Predicting the daily return direction of the stock market using hybrid machine learning algorithms
Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields, including stock market investment. However, few studies have focused on forecasting daily stock market returns, especially when using powerful machine le...
Gespeichert in:
| Veröffentlicht in: | Financial innovation (Heidelberg) Jg. 5; H. 1; S. 1 - 20 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Heidelberg
Springer
15.06.2019
Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
| Schlagworte: | |
| ISSN: | 2199-4730, 2199-4730 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields, including stock market investment. However, few studies have focused on forecasting daily stock market returns, especially when using powerful machine learning techniques, such as deep neural networks (DNNs), to perform the analyses. DNNs employ various deep learning algorithms based on the combination of network structure, activation function, and model parameters, with their performance depending on the format of the data representation. This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF (ticker symbol: SPY) based on 60 financial and economic features. DNNs and traditional artificial neural networks (ANNs) are then deployed over the entire preprocessed but untransformed dataset, along with two datasets transformed via principal component analysis (PCA), to predict the daily direction of future stock market index returns. While controlling for overfitting, a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000. Moreover, a set of hypothesis testing procedures are implemented on the classification, and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset, as well as several other hybrid machine learning algorithms. In addition, the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested, including in a comparison against two standard benchmarks. |
|---|---|
| AbstractList | Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields, including stock market investment. However, few studies have focused on forecasting daily stock market returns, especially when using powerful machine learning techniques, such as deep neural networks (DNNs), to perform the analyses. DNNs employ various deep learning algorithms based on the combination of network structure, activation function, and model parameters, with their performance depending on the format of the data representation. This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF (ticker symbol: SPY) based on 60 financial and economic features. DNNs and traditional artificial neural networks (ANNs) are then deployed over the entire preprocessed but untransformed dataset, along with two datasets transformed via principal component analysis (PCA), to predict the daily direction of future stock market index returns. While controlling for overfitting, a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000. Moreover, a set of hypothesis testing procedures are implemented on the classification, and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset, as well as several other hybrid machine learning algorithms. In addition, the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested, including in a comparison against two standard benchmarks. Abstract Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields, including stock market investment. However, few studies have focused on forecasting daily stock market returns, especially when using powerful machine learning techniques, such as deep neural networks (DNNs), to perform the analyses. DNNs employ various deep learning algorithms based on the combination of network structure, activation function, and model parameters, with their performance depending on the format of the data representation. This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF (ticker symbol: SPY) based on 60 financial and economic features. DNNs and traditional artificial neural networks (ANNs) are then deployed over the entire preprocessed but untransformed dataset, along with two datasets transformed via principal component analysis (PCA), to predict the daily direction of future stock market index returns. While controlling for overfitting, a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000. Moreover, a set of hypothesis testing procedures are implemented on the classification, and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset, as well as several other hybrid machine learning algorithms. In addition, the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested, including in a comparison against two standard benchmarks. |
| ArticleNumber | 24 |
