A Multimodal Fusion Behaviors Estimation Method for Public Dangerous Monitoring

At the present stage, the identification of dangerous behaviors in public places mostly relies on manual work, which is subjective and has low identification efficiency. This paper proposes an automatic identification method for dangerous behaviors in public places, which analyzes group behavior and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced computational intelligence and intelligent informatics Vol. 28; no. 3; pp. 520 - 527
Main Authors: Hou, Renkai, Xu, Xiangyang, Dai, Yaping, Shao, Shuai, Hirota, Kaoru
Format: Journal Article
Language:English
Published: Tokyo Fuji Technology Press Co. Ltd 01.05.2024
Subjects:
ISSN:1343-0130, 1883-8014
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract At the present stage, the identification of dangerous behaviors in public places mostly relies on manual work, which is subjective and has low identification efficiency. This paper proposes an automatic identification method for dangerous behaviors in public places, which analyzes group behavior and speech emotion through deep learning network and then performs multimodal information fusion. Based on the fusion results, people can judge the emotional atmosphere of the crowd, make early warning, and alarm for possible dangerous behaviors. Experiments show that the algorithm adopted in this paper can accurately identify dangerous behaviors and has great application value.
AbstractList At the present stage, the identification of dangerous behaviors in public places mostly relies on manual work, which is subjective and has low identification efficiency. This paper proposes an automatic identification method for dangerous behaviors in public places, which analyzes group behavior and speech emotion through deep learning network and then performs multimodal information fusion. Based on the fusion results, people can judge the emotional atmosphere of the crowd, make early warning, and alarm for possible dangerous behaviors. Experiments show that the algorithm adopted in this paper can accurately identify dangerous behaviors and has great application value.
Author Dai, Yaping
Hirota, Kaoru
Shao, Shuai
Hou, Renkai
Xu, Xiangyang
Author_xml – sequence: 1
  givenname: Renkai
  surname: Hou
  fullname: Hou, Renkai
  organization: Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing 100081, China
– sequence: 2
  givenname: Xiangyang
  surname: Xu
  fullname: Xu, Xiangyang
  organization: Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing 100081, China
– sequence: 3
  givenname: Yaping
  surname: Dai
  fullname: Dai, Yaping
  organization: Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing 100081, China
– sequence: 4
  givenname: Shuai
  surname: Shao
  fullname: Shao, Shuai
  organization: Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing 100081, China
– sequence: 5
  givenname: Kaoru
  surname: Hirota
  fullname: Hirota, Kaoru
  organization: Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing 100081, China
BookMark eNp9kMtOAjEUhhuDiYi8gKsmrgd7n7JEBDWB4ELXTWemhZJxim3HxLe3gCsXrs71_0_Odw0Gne8MALcYTQiaCn6_17VzLheETQ6IE3QBhlhKWkiE2SDnlNECYYquwDjGPUI5JwIxPASbGVz3bXIfvtEtXPbR-Q4-mJ3-cj5EuIh5pNOxuTZp5xtofYCvfdW6Gj7qbmuC7yNc-84lH1y3vQGXVrfRjH_jCLwvF2_z52K1eXqZz1ZFzTFORWmptbqc0oYIqRlqWGUqhkotUW21oAhzIStckqqSbMowttOGSMJrwbIkL4zA3dn3EPxnb2JSe9-HLp9UFHHBBOfZfQTkeasOPsZgrKpdOr2TgnatwkidCKozQXUkqE4Es5T8kR5CRhG-_xP9AFtPd6I
