientists20113New YorkMcGraw-Hill
– reference: ChiangWCEnkeDWuTWangRAn adaptive stock index trading decision support systemExpert Syst Appl20165919520710.1016/j.eswa.2016.04.025
– reference: ZhongXEnkeDA comprehensive cluster and classification mining procedure for daily stock market return forecastingNeurocomputing201726715216810.1016/j.neucom.2017.06.010
– volume: 43
  start-page: 173
  issue: 1–4
  year: 2002
  ident: 138_CR14
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(00)00364-7
– volume: 8
  start-page: 1222
  issue: 6
  year: 1997
  ident: 138_CR26
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.641449
– volume: 56
  start-page: 205
  year: 2004
  ident: 138_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.05.001
– volume: 59
  start-page: 195
  year: 2016
  ident: 138_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.04.025
– volume: 67
  start-page: 126
  year: 2017
  ident: 138_CR39
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.09.027
– volume: 10
  start-page: 66
  issue: 1–41
  year: 2009
  ident: 138_CR33
  publication-title: J Mach Learn Res
– ident: 138_CR29
– volume: 83
  start-page: 187
  year: 2017
  ident: 138_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.030
– volume: 4
  start-page: 1
  issue: 21
  year: 2018
  ident: 138_CR24
  publication-title: Financ Innov
– volume: 36
  start-page: 5941
  issue: 3
  year: 2009
  ident: 138_CR4
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.07.006
– volume: 19
  start-page: 636
  issue: 4
  year: 2013
  ident: 138_CR12
  publication-title: Intell Autom Soft Comput
  doi: 10.1080/10798587.2013.839287
– volume: 19
  start-page: 125
  issue: 2
  year: 2000
  ident: 138_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(00)00027-0
– volume: 267
  start-page: 152
  year: 2017
  ident: 138_CR40
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.010
– volume: 29
  start-page: 927
  issue: 4
  year: 2005
  ident: 138_CR13
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2005.06.024
– ident: 138_CR1
  doi: 10.1007/978-1-4757-3115-6
– ident: 138_CR18
– volume-title: Principal component analysis
  year: 1986
  ident: 138_CR19
  doi: 10.1007/978-1-4757-1904-8
– volume: 37
  start-page: 567
  year: 2004
  ident: 138_CR22
  publication-title: Decis Support Syst
  doi: 10.1016/S0167-9236(03)00088-5
– volume: 37
  start-page: 583
  issue: 4
  year: 2004
  ident: 138_CR28
  publication-title: Decis Support Syst
  doi: 10.1016/S0167-9236(03)00089-7
– volume: 10
  start-page: 184
  year: 2001
  ident: 138_CR6
  publication-title: Neural Comput & Applic
  doi: 10.1007/s005210170010
– ident: 138_CR11
– volume: 64
  start-page: 31
  year: 2014
  ident: 138_CR15
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2014.04.004
– volume: 170
  start-page: 3
  issue: 1
  year: 2005
  ident: 138_CR3
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2003.03.023
– volume: 36
  start-page: 6668
  issue: 3
  year: 2009
  ident: 138_CR34
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.08.019
– volume: 50
  start-page: 159
  year: 2003
  ident: 138_CR37
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 11
  start-page: 739
  year: 2001
  ident: 138_CR30
  publication-title: Am Soc Mech Eng
– volume: 22
  start-page: 33
  issue: 1
  year: 2002
  ident: 138_CR36
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(01)00047-1
– volume: 9
  start-page: 1
  issue: 1
  year: 2013
  ident: 138_CR25
  publication-title: J Indust Eng Int
  doi: 10.1186/2251-712X-9-1
– volume: 31
  start-page: 41
  issue: 1
  year: 2006
  ident: 138_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2005.09.002
– volume: 14
  start-page: 35
  issue: 1
  year: 1998
  ident: 138_CR38
  publication-title: Int J Forecast
  doi: 10.1016/S0169-2070(97)00044-7
– volume: 35
  start-page: 1186
  year: 2007
  ident: 138_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.08.038
– volume: 59
  start-page: 165
  year: 2016
  ident: 138_CR21
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.04.031
– volume: 36
  start-page: 558
  issue: 5
  year: 2007
  ident: 138_CR2
  publication-title: Int J Gen Syst
  doi: 10.1080/03081070701210303
– volume: 12
  start-page: 721
  year: 2002
  ident: 138_CR5
  publication-title: Intell Eng Syst Art Neural Networks, Am Soc Mechanical Eng
– volume: 30
  start-page: 901
  issue: 6
  year: 2003
  ident: 138_CR7
  publication-title: Comput Oper Res
  doi: 10.1016/S0305-0548(02)00037-0
– volume-title: Statistics for engineers and scientists
  year: 2011
  ident: 138_CR23
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 138_CR27
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 17
  start-page: 303
  issue: 4
  year: 1999
  ident: 138_CR35
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(99)00042-1
– volume: 26
  start-page: 131
  issue: 2
  year: 2004
  ident: 138_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(03)00113-1
– volume: 258
  start-page: 692
  issue: 2
  year: 2017
  ident: 138_CR16
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2016.08.058
SSID ssj0002118426
Score 2.5175087
Snippet Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields, including...