| Author | Zhong, Xiao Enke, David |
| Author_xml | – sequence: 1 givenname: Xiao surname: Zhong fullname: Zhong, Xiao – sequence: 2 givenname: David surname: Enke fullname: Enke, David |
| BookMark | eNp9kUtv1TAQhS1UJErpD2CBFIl1qF-J7SWqeFSqVBawtmxncq9vU7uMfRf33-M0IBCLLqyxxucbH815Tc5STkDIW0Y_MKbHqyKpHmRPmWlH6J6-IOecGdNLJejZP_dX5LKUA6WUN07y8Zz4bwhTDDWmXVf30E0uLqcOoR4xdVNEaE85dXl-ei01h_vuweE91O5YVmh_8hin1gv7mKBbwGFa-27ZZYx1_1DekJezWwpc_q4X5MfnT9-vv_a3d19urj_e9mFgrPZaTioYE7wahZMwScaEn2ceXKAGOBvmYdJ-MLKJpHNUScZHNzivtGbgpLggN9vcKbuDfcTYfJ5sdtE-NTLurMMawwLWh0EJ4UEzpWVQQWthqBdupjSs_7RZ77dZj5h_HqFUe8htI82-5VyZ5mJkY1OpTRUwl4Iw2xCrWxdWse3RMmrXfOyWj2352DUfSxvJ_iP_-H2O4RtTmjbtAP96eg56t0EQcorFrqWliJYLxRQVvwBsha6P |
| CitedBy_id | crossref_primary_10_3390_app12084067 crossref_primary_10_3390_math9212646 crossref_primary_10_1080_08839514_2024_2429188 crossref_primary_10_1007_s10614_022_10283_1 crossref_primary_10_1051_shsconf_20219209006 crossref_primary_10_3390_math9243268 crossref_primary_10_1142_S0218488525500229 crossref_primary_10_4018_JOEUC_333689 crossref_primary_10_1177_09711023251358054 crossref_primary_10_20900_jsr_20250022 crossref_primary_10_1186_s40854_021_00243_3 crossref_primary_10_3390_joitmc8020096 crossref_primary_10_3390_economies10020043 crossref_primary_10_1007_s10614_025_10947_8 crossref_primary_10_1016_j_irfa_2025_104098 crossref_primary_10_3846_tede_2021_12005 crossref_primary_10_1007_s00521_020_05377_6 crossref_primary_10_1007_s00500_023_08676_x crossref_primary_10_3390_app11178240 crossref_primary_10_1177_02560909211059992 crossref_primary_10_1080_17517575_2021_2008514 crossref_primary_10_1109_ACCESS_2023_3305432 crossref_primary_10_1016_j_technovation_2024_103067 crossref_primary_10_3390_forecast6040053 crossref_primary_10_1186_s40854_022_00446_2 crossref_primary_10_1186_s40854_022_00423_9 crossref_primary_10_1016_j_asoc_2024_111469 crossref_primary_10_1016_j_procs_2019_12_017 crossref_primary_10_1016_j_procs_2019_12_019 crossref_primary_10_1016_j_eswa_2023_120840 crossref_primary_10_1007_s13369_020_04782_2 crossref_primary_10_1515_jisys_2025_0027 crossref_primary_10_3390_e25020219 crossref_primary_10_3390_su14084832 crossref_primary_10_1016_j_ememar_2020_100791 crossref_primary_10_1016_j_dajour_2021_100015 crossref_primary_10_3389_fenvs_2022_917047 crossref_primary_10_1051_e3sconf_202345301047 crossref_primary_10_1016_j_eswa_2022_116970 crossref_primary_10_1155_2021_9903518 crossref_primary_10_1002_for_2951 crossref_primary_10_1016_j_neucom_2022_07_016 crossref_primary_10_1186_s40854_020_00175_4 crossref_primary_10_1007_s10462_022_10272_8 crossref_primary_10_1016_j_asoc_2023_110469 crossref_primary_10_1016_j_asoc_2024_112305 crossref_primary_10_1016_j_resourpol_2023_103513 crossref_primary_10_1016_j_eswa_2024_126298 crossref_primary_10_1080_16081625_2023_2215234 crossref_primary_10_1109_ACCESS_2020_3004284 crossref_primary_10_1007_s42979_024_02651_5 crossref_primary_10_1051_shsconf_20207301024 crossref_primary_10_1007_s42044_022_00120_x crossref_primary_10_1051_shsconf_20207301025 crossref_primary_10_1007_s42521_025_00156_1 crossref_primary_10_1186_s40854_022_00399_6 crossref_primary_10_1016_j_asoc_2019_105836 crossref_primary_10_3390_bdcc8060056 crossref_primary_10_1186_s40854_023_00489_z crossref_primary_10_1007_s12652_023_04653_2 crossref_primary_10_1007_s10614_024_10566_9 crossref_primary_10_1109_ACCESS_2021_3058133 crossref_primary_10_1016_j_iimb_2025_100570 crossref_primary_10_1007_s10614_022_10333_8 crossref_primary_10_1007_s13198_025_02946_7 crossref_primary_10_3390_app13031956 crossref_primary_10_1007_s11071_025_11185_1 crossref_primary_10_3390_data7050051 crossref_primary_10_1007_s11042_023_17686_8 crossref_primary_10_31166_VoprosyIstorii202109Statyi48 crossref_primary_10_1016_j_asoc_2020_106491 crossref_primary_10_1016_j_eswa_2022_118739 crossref_primary_10_1155_2022_2850604 crossref_primary_10_1016_j_eswa_2024_125780 crossref_primary_10_1016_j_procs_2022_08_101 crossref_primary_10_1109_ACCESS_2022_3167153 crossref_primary_10_1186_s40854_025_00779_8 crossref_primary_10_1007_s10586_022_03634_y crossref_primary_10_1002_int_22732 crossref_primary_10_1007_s10614_021_10110_z crossref_primary_10_1007_s00521_023_08305_6 crossref_primary_10_1007_s10614_024_10760_9 crossref_primary_10_1016_j_ribaf_2025_102796 crossref_primary_10_1038_s41598_025_05122_w crossref_primary_10_1016_j_procs_2022_11_301 crossref_primary_10_1177_21576203251360571 crossref_primary_10_1155_2022_7588303 crossref_primary_10_1007_s13132_024_02081_x crossref_primary_10_2478_foli_2023_0022 crossref_primary_10_3390_e22080840 crossref_primary_10_12677_ecl_2024_1341847 crossref_primary_10_3390_electronics11213443 crossref_primary_10_1016_j_jbef_2025_101067 crossref_primary_10_3390_risks10040084 crossref_primary_10_26845_KJFS_2025_06_54_3_141 crossref_primary_10_1016_j_eswa_2020_114444 crossref_primary_10_3390_ijfs11030094 crossref_primary_10_1002_widm_1461 crossref_primary_10_1177_09722629251349031 crossref_primary_10_1186_s40854_021_00269_7 crossref_primary_10_1155_2021_4984265 crossref_primary_10_1016_j_eswa_2022_116659 crossref_primary_10_1186_s40854_020_00177_2 |
| Cites_doi | 10.1016/S0925-2312(00)00364-7 10.1109/72.641449 10.1016/j.neucom.2003.05.001 10.1016/j.eswa.2016.04.025 10.1016/j.eswa.2016.09.027 10.1016/j.eswa.2017.04.030 10.1016/j.eswa.2008.07.006 10.1080/10798587.2013.839287 10.1016/S0957-4174(00)00027-0 10.1016/j.neucom.2017.06.010 10.1016/j.eswa.2005.06.024 10.1007/978-1-4757-3115-6 10.1007/978-1-4757-1904-8 10.1016/S0167-9236(03)00088-5 10.1016/S0167-9236(03)00089-7 10.1007/s005210170010 10.1016/j.dss.2014.04.004 10.1016/j.ins.2003.03.023 10.1016/j.eswa.2008.08.019 10.1016/S0925-2312(01)00702-0 10.1016/S0957-4174(01)00047-1 10.1186/2251-712X-9-1 10.1016/j.eswa.2005.09.002 10.1016/S0169-2070(97)00044-7 10.1016/j.eswa.2007.08.038 10.1016/j.eswa.2016.04.031 10.1080/03081070701210303 10.1016/S0305-0548(02)00037-0 10.1038/323533a0 10.1016/S0957-4174(99)00042-1 10.1016/S0957-4174(03)00113-1 10.1016/j.ejor.2016.08.058 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2019 Financial Innovation is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s). 2019 – notice: Financial Innovation is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | OT2 C6C AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8FK 8FL ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FRNLG F~G K60 K6~ L.- M0C PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI Q9U DOA |
| DOI | 10.1186/s40854-019-0138-0 |
| DatabaseName | EconStor Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business Economics |
| EISSN | 2199-4730 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_bc5733be81784c7c88390b3af00c5f5d 10_1186_s40854_019_0138_0 237170 |
| GroupedDBID | 0R~ 7WY 8FL AAFWJ AAKKN ABEEZ ABUWG ACACY ACGFS ACULB ADBBV AFFHD AFGXO AFKRA AFPKN AHBYD AHQJS AHSBF AHYZX AKVCP ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG BCNDV BENPR BEZIV BPHCQ C24 C6C CCPQU DWQXO EBS EBU EJD FRNLG GROUPED_DOAJ IAO IBB ITC K60 K6~ M0C M~E OK1 OT2 PHGZM PHGZT PIMPY PQBIZ PQBZA PQQKQ PROAC RSV SOJ ADINQ AAYXX CITATION 3V. 7XB 8FK AZQEC L.- PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c511t-84d7c99cb763a4ed4113bff2cac09e215f5d8b594c994aa074126a5ab7881ea43 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 132 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473770000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2199-4730 |
| IngestDate | Tue Oct 14 18:53:54 EDT 2025 Sat Oct 11 13:40:48 EDT 2025 Thu Oct 30 07:33:34 EDT 2025 Tue Nov 18 22:12:54 EST 2025 Fri Feb 21 02:29:54 EST 2025 Fri Dec 05 12:06:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Data representation Return direction classification Hybrid machine learning algorithms Trading strategies Daily stock return forecasting Deep neural networks (DNNs) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511t-84d7c99cb763a4ed4113bff2cac09e215f5d8b594c994aa074126a5ab7881ea43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2740-0528 |
| OpenAccessLink | https://www.proquest.com/docview/2279594616?pq-origsite=%requestingapplication% |
| PQID | 2279594616 |
| PQPubID | 2044336 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bc5733be81784c7c88390b3af00c5f5d proquest_journals_2279594616 crossref_citationtrail_10_1186_s40854_019_0138_0 crossref_primary_10_1186_s40854_019_0138_0 springer_journals_10_1186_s40854_019_0138_0 econis_econstor_237170 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-15 |
| PublicationDateYYYYMMDD | 2019-06-15 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg – name: Berlin/Heidelberg |
| PublicationTitle | Financial innovation (Heidelberg) |
| PublicationTitleAbbrev | Financ Innov |
| PublicationYear | 2019 |
| Publisher | Springer Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
| References | RefenesAPNBurgessANBentzYNeural networks in financial engineering: a study in methodologyIEEE Trans Neural Netw1997861222126710.1109/72.641449 ZhangGTime series forecasting using a hybrid ARIMA and neural network modelNeurocomputing20035015917510.1016/S0925-2312(01)00702-0 ChongEHanCParkFCDeep learning networks for stock market analysis and prediction: methodology, data representations, and case studiesExpert Syst Appl20178318720510.1016/j.eswa.2017.04.030 VellidoALisboaPJGMeehanKSegmentation of the on-line shopping market using neural networksExpert Syst Appl199917430331410.1016/S0957-4174(99)00042-1 EnkeDMehdiyevNStock market prediction using a combination of stepwise regression analysis, differential evolution-based fuzzy clustering, and a fuzzy inference neural networkIntell Autom Soft Comput201319463664810.1080/10798587.2013.839287 ZhongXEnkeDA comprehensive cluster and classification mining procedure for daily stock market return forecastingNeurocomputing201726715216810.1016/j.neucom.2017.06.010 BogulluVKEnkeDDagliCUsing neural networks and technical indicators for generating stock trading signalsIntell Eng Syst Art Neural Networks, Am Soc Mechanical Eng200212721726 LamMNeural network techniques for financial performance prediction: integrating fundamental and technical analysisDecis Support Syst20043756758110.1016/S0167-9236(03)00088-5 HuangYKouGA kernel entropy manifold learning approach for financial data analysisDecis Support Syst201464314210.1016/j.dss.2014.04.004 ChunSHKimSHData mining for financial prediction and trading: application to single and multiple marketsExpert Syst Appl200426213113910.1016/S0957-4174(03)00113-1 RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsNature1986323608853353610.1038/323533a0 ZhongXEnkeDForecasting daily stock market return using dimensionality reductionExpert Syst Appl20176712613910.1016/j.eswa.2016.09.027 EnkeDThawornwongSThe use of data mining and neural networks for forecasting stock market returnsExpert Syst Appl200529492794010.1016/j.eswa.2005.06.024 KimYMEnkeDDeveloping a rule change trading system for the futures market using rough set analysisExpert Syst Appl20165916517310.1016/j.eswa.2016.04.031 Dechter R (1986) Learning while searching in constraint-satisfaction problems. AAAI-86 Proceedings, Palo Alto, pp 178–183 KimKJHanIGenetic algorithms approach to feature discretization in artificial neural networks for the predication of stock price indexExpert Syst Appl200019212513210.1016/S0957-4174(00)00027-0 NavidiWStatistics for engineers and scientists20113New YorkMcGraw-Hill van der MaatenLJPostmaEOvan den HerikHJDimensionality reduction: a comparative reviewJ Mach Learn Res2009101–416671 WangYFPredicting stock price using fuzzy grey prediction systemExpert Syst Appl2002221333910.1016/S0957-4174(01)00047-1 HussainAJKnowlesALisboaPJGEl-DeredyWFinancial time series prediction using polynomial pipelined neural networksExpert Syst Appl2007351186119910.1016/j.eswa.2007.08.038 Sorzano, C. O. S., Vargas, J., & Pascual-Montano, A. (2014). A survey of dimensionality reduction techniques. arXiv: 1403.2877v1 [stat.ML] ZhangGPatuwoBEHuMYForecasting with artificial neural networks: the state of the artInt J Forecast1998141356210.1016/S0169-2070(97)00044-7 HuangYKouGPengYNonlinear manifold learning for early warning in financial marketsEur J Oper Res2017258269270210.1016/j.ejor.2016.08.058 VanstoneBFinnieGAn empirical methodology for developing stock market trading systems using artificial neural networksExpert Syst Appl20093636668668010.1016/j.eswa.2008.08.019 AmornwattanaSEnkeDDagliCA hybrid options pricing model using a neural network for estimating volatilityInt J Gen Syst200736555857310.1080/03081070701210303 ChenASLeungMTDaoukHApplication of neural networks to an emerging financial market: forecasting and trading the Taiwan stock indexComput Oper Res200330690192310.1016/S0305-0548(02)00037-0 NiakiSTAHoseinzadeSForecasting S&P 500 index using artificial neural networks and design of experimentsJ Indust Eng Int2013911910.1186/2251-712X-9-1 Aizenberg I, Aizenberg NN, Vandewalle JPL (2000) Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Springer Science & Business Media, Boston AtsalakisGSValavanisKPSurveying stock market forecasting techniques – part II: soft computing methodsExpert Syst Appl20093635941595010.1016/j.eswa.2008.07.006 CaoLTayFFinancial forecasting using vector machinesNeural Comput & Applic20011018419210.1007/s005210170010 ThawornwongSDagliCEnkeDUsing neural networks and technical analysis indicators for predicting stock trends. Intelligent Engineering Systems through Artificial Neural NetworksAm Soc Mech Eng200111739744 ChiangWCEnkeDWuTWangRAn adaptive stock index trading decision support systemExpert Syst Appl20165919520710.1016/j.eswa.2016.04.025 JolliffeTPrincipal component analysis1986New YorkSpringer-Verlag10.1007/978-1-4757-1904-8 NayakSCMisraBBEstimating stock closing indices using a GA-weighted condensed polynomial neural networkFinanc Innov2018421122 ArmanoGMarchesiMMurruAA hybrid genetic-neural architecture for stock indexes forecastingInf Sci2005170133310.1016/j.ins.2003.03.023 ShenLLohHTApplying rough sets to market timing decisionsDecis Support Syst200437458359710.1016/S0167-9236(03)00089-7 ThawornwongSEnkeDThe adaptive selection of financial and economic variables for use with artificial neural networksNeurocomputing20045620523210.1016/j.neucom.2003.05.001 HansenJVNelsonRDData mining of time series using stacked generalizersNeurocomputing2002431–417318410.1016/S0925-2312(00)00364-7 TureMKurtIComparison of four different time series methods to forecast hepatitis a virus infectionExpert Syst Appl2006311414610.1016/j.eswa.2005.09.002 Ivakhnenko AG (1973) Cybernetic predicting devices. CCM Information Corporation, Amsterdam SH Chun (138_CR10) 2004; 26 L Shen (138_CR28) 2004; 37 AJ Hussain (138_CR17) 2007; 35 E Chong (138_CR9) 2017; 83 W Navidi (138_CR23) 2011 STA Niaki (138_CR25) 2013; 9 S Amornwattana (138_CR2) 2007; 36 GS Atsalakis (138_CR4) 2009; 36 G Zhang (138_CR38) 1998; 14 M Lam (138_CR22) 2004; 37 KJ Kim (138_CR20) 2000; 19 M Ture (138_CR32) 2006; 31 S Thawornwong (138_CR31) 2004; 56 WC Chiang (138_CR8) 2016; 59 X Zhong (138_CR40) 2017; 267 D Enke (138_CR12) 2013; 19 YF Wang (138_CR36) 2002; 22 AS Chen (138_CR7) 2003; 30 G Zhang (138_CR37) 2003; 50 X Zhong (138_CR39) 2017; 67 138_CR29 138_CR1 VK Bogullu (138_CR5) 2002; 12 G Armano (138_CR3) 2005; 170 YM Kim (138_CR21) 2016; 59 A Vellido (138_CR35) 1999; 17 Y Huang (138_CR15) 2014; 64 JV Hansen (138_CR14) 2002; 43 L Cao (138_CR6) 2001; 10 D Enke (138_CR13) 2005; 29 B Vanstone (138_CR34) 2009; 36 Y Huang (138_CR16) 2017; 258 T Jolliffe (138_CR19) 1986 APN Refenes (138_CR26) 1997; 8 LJ van der Maaten (138_CR33) 2009; 10 138_CR11 S Thawornwong (138_CR30) 2001; 11 SC Nayak (138_CR24) 2018; 4 138_CR18 DE Rumelhart (138_CR27) 1986; 323 |
| References_xml | – reference: NayakSCMisraBBEstimating stock closing indices using a GA-weighted condensed polynomial neural networkFinanc Innov2018421122 – reference: Sorzano, C. O. S., Vargas, J., & Pascual-Montano, A. (2014). A survey of dimensionality reduction techniques. arXiv: 1403.2877v1 [stat.ML] – reference: HansenJVNelsonRDData mining of time series using stacked generalizersNeurocomputing2002431–417318410.1016/S0925-2312(00)00364-7 – reference: ThawornwongSDagliCEnkeDUsing neural networks and technical analysis indicators for predicting stock trends. Intelligent Engineering Systems through Artificial Neural NetworksAm Soc Mech Eng200111739744 – reference: Dechter R (1986) Learning while searching in constraint-satisfaction problems. AAAI-86 Proceedings, Palo Alto, pp 178–183 – reference: VanstoneBFinnieGAn empirical methodology for developing stock market trading systems using artificial neural networksExpert Syst Appl20093636668668010.1016/j.eswa.2008.08.019 – reference: CaoLTayFFinancial forecasting using vector machinesNeural Comput & Applic20011018419210.1007/s005210170010 – reference: ShenLLohHTApplying rough sets to market timing decisionsDecis Support Syst200437458359710.1016/S0167-9236(03)00089-7 – reference: HussainAJKnowlesALisboaPJGEl-DeredyWFinancial time series prediction using polynomial pipelined neural networksExpert Syst Appl2007351186119910.1016/j.eswa.2007.08.038 – reference: KimYMEnkeDDeveloping a rule change trading system for the futures market using rough set analysisExpert Syst Appl20165916517310.1016/j.eswa.2016.04.031 – reference: RefenesAPNBurgessANBentzYNeural networks in financial engineering: a study in methodologyIEEE Trans Neural Netw1997861222126710.1109/72.641449 – reference: TureMKurtIComparison of four different time series methods to forecast hepatitis a virus infectionExpert Syst Appl2006311414610.1016/j.eswa.2005.09.002 – reference: AtsalakisGSValavanisKPSurveying stock market forecasting techniques – part II: soft computing methodsExpert Syst Appl20093635941595010.1016/j.eswa.2008.07.006 – reference: LamMNeural network techniques for financial performance prediction: integrating fundamental and technical analysisDecis Support Syst20043756758110.1016/S0167-9236(03)00088-5 – reference: van der MaatenLJPostmaEOvan den HerikHJDimensionality reduction: a comparative reviewJ Mach Learn Res2009101–416671 – reference: HuangYKouGPengYNonlinear manifold learning for early warning in financial marketsEur J Oper Res2017258269270210.1016/j.ejor.2016.08.058 – reference: ChenASLeungMTDaoukHApplication of neural networks to an emerging financial market: forecasting and trading the Taiwan stock indexComput Oper Res200330690192310.1016/S0305-0548(02)00037-0 – reference: KimKJHanIGenetic algorithms approach to feature discretization in artificial neural networks for the predication of stock price indexExpert Syst Appl200019212513210.1016/S0957-4174(00)00027-0 – reference: NiakiSTAHoseinzadeSForecasting S&P 500 index using artificial neural networks and design of experimentsJ Indust Eng Int2013911910.1186/2251-712X-9-1 – reference: EnkeDMehdiyevNStock market prediction using a combination of stepwise regression analysis, differential evolution-based fuzzy clustering, and a fuzzy inference neural networkIntell Autom Soft Comput201319463664810.1080/10798587.2013.839287 – reference: RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsNature1986323608853353610.1038/323533a0 – reference: VellidoALisboaPJGMeehanKSegmentation of the on-line shopping market using neural networksExpert Syst Appl199917430331410.1016/S0957-4174(99)00042-1 – reference: ZhangGPatuwoBEHuMYForecasting with artificial neural networks: the state of the artInt J Forecast1998141356210.1016/S0169-2070(97)00044-7 – reference: ZhongXEnkeDForecasting daily stock market return using dimensionality reductionExpert Syst Appl20176712613910.1016/j.eswa.2016.09.027 – reference: BogulluVKEnkeDDagliCUsing neural networks and technical indicators for generating stock trading signalsIntell Eng Syst Art Neural Networks, Am Soc Mechanical Eng200212721726 – reference: Ivakhnenko AG (1973) Cybernetic predicting devices. CCM Information Corporation, Amsterdam – reference: AmornwattanaSEnkeDDagliCA hybrid options pricing model using a neural network for estimating volatilityInt J Gen Syst200736555857310.1080/03081070701210303 – reference: Aizenberg I, Aizenberg NN, Vandewalle JPL (2000) Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Springer Science & Business Media, Boston – reference: ChongEHanCParkFCDeep learning networks for stock market analysis and prediction: methodology, data representations, and case studiesExpert Syst Appl20178318720510.1016/j.eswa.2017.04.030 – reference: HuangYKouGA kernel entropy manifold learning approach for financial data analysisDecis Support Syst201464314210.1016/j.dss.2014.04.004 – reference: JolliffeTPrincipal component analysis1986New YorkSpringer-Verlag10.1007/978-1-4757-1904-8 – reference: ArmanoGMarchesiMMurruAA hybrid genetic-neural architecture for stock indexes forecastingInf Sci2005170133310.1016/j.ins.2003.03.023 – reference: ThawornwongSEnkeDThe adaptive selection of financial and economic variables for use with artificial neural networksNeurocomputing20045620523210.1016/j.neucom.2003.05.001 – reference: EnkeDThawornwongSThe use of data mining and neural networks for forecasting stock market returnsExpert Syst Appl200529492794010.1016/j.eswa.2005.06.024 – reference: ZhangGTime series forecasting using a hybrid ARIMA and neural network modelNeurocomputing20035015917510.1016/S0925-2312(01)00702-0 – reference: ChunSHKimSHData mining for financial prediction and trading: application to single and multiple marketsExpert Syst Appl200426213113910.1016/S0957-4174(03)00113-1 – reference: WangYFPredicting stock price using fuzzy grey prediction systemExpert Syst Appl2002221333910.1016/S0957-4174(01)00047-1 – reference: NavidiWStatistics for engineers and scientists20113New YorkMcGraw-Hill – reference: ChiangWCEnkeDWuTWangRAn adaptive stock index trading decision support systemExpert Syst Appl20165919520710.1016/j.eswa.2016.04.025 – reference: ZhongXEnkeDA comprehensive cluster and classification mining procedure for daily stock market return forecastingNeurocomputing201726715216810.1016/j.neucom.2017.06.010 – volume: 43 start-page: 173 issue: 1–4 year: 2002 ident: 138_CR14 publication-title: Neurocomputing doi: 10.1016/S0925-2312(00)00364-7 – volume: 8 start-page: 1222 issue: 6 year: 1997 ident: 138_CR26 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.641449 – volume: 56 start-page: 205 year: 2004 ident: 138_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2003.05.001 – volume: 59 start-page: 195 year: 2016 ident: 138_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.04.025 – volume: 67 start-page: 126 year: 2017 ident: 138_CR39 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.09.027 – volume: 10 start-page: 66 issue: 1–41 year: 2009 ident: 138_CR33 publication-title: J Mach Learn Res – ident: 138_CR29 – volume: 83 start-page: 187 year: 2017 ident: 138_CR9 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.030 – volume: 4 start-page: 1 issue: 21 year: 2018 ident: 138_CR24 publication-title: Financ Innov – volume: 36 start-page: 5941 issue: 3 year: 2009 ident: 138_CR4 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.07.006 – volume: 19 start-page: 636 issue: 4 year: 2013 ident: 138_CR12 publication-title: Intell Autom Soft Comput doi: 10.1080/10798587.2013.839287 – volume: 19 start-page: 125 issue: 2 year: 2000 ident: 138_CR20 publication-title: Expert Syst Appl doi: 10.1016/S0957-4174(00)00027-0 – volume: 267 start-page: 152 year: 2017 ident: 138_CR40 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.010 – volume: 29 start-page: 927 issue: 4 year: 2005 ident: 138_CR13 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2005.06.024 – ident: 138_CR1 doi: 10.1007/978-1-4757-3115-6 – ident: 138_CR18 – volume-title: Principal component analysis year: 1986 ident: 138_CR19 doi: 10.1007/978-1-4757-1904-8 – volume: 37 start-page: 567 year: 2004 ident: 138_CR22 publication-title: Decis Support Syst doi: 10.1016/S0167-9236(03)00088-5 – volume: 37 start-page: 583 issue: 4 year: 2004 ident: 138_CR28 publication-title: Decis Support Syst doi: 10.1016/S0167-9236(03)00089-7 – volume: 10 start-page: 184 year: 2001 ident: 138_CR6 publication-title: Neural Comput & Applic doi: 10.1007/s005210170010 – ident: 138_CR11 – volume: 64 start-page: 31 year: 2014 ident: 138_CR15 publication-title: Decis Support Syst doi: 10.1016/j.dss.2014.04.004 – volume: 170 start-page: 3 issue: 1 year: 2005 ident: 138_CR3 publication-title: Inf Sci doi: 10.1016/j.ins.2003.03.023 – volume: 36 start-page: 6668 issue: 3 year: 2009 ident: 138_CR34 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.08.019 – volume: 50 start-page: 159 year: 2003 ident: 138_CR37 publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 11 start-page: 739 year: 2001 ident: 138_CR30 publication-title: Am Soc Mech Eng – volume: 22 start-page: 33 issue: 1 year: 2002 ident: 138_CR36 publication-title: Expert Syst Appl doi: 10.1016/S0957-4174(01)00047-1 – volume: 9 start-page: 1 issue: 1 year: 2013 ident: 138_CR25 publication-title: J Indust Eng Int doi: 10.1186/2251-712X-9-1 – volume: 31 start-page: 41 issue: 1 year: 2006 ident: 138_CR32 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2005.09.002 – volume: 14 start-page: 35 issue: 1 year: 1998 ident: 138_CR38 publication-title: Int J Forecast doi: 10.1016/S0169-2070(97)00044-7 – volume: 35 start-page: 1186 year: 2007 ident: 138_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.08.038 – volume: 59 start-page: 165 year: 2016 ident: 138_CR21 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.04.031 – volume: 36 start-page: 558 issue: 5 year: 2007 ident: 138_CR2 publication-title: Int J Gen Syst doi: 10.1080/03081070701210303 – volume: 12 start-page: 721 year: 2002 ident: 138_CR5 publication-title: Intell Eng Syst Art Neural Networks, Am Soc Mechanical Eng – volume: 30 start-page: 901 issue: 6 year: 2003 ident: 138_CR7 publication-title: Comput Oper Res doi: 10.1016/S0305-0548(02)00037-0 – volume-title: Statistics for engineers and scientists year: 2011 ident: 138_CR23 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 138_CR27 publication-title: Nature doi: 10.1038/323533a0 – volume: 17 start-page: 303 issue: 4 year: 1999 ident: 138_CR35 publication-title: Expert Syst Appl doi: 10.1016/S0957-4174(99)00042-1 – volume: 26 start-page: 131 issue: 2 year: 2004 ident: 138_CR10 publication-title: Expert Syst Appl doi: 10.1016/S0957-4174(03)00113-1 – volume: 258 start-page: 692 issue: 2 year: 2017 ident: 138_CR16 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2016.08.058 |
| SSID | ssj0002118426 |
| Score | 2.5175087 |
| Snippet | Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields, including... Abstract Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,... |
| SourceID | doaj proquest crossref springer econis |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial intelligence Big Data Classification Daily stock return forecasting Data representation Datasets Deep neural networks (DNNs) Economics Economics and Finance Hybrid machine learning algorithms Hypothesis testing Machine learning Macroeconomics/Monetary Economics//Financial Economics Neural networks Political Economy/Economic Systems Principal components analysis Return direction classification Securities markets Stock market indexes Trading strategies |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yRLyIX8PplBw8KWXtmrbpUcXhaeygsFtI0mQr7kPaKuy_971-zE1QL54KaRrC773kvde8_B4h17FJmLS-xYImoYMWH380MSdirh8oz4ewqCo2EQ2HfDyORxulvjAnrKIHroDrKY2MfcpwL-JMR5qDRXeVL63r6sAGCe6-4PVsBFO4B0NYw8H21MeYHg97OVJ5YcIFpgfBIne3DFHJ1493jSAITfMtb_PbAWlpdwaH5KB2GOldNdEjsmMWx2SvyVc_IWqU4VkLZi9TcOZoItPZimYGTMmCVgYLoKdLW74FV0-_0nl51ZniGBM6XeGlLWjDrEpD6zISEypnk2WWFtN5fkpeBo_PD09OXTjB0eA_FQ5nSaTjWCvYPCQDaXier6zta6nd2ICRB9y4CmIGnZiU6FX0QxlIhdzyRjK_TVqL5cKcESpZHCXKWCW5ZUxyrhReKoyhCTxdFXWI26AodM0qjsUtZqKMLngoKuAFAC8QeOF2yM36k7eKUuO3zvcomnVHZMMuG0BHRK0j4i8d6ZB2JViBD8w6FX0f4lgYvdsIWtRrNxfIqQjYhF7YIbeN8L9e_zjV8_-Y6gXZ75c6Gjpe0CWtIns3l2RXfxRpnl2VSv4JkxX9qA priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Journals New Starts & Take-Overs Collection dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hmDZeYHSrVmCTH3gCRUsaJ3EeAVHtqar4Ut8s27HbitJOSUHiv-fOSYpAbNL2FMlfcuw73-_s-wA4ym3BlYsdJTRJA5L4dNHEg4yHcaKjGNWiOtlENhyK8TgfNX7cVWvt3j5J-pPas7VIf1YUi4ssJsi-B7kU9fQtlHaCuPHy6nZ9sYIajUCx07xgvtvzlQzyofrJzQj1z1n1Cmi-eRv1Imew-1-T_Qw7DcJkpzVJ7MGGXXTgY2vg3oFPrS9y9QX0qKSHGjJ9ZogEWaFm8ydWWpRDC1ZLO9w3tnS-FnGiuWP33k-a0XgTNn0ijy8sI5NMy5ocFBOm5pNlOVtN76uvcDO4uD7_FTRZFwKD4GsVCF5kJs-NxpNHcdzKKIq1c32jTJhbRAguKYROco6NuFIESfqpSpSmwPRW8bgLm4vlwn4DpnieFdo6rYTjXAmhNXkk5liEMFlnPQjbfZCmCUlOmTHm0qsmIpX1OkpcR0nrKMMeHK-7_K7jcfyt8Rlt7rohhdL2BctyIhvOlNpQSEhtBc6Mm8wIhIyhjpULQ0P_2oNuTRqSPmSyKvsxKsE4-mFLKrJh_EpSQEZcmzRKe3DSksZL9R-nuv9PrQ9gu-9pKw2i5BA2V-WD_Q4fzONqVpU_PD88AyMyBOk priority: 102 providerName: Springer Nature |
| Title | Predicting the daily return direction of the stock market using hybrid machine learning algorithms |
| URI | https://www.econstor.eu/handle/10419/237170 https://link.springer.com/article/10.1186/s40854-019-0138-0 https://www.proquest.com/docview/2279594616 https://doaj.org/article/bc5733be81784c7c88390b3af00c5f5d |
| Volume | 5 |
| WOSCitedRecordID | wos000473770000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: 7WY dateStart: 20190601 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Collection (ProQuest) customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: M0C dateStart: 20190601 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: BENPR dateStart: 20190601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: PIMPY dateStart: 20190601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: RSV dateStart: 20150101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2199-4730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118426 issn: 2199-4730 databaseCode: C24 dateStart: 20151201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB51l6riUvpCXQorH3pqFZGHkzinqqxA7YFVRF_0ZNmOs6y67EKyVOLfd8ZxFlGpXHpJFNuxbI3t-TwefwPwtrAVV3VSU0CTLCCNT4YmHuQ8TFIdJbgt6oJN5NOpOD8vSm9wa71bZb8muoW6WhmykR8S011a8CzKPlxdBxQ1ik5XfQiNAWwRUxkfwtbR8bQ821hZMFWgDvLHmZHIDlui9CLHC3ITwske3lNIjref7hzhZnTe3kOdfx2UOv1zsvO_LX8GTz3yZB-7ofIcHtnlC3jSO76_BF02dGhDbtAMUSGr1HxxyxqLOmnJOs2HMmSr2uUiZjS_2KW7M82ojhm7uKXbX5hG7pmW-XgUM6YWM2zO-uKyfQXfTo6_Tj4FPgJDYBCIrQPBq9wUhdG4CimOYo2iRNd1bJQJC4tooU4robFzWIgrRfAkzlSqNJHUW8WTXRguV0v7GpjiRV5pW2slas6VEFrT7cQCkxAy63wEYS8GaTw9OUXJWEi3TRGZ7CQnUXKSJCfDEbzb_HLVcXM8VPiIZLspSLTaLmHVzKSfpVIboofUVmDLuMmNQPgY6kTVYWioryPY7UaGpBe5r8o4wQ0x1r7fy176RaCVd4Ifwft-9Nxl_7Opew9X9ga2Yzd8syBK92G4bm7sATw2v9fzthnDIP_xc-znAX5NYj52hgZ8noYTzCk_n5ZYYnD25fsfOuoTkA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoALz1ZdKOADXEBRncRJnANCUKhatV31UKTejO3Y2xXb3TZZQPun-I3MOMlWRaK3HjhFsh3Hjj_Pw54HwOvSVUL71FNCkzwijk8HTSIqBE8zE6eoFrXJJorhUJ6clEcr8Lv3hSGzyp4mBkJdzSydkW9RpLusFHmcfzi_iChrFN2u9ik0Wljsu8UvVNma93ufcX3fJMnOl-Pt3ajLKhBZFC7mkRRVYcvSGtxZWuBQ4zg13idWW1465IA-q6TBT2EjoTWx3CTXmTYUeN1pkWK_t-C2wMkQITjk28szHVSmJHK87vI0lvlWQwHEyMyDjJKQtPAr7C9kCSAPJ1R9x80VGfeva9nA7XYe_m__6RE86ORq9rHdCI9hxU2fwN3erP8pmKOarqTIyJuhzMsqPZ4sWO2Q405Zy9cRoWzmQy1KxPY7Owse4Yz6GLHTBfm2YRkZnzrWZdsYMT0Z4fTnp2fNGny9kRmuw-p0NnUbwLQoi8o4b7T0QmgpjSHfyxKLUCEwxQB4v-zKdsHXKQfIRAUlTOaqRYpCpChCiuIDeLt85byNPHJd40-EpWVDChoeCmb1SHU0SBlLwS-NkzgyYQsrUTjmJtWec0tzHcB6i0RFDzLOVUmK6j72vtljTXUkrlGXQBvAux6tl9X_HOqz6zt7Bfd2jw8P1MHecP853E_C1smjONuE1Xn9w72AO_bnfNzUL8PeY_DtpkH8B9y3aMw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VgCgXXi1iKQUfOFFFJBsncY4UWFGBViuVIm6W7djLiiWLkoDEv2cmj62ooFLVUyTHThx7nPnGnvkG4CC1GVcudJTQJPZI49NGE_cS7oeRDkI0i5pkE8lwKG5u0lGb57TsvN27I8kmpoFYmvLq6CFzzRIX8VFJvFzkPUG-Prhi0WZf5JQziMz1n9fzTRa0bgSqoPY0882Wr_RRTdtPIUf40kn5CnT-cU5aq5_B2n93fB1WW-TJjhtR2YAPNt-E5c7xfRM-djHK5SfQo4IOcMglmiFCZJmaTJ9ZYVE_5azRgjifbObqu4gfzR27r-OnGT1vzG6fKRIMy8hV07I2N8WYqel4Vkyq2_vyM_wanF2dnHttNgbPICirPMGzxKSp0fhHUhynOAhC7VzfKOOnFpGDizKho5RjJa4UQZV-rCKlibDeKh5uwUI-y-02MMXTJNPWaSUc50oIrSlSMcUihM866YHfzYk0LVU5ZcyYytpkEbFsxlHiOEoaR-n34HDe5KHh6fhb5e800fOKRLFdF8yKsWxXrNSGqCK1FdgzbhIjEEr6OlTO9w19aw-2GjGRdCFXVtkP0TjGp-92YiPbH0IpiagRxyYO4h5868Tk9-13u7rzT7X3YXl0OpCXP4YXX2ClX4tZ7AXRLixUxaP9CkvmqZqUxV69TF4Aw88QsQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+daily+return+direction+of+the+stock+market+using+hybrid+machine+learning+algorithms&rft.jtitle=Financial+innovation+%28Heidelberg%29&rft.au=Zhong%2C+Xiao&rft.au=Enke%2C+David&rft.date=2019-06-15&rft.pub=Springer+Nature+B.V&rft.eissn=2199-4730&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1186%2Fs40854-019-0138-0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4730&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4730&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4730&client=summon |