CitedBy_id crossref_primary_10_1080_10630732_2025_2476234
crossref_primary_10_1007_s44163_025_00413_7
Cites_doi 10.1109/TPAMI.2013.220
10.1109/CVPR.2015.7299088
10.1007/s11042-017-5292-7
10.1145/3302425.3302444
10.3389/fnins.2022.1024316
10.3758/BF03212378
10.1007/978-3-319-46484-8_18
10.1007/s11760-021-02079-x
10.1007/s11002-015-9357-y
10.1109/CVPR.2017.783
10.21437/Interspeech.2016-692
10.1016/j.jvoice.2022.03.021
10.1007/978-3-642-33765-9_14
10.1109/CVPR.2016.213
10.1109/CVPR.2017.365
10.1007/s11042-021-11392-z
ContentType Journal Article
Copyright Copyright © 2024 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2024 Fuji Technology Press Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.20965/jaciii.2024.p0520
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database ProQuest
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 527
ExternalDocumentID 10_20965_jaciii_2024_p0520
GroupedDBID AAYXX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
ISHAI
JSI
JSP
K7-
P2P
PHGZM
PHGZT
PQGLB
RJT
RZJ
TUS
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c511t-7f3ffa793d268a40d4beb407a80cfa6301568b172bb849411f9d2825c643d2a63
IEDL.DBID P5Z
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001229170100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1343-0130
IngestDate Sat Jul 26 00:00:16 EDT 2025
Sat Nov 29 06:43:35 EST 2025
Tue Nov 18 20:44:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-7f3ffa793d268a40d4beb407a80cfa6301568b172bb849411f9d2825c643d2a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.20965/jaciii.2024.p0520
PQID 3056465579
PQPubID 4911628
PageCount 8
ParticipantIDs proquest_journals_3056465579
crossref_citationtrail_10_20965_jaciii_2024_p0520
crossref_primary_10_20965_jaciii_2024_p0520
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of advanced computational intelligence and intelligent informatics
PublicationYear 2024
Publisher Fuji Technology Press Co. Ltd
Publisher_xml – name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2024.p0520-20
key-10.20965/jaciii.2024.p0520-9
key-10.20965/jaciii.2024.p0520-7
key-10.20965/jaciii.2024.p0520-13
key-10.20965/jaciii.2024.p0520-8
key-10.20965/jaciii.2024.p0520-12
key-10.20965/jaciii.2024.p0520-5
key-10.20965/jaciii.2024.p0520-11
key-10.20965/jaciii.2024.p0520-6
key-10.20965/jaciii.2024.p0520-10
key-10.20965/jaciii.2024.p0520-3
key-10.20965/jaciii.2024.p0520-4
key-10.20965/jaciii.2024.p0520-1
key-10.20965/jaciii.2024.p0520-2
key-10.20965/jaciii.2024.p0520-17
key-10.20965/jaciii.2024.p0520-16
key-10.20965/jaciii.2024.p0520-15
key-10.20965/jaciii.2024.p0520-14
key-10.20965/jaciii.2024.p0520-19
key-10.20965/jaciii.2024.p0520-18
References_xml – ident: key-10.20965/jaciii.2024.p0520-3
  doi: 10.1109/TPAMI.2013.220
– ident: key-10.20965/jaciii.2024.p0520-7
  doi: 10.1109/CVPR.2015.7299088
– ident: key-10.20965/jaciii.2024.p0520-14
  doi: 10.1007/s11042-017-5292-7
– ident: key-10.20965/jaciii.2024.p0520-19
  doi: 10.1145/3302425.3302444
– ident: key-10.20965/jaciii.2024.p0520-12
  doi: 10.3389/fnins.2022.1024316
– ident: key-10.20965/jaciii.2024.p0520-2
  doi: 10.3758/BF03212378
– ident: key-10.20965/jaciii.2024.p0520-9
– ident: key-10.20965/jaciii.2024.p0520-4
– ident: key-10.20965/jaciii.2024.p0520-5
  doi: 10.1007/978-3-319-46484-8_18