Abstract Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,...
SourceID doaj
proquest
crossref
springer
econis
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial intelligence
Big Data
Classification
Daily stock return forecasting
Data representation
Datasets
Deep neural networks (DNNs)
Economics
Economics and Finance
Hybrid machine learning algorithms
Hypothesis testing
Machine learning
Macroeconomics/Monetary Economics//Financial Economics
Neural networks
Political Economy/Economic Systems
Principal components analysis
Return direction classification
Securities markets
Stock market indexes
Trading strategies
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxUxEA5SingRfxWfVsnBk7I02U02ydGWFg9SelDpLSSzyevD1_dk97XQ_96Z7L7aCurFw7KQZJcwM8l8QybfMPZOOBNVDbIyFOkoAFXhnqcro2UAGTOoUs7n22dzemrPz93ZnVJflBM20gOPgjuIQIx9MVlprAIDFj26iE3IQoDOuqPdF1HPnWCK9mAMayz6nukYU9r2YCAqL0q4oPQgXOTiniMqfP101wiD0MVwD23-dkBa_M7JE_Z4Aoz84zjRp-xBWj1jD7f56s9ZPOvprIWylzmCOd6FxfKG9wldyYqPDgtFz9e59CLUg-_8slx15vSPOb-4oUtb2EZZlYlPZSTmPCzn636xubgcXrCvJ8dfjj5VU-GEChA_bSqrOgPOQcTNI6jUKSmbmHMNAYRL6ORRbjZqp3CQCoFQRd0GHSJxy6egmj22s1qv0kvGhalzMk7r0CEQ6JxNqelcTiqDxUfOmNhK0cPEKk7FLZa-RBe29aPgPQrek-C9mLH3t5_8GCk1_jb4kFRzO5DYsEsD2oifbMT_y0ZmbG9UrKcXZZ36usE4Fv--v1W0n9bu4IlTEWXTynbGPmyV_6v7j1N99T-m-po9qouNtpXU-2xn01-lN2wXrjeLoX9bjPwnuLr91w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqtoJeoBQqFkrlAydQRJw4sX0siIoDqioeVW-WPbG3q253UbKt1H_fGSdZVARIcIgi-SXHnvF8E8-Dsde5UV4WIDJFmo4EkBmeeVWmKuFA-AgypfM5-6xOTvT5uTkd_Li70dp9vJJMJ3Via12_6ygWF1lMkH0Pcinq6Vso7TRx45evZ-sfK6jRaBQ7ww3mb3vek0EpVD-5GaH-OevuAc1f7kaTyDl-_F-T3WWPBoTJj3qSeMI2wmKPPRgN3PfYw9EXuXvK_GlLFzVk-swRCfLGzea3vA0ohxa8l3a4b3wZUy3iRLjkV8lPmtN4U35xSx5fWEYmmYEPOSim3M2ny3a2urjqnrHvxx-_ffiUDVkXMkDwtcq0bBQYAx5PHidDI4UofYwFOMhNQIQQq0b7ykhsJJ0jSFLUrnKeAtMHJ8t9trlYLsJzxnNVxKBMVbkGUURjdAhlY2KQETQ-YsLycR8sDCHJKTPG3CbVRNe2X0eL62hpHW0-YW_WXX708Tj-1vg9be66IYXSTgXLdmoHzrQeKCSkD1ooLUGBRsiY-9LFPAf61gnb70nD0otMVm1RohKMox-MpGIHxu8sBWTEtalFPWFvR9L4Wf3Hqb74p9Yv2U6RaKvORHXANlftdXjFtuFmNevaw8QPd2W9BRg
  priority: 102
  providerName: Springer Nature
Title Predicting the daily return direction of the stock market using hybrid machine learning algorithms
URI https://www.econstor.eu/handle/10419/237170
https://link.springer.com/article/10.1186/s40854-019-0138-0
https://www.proquest.com/docview/2279594616
https://doaj.org/article/bc5733be81784c7c88390b3af00c5f5d
Volume 5
WOSCitedRecordID wos000473770000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access资源_DOAJ
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection (ProQuest)
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: M0C
  dateStart: 20190601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: PIMPY
  dateStart: 20190601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: 7WY
  dateStart: 20190601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: BENPR
  dateStart: 20190601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: RSV
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2199-4730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118426
  issn: 2199-4730
  databaseCode: C24
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZohxAXxq-Jsq3ygRMomp04iXNCW7UJJFZFA8Y4WbbjdBVdO5KCtP-e9xyn05DYhUMa1XYtu89-77P9_D1C3rAiNyK2PMpxpSOsFRHovDTKU64tN7UVPpzP-ad8OpUXF0UZNtza4FbZ60SvqKuVxT3yA2S6SwuR8ez99c8Io0bh6WoIoTEgW8hUJoZk6-h4Wp5tdlkgVYINCseZXGYHLVJ6oeMFugnBZGd3DJLn7cc7R7AYnbd3UOdfB6Xe_pxs_2_Ln5InAXnSw26oPCMP3PI5edQ7vr8gpmzw0AbdoCmgQlrp-eKGNg5s0pJ2lg9kSFe1zwXMaH_QK39nmmIdM3p5g7e_IA3dMx0N8ShmVC9m0Jz15VX7knw9Of4y-RCFCAyRBSC2jqSoclsU1oAW0sJVgvPE1HVstWWFA7RQp5U00DkoJLRGeBJnOtUGSeqdFskOGS5XS_eKUJbHtYM_ItUVIIqqkM4lVVE7UVsJDx8R1otB2UBPjlEyFsovU2SmOskpkJxCySk2Im83P7nuuDnuK3yEst0URFptn7BqZirMUmUs0kMaJ3kuhc2tBPjITKJrxiz2dUR2upGh8IXuqypOYEEMte_1sldBCbTqVvAj8q4fPbfZ_2zq6_sr2yWPYz98s4ine2S4bn65ffLQ_l7P22ZMBvm37-MwD-DbJBZjv9EAn6dsAjnlx9MSSgzOPp__AYiQE78
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoALz1YsFPABLqCoduIkzgEhKFStuqx6KKg3YzvOdsV2tyQLaP8Uv5EZJ9mqSPTWA4coUuw4sf3Nyx7PALzgRW5l7ESUk6UjnZMR8rw0ylNhnLCVkyGdz5dhPhqp4-PicA1-92dhyK2y54mBUZdzR2vk2xTpLi1kJrK3Z98jyhpFu6t9Co0WFgd--QtNtubN_gec35dxvPvxaGcv6rIKRA6Vi0WkZJm7onAWKctIX0ohEltVsTOOFx4lYJWWyuKnsJI0hkRunJnUWAq87o1MsN1rcF1KJAdyFeQ7qzUdNKYUSrxu81SobLuhAGLk5kFOScha-AXxF7IE0AknNH0nzQUd969t2SDtdu_-b-N0D-50ejV71xLCfVjzswdws3frfwj2sKYtKXLyZqjzstJMpktWe5S4M9bKdUQom1ehFDVi942dhhPhjNoYs5MlnW3DZ-R86lmXbWPMzHSM3V-cnDYb8PlKergJ67P5zD8CxvO48jjwqSlRXyoL5X1SFpWXlVN4iQHwftq164KvUw6QqQ5GmMp0ixSNSNGEFM0H8Gr1ylkbeeSyyu8JS6uKFDQ8PJjXY93xIG0dBb-0XolcSZc7hcoxt4mpOHfU1wFstkjUdCPnXB0naO5j61s91nTH4hp9DrQBvO7Rel78z199fHljz-HW3tGnoR7ujw6ewO04kE4WiXQL1hf1D_8Ubrifi0lTPwu0x-DrVYP4D6__aPs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELVQiwqXAoWKLQV84ASKGidObB-BdgWiWq0EVL1ZtmNvV2yzVRIq9e-ZcZJFRYCEOESRYidx7LHnTTzzhpBXqRKWZ44lAi0d7hxPYM0rElEw45gNjsd0PmenYjaT5-dqPuQ5bUdv93FLso9pQJamuju6qkI_xWV51CIvF3pPoK8PzFiw2bc55gxCc_3z2eYnC1g3ElTQsJv52ztv6aNI248hR_DSZXsLdP6yTxrVz_TBfzf8IdkdkCd924vKI3LH13tkZ3R83yP3xhjl9jGx8wY3cNAlmgJCpJVZrm5o40E_1bTXgjCedB1iKeBH941exvhpis9b0IsbjASDa-iq6emQm2JBzWqxbpbdxWX7hHydnnx5_yEZsjEkDkBZl0heCaeUs7AiGe4rzlhuQ8iccanygBxCUUlbKA6VuDEIVbLSFMYiYb03PN8nW_W69k8JTUUWvFBFYSpAF5WS3ueVCp4HJ-FgE5KOY6LdQFWOGTNWOposstR9P2roR439qNMJeb255arn6fhb5Xc40JuKSLEdL6ybhR5mrLYOqSKtl0xI7oSTACVTm5uQpg6_dUL2ezHReEJXVp3lYBzD0w9HsdHDgtBqJGqEvilZOSFvRjH5WfzHph78U-2XZGd-PNWnH2efnpH7WRSzMmHFIdnqmu_-Obnrrrtl27yI0-QHFXYQ4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+daily+return+direction+of+the+stock+market+using+hybrid+machine+learning+algorithms&rft.jtitle=Financial+innovation+%28Heidelberg%29&rft.au=Zhong%2C+Xiao&rft.au=Enke%2C+David&rft.date=2019-06-15&rft.pub=Springer+Nature+B.V&rft.eissn=2199-4730&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1186%2Fs40854-019-0138-0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4730&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4730&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4730&client=summon