– ident: key-10.20965/jaciii.2024.p0520-16
  doi: 10.1007/s11760-021-02079-x
– ident: key-10.20965/jaciii.2024.p0520-1
  doi: 10.1007/s11002-015-9357-y
– ident: key-10.20965/jaciii.2024.p0520-11
  doi: 10.1109/CVPR.2017.783
– ident: key-10.20965/jaciii.2024.p0520-13
  doi: 10.21437/Interspeech.2016-692
– ident: key-10.20965/jaciii.2024.p0520-20
  doi: 10.1016/j.jvoice.2022.03.021
– ident: key-10.20965/jaciii.2024.p0520-17
– ident: key-10.20965/jaciii.2024.p0520-6
  doi: 10.1007/978-3-642-33765-9_14
– ident: key-10.20965/jaciii.2024.p0520-10
  doi: 10.1109/CVPR.2016.213
– ident: key-10.20965/jaciii.2024.p0520-15
– ident: key-10.20965/jaciii.2024.p0520-8
  doi: 10.1109/CVPR.2017.365
– ident: key-10.20965/jaciii.2024.p0520-18
  doi: 10.1007/s11042-021-11392-z
SSID ssj0001326041
ssib051641541
Score 2.418594
Snippet At the present stage, the identification of dangerous behaviors in public places mostly relies on manual work, which is subjective and has low identification...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 520
SubjectTerms Algorithms
Behavior
Data integration
Datasets
Deep learning
Emotions
Group dynamics
Identification methods
Informatics
Methods
Neural networks
Speech
Time series
Title A Multimodal Fusion Behaviors Estimation Method for Public Dangerous Monitoring
URI https://www.proquest.com/docview/3056465579
Volume 28
WOSCitedRecordID wos001229170100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051641541
  issn: 1343-0130
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database ProQuest
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF609eDF-sRqLXvwJmuTZtMkJ6naIoi1iELxEvaRgKJNbVp_vzO7G0svXrwEQjZL2Nmd-WYyMx8h55FQnGupWByKgHHJBQMz0mNwl-fgcYW5rw3ZRDQaxZNJMnYBt9KlVVY60ShqXSiMkXcQ6mKvryi5mn0xZI3Cv6uOQmOT1LFLAlI3jMPXaj-F4AoAQvBXMRfAKh63PhjHNKLAs3U0XeyB0nkXChs6dMFsXc4wP2TdVq2ramN_ho3_fvku2XHIk_btVtkjG9l0nzQqVgfqDvkBeexTU5X7WWgYPlxiOI26Norzkg5AJ9hyR_pg2KcpwF5qo3_01lQRF8uSWl2BQcND8jIcPN_cMUe7wBSgrwWLchCTgHOru71YcE9zmUnw-0TsqVz0Aiy-jiUAHyljnnDfzxONFbAKwI3uwoAjUpsW0-yYUEADIoSlzhX4oSoPYqk1TzSChgzmFk3iVwucKteTHKkxPlLwTYxQUiuUFIWSGqE0ycXvOzPbkePP0a1KKKk7nWW6ksjJ349PyTZOZRMcW6S2mC-zM7Klvhdv5bxN6teD0fipbfx4uN5HrG024A-b5t6g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED7xkmDhjXjjASZkmofbJANCFaVqVSgMILEFx04kELSlaUH8KX4jd3YCYmHrwBjFsZL4891353sAHAZSCaETxcOq9LlIhOSoRmocr7IMLa5q5mrTbCLodsP7--hmCj7LXBgKqyxlohHUuq_IR14hqku1voLobPDKqWsUna6WLTQsLDrpxzuabPlpu4Hre-R5zYvb8xYvugpwheRixIMM30IiLLVXC6VwtEjSBM0aGToqkzWfcovDBPV6koQiEq6bRZoSPBXqbu3hAJx3GmaFHwa0rzoBL_FbRdMDGYn74-NBbuQIa_MJClvyHZu341HNlcqTVFRAwkM1eTKgeJTfuvG3ajD6rrn03_7UMiwWzJrV7VZYgam0twpLZdcKVgixNbiuM5N1_NLXOLw5JnchK8pEDnN2gTLPpnOyK9NdmyGtZ9a7yRomS7o_zpmVheQUXYe7iXzWBsz0-r10ExiyHVnFpc0U2tkq88NEaxFpIkUpzi23wC0XNFZFzXVq_fEco-1lQBBbEMQEgtiAYAuOv58Z2Iojf47eLUEQF9Inj38QsP337QOYb91eXcaX7W5nBxZoWhPM6ezCzGg4TvdgTr2NHvPhvgE6g4dJ4-ULrTM2XQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multimodal+Fusion+Behaviors+Estimation+Method+for+Public+Dangerous+Monitoring&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Hou%2C+Renkai&rft.au=Xu%2C+Xiangyang&rft.au=Dai%2C+Yaping&rft.au=Shao%2C+Shuai&rft.date=2024-05-01&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=28&rft.issue=3&rft.spage=520&rft.epage=527&rft_id=info:doi/10.20965%2Fjaciii.2024.p0520&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2024_p0520
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon